Line 1: |
Line 1: |
− | ==Bump== | + | <div class="nonumtoc">__TOC__</div> |
| | | |
− | Huh, looks like I forgot all about doing this work back in Feb 2009. [[User:Jon Awbrey|Jon Awbrey]] 19:00, 2 September 2010 (UTC)
| + | ==Alternate Version : Needs To Be Reconciled== |
| + | |
| + | ====1.3.12. Syntactic Transformations <big>✔</big>==== |
| + | |
| + | =====1.3.12.1. Syntactic Transformation Rules===== |
| + | |
| + | <pre> |
| + | Value Rule 1 |
| + | |
| + | If v, w C B |
| + | |
| + | then "v = w" is a sentence about <v, w> C B2, |
| + | |
| + | [v = w] is a proposition : B2 -> B, |
| + | |
| + | and the following are identical values in B: |
| + | |
| + | V1a. [ v = w ](v, w) |
| + | |
| + | V1b. [ v <=> w ](v, w) |
| + | |
| + | V1c. ((v , w)) |
| + | </pre> |
| + | |
| + | <pre> |
| + | Value Rule 1 |
| + | |
| + | If v, w C B, |
| + | |
| + | then the following are equivalent: |
| + | |
| + | V1a. v = w. |
| + | |
| + | V1b. v <=> w. |
| + | |
| + | V1c. (( v , w )). |
| + | </pre> |
| + | |
| + | A rule that allows one to turn equivalent sentences into identical propositions: |
| + | |
| + | : (S <=> T) <=> ([S] = [T]) |
| + | |
| + | Consider [ v = w ](v, w) and [ v(u) = w(u) ](u) |
| + | |
| + | <pre> |
| + | Value Rule 1 |
| + | |
| + | If v, w C B, |
| + | |
| + | then the following are identical values in B: |
| + | |
| + | V1a. [ v = w ] |
| + | |
| + | V1b. [ v <=> w ] |
| + | |
| + | V1c. (( v , w )) |
| + | </pre> |
| + | |
| + | <pre> |
| + | Value Rule 1 |
| + | |
| + | If f, g : U -> B, |
| + | |
| + | and u C U |
| + | |
| + | then the following are identical values in B: |
| + | |
| + | V1a. [ f(u) = g(u) ] |
| + | |
| + | V1b. [ f(u) <=> g(u) ] |
| + | |
| + | V1c. (( f(u) , g(u) )) |
| + | </pre> |
| + | |
| + | <pre> |
| + | Value Rule 1 |
| + | |
| + | If f, g : U -> B, |
| + | |
| + | then the following are identical propositions on U: |
| + | |
| + | V1a. [ f = g ] |
| + | |
| + | V1b. [ f <=> g ] |
| + | |
| + | V1c. (( f , g ))$ |
| + | </pre> |
| + | |
| + | <pre> |
| + | Evaluation Rule 1 |
| + | |
| + | If f, g : U -> B |
| + | |
| + | and u C U, |
| + | |
| + | then the following are equivalent: |
| + | |
| + | E1a. f(u) = g(u). :V1a |
| + | |
| + | :: |
| + | |
| + | E1b. f(u) <=> g(u). :V1b |
| + | |
| + | :: |
| + | |
| + | E1c. (( f(u) , g(u) )). :V1c |
| + | |
| + | :$1a |
| + | |
| + | :: |
| + | |
| + | E1d. (( f , g ))$(u). :$1b |
| + | </pre> |
| + | |
| + | <pre> |
| + | Evaluation Rule 1 |
| + | |
| + | If S, T are sentences |
| + | |
| + | about things in the universe U, |
| + | |
| + | f, g are propositions: U -> B, |
| + | |
| + | and u C U, |
| + | |
| + | then the following are equivalent: |
| + | |
| + | E1a. f(u) = g(u). :V1a |
| + | |
| + | :: |
| + | |
| + | E1b. f(u) <=> g(u). :V1b |
| + | |
| + | :: |
| + | |
| + | E1c. (( f(u) , g(u) )). :V1c |
| + | |
| + | :$1a |
| + | |
| + | :: |
| + | |
| + | E1d. (( f , g ))$(u). :$1b |
| + | </pre> |
| + | |
| + | =====1.3.12.2. Derived Equivalence Relations <big>✔</big>===== |
| + | |
| + | =====1.3.12.3. Digression on Derived Relations <big>✔</big>===== |