Line 148: |
Line 148: |
| | | |
| ======Definitions====== | | ======Definitions====== |
− |
| |
− | <pre>
| |
− | Definition 2
| |
− |
| |
− | If X, Y c U,
| |
− |
| |
− | then the following are equivalent:
| |
− |
| |
− | D2a. X = Y.
| |
− |
| |
− | D2b. u C X <=> u C Y, for all u C U.
| |
− | </pre>
| |
− |
| |
− | <pre>
| |
− | Definition 3
| |
− |
| |
− | If f, g : U -> V,
| |
− |
| |
− | then the following are equivalent:
| |
− |
| |
− | D3a. f = g.
| |
− |
| |
− | D3b. f(u) = g(u), for all u C U.
| |
− | </pre>
| |
− |
| |
− | <pre>
| |
− | Definition 4
| |
− |
| |
− | If X c U,
| |
− |
| |
− | then the following are identical subsets of UxB:
| |
− |
| |
− | D4a. {X}
| |
− |
| |
− | D4b. {< u, v> C UxB : v = [u C X]}
| |
− | </pre>
| |
| | | |
| <pre> | | <pre> |
Line 199: |
Line 163: |
| </pre> | | </pre> |
| | | |
− | Given an indexed set of sentences, Sj for j C J, it is possible to consider the logical conjunction of the corresponding propositions. Various notations for this concept are be useful in various contexts, a sufficient sample of which are recorded in Definition 6.
| |
− |
| |
− | <pre>
| |
− | Definition 6
| |
− |
| |
− | If Sj is a sentence
| |
− |
| |
− | about things in the universe U,
| |
− |
| |
− | for all j C J,
| |
− |
| |
− | then the following are equivalent:
| |
− |
| |
− | D6a. Sj, for all j C J.
| |
− |
| |
− | D6b. For all j C J, Sj.
| |
− |
| |
− | D6c. Conj(j C J) Sj.
| |
− |
| |
− | D6d. ConjJ,j Sj.
| |
− |
| |
− | D6e. ConjJj Sj.
| |
− | </pre>
| |
| | | |
| <pre> | | <pre> |
− | Definition 7
| |
− |
| |
− | If S, T are sentences
| |
− |
| |
− | about things in the universe U,
| |
− |
| |
− | then the following are equivalent:
| |
− |
| |
− | D7a. S <=> T.
| |
− |
| |
− | D7b. [S] = [T].
| |
− | </pre>
| |
| | | |
| ======Other Rules====== | | ======Other Rules====== |