where <math>\text{p}_{i(k)}^{j(k)}</math> is the <math>k^\text{th}</math> prime power in the factorization and <math>\ell</math> is the number of distinct primes dividing <math>n.</math>
+
where <math>\text{p}_{i(k)}^{j(k)}</math> is the <math>k^\text{th}</math> prime power in the factorization and <math>\ell</math> is the number of distinct prime factors dividing <math>n.</math>
−
Let <math>I(n)</math> be the set of indices of primes that divide the positive integer <math>n.</math>
+
Let <math>I(n)</math> be the set of indices of primes that divide <math>n</math> and let <math>j(i, n)</math> be the number of times that <math>\text{p}_i</math> divides <math>n.</math> Then the prime factorization of <math>n</math> can be written in the following alternative form:
−
−
Let <math>j(i, n)</math> be the number of times that <math>\text{p}_i</math> divides <math>n.</math>
−
−
The prime factorization of a positive integer <math>n</math> can be written in the following form: