Ascii Tables
o-------------------o
| |
| @ |
| |
o-------------------o
| |
| o |
| | |
| @ |
| |
o-------------------o
| |
| a |
| @ |
| |
o-------------------o
| |
| a |
| o |
| | |
| @ |
| |
o-------------------o
| |
| a b c |
| @ |
| |
o-------------------o
| |
| a b c |
| o o o |
| \|/ |
| o |
| | |
| @ |
| |
o-------------------o
| |
| |
| a b |
| o---o |
| | |
| @ |
| |
o-------------------o
| |
| a b |
| o---o |
| \ / |
| @ |
| |
o-------------------o
| |
| a b |
| o---o |
| \ / |
| o |
| | |
| @ |
| |
o-------------------o
| |
| a b c |
| o--o--o |
| \ / |
| \ / |
| @ |
| |
o-------------------o
| |
| a b c |
| o o o |
| | | | |
| o--o--o |
| \ / |
| \ / |
| @ |
| |
o-------------------o
| |
| |
| b c |
| o o |
| a | | |
| o--o--o |
| \ / |
| \ / |
| @ |
| |
o-------------------o
Table 13. The Existential Interpretation
o----o-------------------o-------------------o-------------------o
| Ex | Cactus Graph | Cactus Expression | Existential |
| | | | Interpretation |
o----o-------------------o-------------------o-------------------o
| | | | |
| 1 | @ | " " | true. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | o | | |
| | | | | |
| 2 | @ | ( ) | untrue. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a | | |
| 3 | @ | a | a. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a | | |
| | o | | |
| | | | | |
| 4 | @ | (a) | not a. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b c | | |
| 5 | @ | a b c | a and b and c. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b c | | |
| | o o o | | |
| | \|/ | | |
| | o | | |
| | | | | |
| 6 | @ | ((a)(b)(c)) | a or b or c. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | | | a implies b. |
| | a b | | |
| | o---o | | if a then b. |
| | | | | |
| 7 | @ | ( a (b)) | no a sans b. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b | | |
| | o---o | | a exclusive-or b. |
| | \ / | | |
| 8 | @ | ( a , b ) | a not equal to b. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b | | |
| | o---o | | |
| | \ / | | |
| | o | | a if & only if b. |
| | | | | |
| 9 | @ | (( a , b )) | a equates with b. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b c | | |
| | o--o--o | | |
| | \ / | | |
| | \ / | | just one false |
| 10 | @ | ( a , b , c ) | out of a, b, c. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b c | | |
| | o o o | | |
| | | | | | | |
| | o--o--o | | |
| | \ / | | |
| | \ / | | just one true |
| 11 | @ | ((a),(b),(c)) | among a, b, c. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | | | genus a over |
| | b c | | species b, c. |
| | o o | | |
| | a | | | | partition a |
| | o--o--o | | among b & c. |
| | \ / | | |
| | \ / | | whole pie a: |
| 12 | @ | ( a ,(b),(c)) | slices b, c. |
| | | | |
o----o-------------------o-------------------o-------------------o
Table 14. The Entitative Interpretation
o----o-------------------o-------------------o-------------------o
| En | Cactus Graph | Cactus Expression | Entitative |
| | | | Interpretation |
o----o-------------------o-------------------o-------------------o
| | | | |
| 1 | @ | " " | untrue. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | o | | |
| | | | | |
| 2 | @ | ( ) | true. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a | | |
| 3 | @ | a | a. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a | | |
| | o | | |
| | | | | |
| 4 | @ | (a) | not a. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b c | | |
| 5 | @ | a b c | a or b or c. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b c | | |
| | o o o | | |
| | \|/ | | |
| | o | | |
| | | | | |
| 6 | @ | ((a)(b)(c)) | a and b and c. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | | | a implies b. |
| | | | |
| | o a | | if a then b. |
| | | | | |
| 7 | @ b | (a) b | not a, or b. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b | | |
| | o---o | | a if & only if b. |
| | \ / | | |
| 8 | @ | ( a , b ) | a equates with b. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b | | |
| | o---o | | |
| | \ / | | |
| | o | | a exclusive-or b. |
| | | | | |
| 9 | @ | (( a , b )) | a not equal to b. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b c | | |
| | o--o--o | | |
| | \ / | | |
| | \ / | | not just one true |
| 10 | @ | ( a , b , c ) | out of a, b, c. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a b c | | |
| | o--o--o | | |
| | \ / | | |
| | \ / | | |
| | o | | |
| | | | | just one true |
| 11 | @ | (( a , b , c )) | among a, b, c. |
| | | | |
o----o-------------------o-------------------o-------------------o
| | | | |
| | a | | |
| | o | | genus a over |
| | | b c | | species b, c. |
| | o--o--o | | |
| | \ / | | partition a |
| | \ / | | among b & c. |
| | o | | |
| | | | | whole pie a: |
| 12 | @ | (((a), b , c )) | slices b, c. |
| | | | |
o----o-------------------o-------------------o-------------------o
Table 15. Existential & Entitative Interpretations of Cactus Structures
o-----------------o-----------------o-----------------o-----------------o
| Cactus Graph | Cactus String | Existential | Entitative |
| | | Interpretation | Interpretation |
o-----------------o-----------------o-----------------o-----------------o
| | | | |
| @ | " " | true | false |
| | | | |
o-----------------o-----------------o-----------------o-----------------o
| | | | |
| o | | | |
| | | | | |
| @ | ( ) | false | true |
| | | | |
o-----------------o-----------------o-----------------o-----------------o
| | | | |
| C_1 ... C_k | | | |
| @ | C_1 ... C_k | C_1 & ... & C_k | C_1 v ... v C_k |
| | | | |
o-----------------o-----------------o-----------------o-----------------o
| | | | |
| C_1 C_2 C_k | | Just one | Not just one |
| o---o-...-o | | | |
| \ / | | of the C_j, | of the C_j, |
| \ / | | | |
| \ / | | j = 1 to k, | j = 1 to k, |
| \ / | | | |
| @ | (C_1, ..., C_k) | is not true. | is true. |
| | | | |
o-----------------o-----------------o-----------------o-----------------o
Wiki TeX Tables
\(\text{Table A.}~~\text{Existential Interpretation}\)
\(\text{Cactus Graph}\!\)
|
\(\text{Cactus Expression}\!\)
|
\(\text{Interpretation}\!\)
|
o-------------------o
| |
| @ |
| |
o-------------------o
|
\({}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}\)
|
\(\operatorname{true}.\)
|
o-------------------o
| |
| o |
| | |
| @ |
| |
o-------------------o
|
\(\texttt{(~)}\)
|
\(\operatorname{false}.\)
|
o-------------------o
| |
| a |
| @ |
| |
o-------------------o
|
\(a\!\)
|
\(a.\!\)
|
o-------------------o
| |
| a |
| o |
| | |
| @ |
| |
o-------------------o
|
\(\texttt{(} a \texttt{)}\)
|
\(\begin{matrix}
\tilde{a}
\'"`UNIQ-MathJax1-QINU`"'
'''Generalized''' or '''n-ary''' XOR is true when the number of 1-bits is odd.
'"`UNIQ--pre-00000026-QINU`"'
'"`UNIQ--pre-00000027-QINU`"'
'"`UNIQ--pre-00000028-QINU`"'
'"`UNIQ-MathJax2-QINU`"'
===='"`UNIQ--h-37--QINU`"'[[Logical implication]]====
The '''material conditional''' and '''logical implication''' are both associated with an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if the first operand is true and the second operand is false.
The [[truth table]] associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical Implication'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ⇒ q
|-
| F || F || T
|-
| F || T || T
|-
| T || F || F
|-
| T || T || T
|}
<br>
===='"`UNIQ--h-38--QINU`"'[[Logical NAND]]====
The '''NAND operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are true. In other words, it produces a value of ''true'' if and only if at least one of its operands is false.
The [[truth table]] of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NAND'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ↑ q
|-
| F || F || T
|-
| F || T || T
|-
| T || F || T
|-
| T || T || F
|}
<br>
===='"`UNIQ--h-39--QINU`"'[[Logical NNOR]]====
The '''NNOR operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are false. In other words, it produces a value of ''false'' if and only if at least one of its operands is true.
The [[truth table]] of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NOR'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ↓ q
|-
| F || F || T
|-
| F || T || F
|-
| T || F || F
|-
| T || T || F
|}
<br>
=='"`UNIQ--h-40--QINU`"'Relational Tables==
==='"`UNIQ--h-41--QINU`"'Factorization===
{| align="center" style="text-align:center; width:60%"
|
{| align="center" style="text-align:center; width:100%"
| \(\text{Table 7. Plural Denotation}\!\)
|
|-
|
\(\text{Object}\!\)
|
\(\text{Sign}\!\)
|
\(\text{Interpretant}\!\)
|
\(\begin{matrix}
o_1 \\ o_2 \\ o_3 \\ \ldots \\ o_k \\ \ldots
\end{matrix}\)
|
\(\begin{matrix}
s \\ s \\ s \\ \ldots \\ s \\ \ldots
\end{matrix}\)
|
\(\begin{matrix}
\ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots
\end{matrix}\)
|
|}
\(\text{Table 8. Sign Relation}~ L\)
|
|
\(\text{Object}\!\)
|
\(\text{Sign}\!\)
|
\(\text{Interpretant}\!\)
|
\(\begin{matrix}
o_1 \\ o_2 \\ o_3
\end{matrix}\)
|
\(\begin{matrix}
s \\ s \\ s
\end{matrix}\)
|
\(\begin{matrix}
\ldots \\ \ldots \\ \ldots
\end{matrix}\)
|
|
Sign Relations
|
O |
= |
Object Domain
|
|
S |
= |
Sign Domain
|
|
I |
= |
Interpretant Domain
|
|
O
|
=
|
{Ann, Bob}
|
=
|
{A, B}
|
|
S
|
=
|
{"Ann", "Bob", "I", "You"}
|
=
|
{"A", "B", "i", "u"}
|
|
I
|
=
|
{"Ann", "Bob", "I", "You"}
|
=
|
{"A", "B", "i", "u"}
|
LA = Sign Relation of Interpreter A
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"i"
|
A |
"i" |
"A"
|
A |
"i" |
"i"
|
B |
"B" |
"B"
|
B |
"B" |
"u"
|
B |
"u" |
"B"
|
B |
"u" |
"u"
|
LB = Sign Relation of Interpreter B
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"u"
|
A |
"u" |
"A"
|
A |
"u" |
"u"
|
B |
"B" |
"B"
|
B |
"B" |
"i"
|
B |
"i" |
"B"
|
B |
"i" |
"i"
|
Triadic Relations
Algebraic Examples
L0 = {(x, y, z) ∈ B3 : x + y + z = 0}
X |
Y |
Z
|
---|
0 |
0 |
0
|
0 |
1 |
1
|
1 |
0 |
1
|
1 |
1 |
0
|
L1 = {(x, y, z) ∈ B3 : x + y + z = 1}
X |
Y |
Z
|
---|
0 |
0 |
1
|
0 |
1 |
0
|
1 |
0 |
0
|
1 |
1 |
1
|
Semiotic Examples
LA = Sign Relation of Interpreter A
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"i"
|
A |
"i" |
"A"
|
A |
"i" |
"i"
|
B |
"B" |
"B"
|
B |
"B" |
"u"
|
B |
"u" |
"B"
|
B |
"u" |
"u"
|
LB = Sign Relation of Interpreter B
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"u"
|
A |
"u" |
"A"
|
A |
"u" |
"u"
|
B |
"B" |
"B"
|
B |
"B" |
"i"
|
B |
"i" |
"B"
|
B |
"i" |
"i"
|
Dyadic Projections
|
LOS |
=
|
projOS(L)
|
=
|
{ (o, s) ∈ O × S : (o, s, i) ∈ L for some i ∈ I }
|
|
LSO |
=
|
projSO(L)
|
=
|
{ (s, o) ∈ S × O : (o, s, i) ∈ L for some i ∈ I }
|
|
LIS |
=
|
projIS(L)
|
=
|
{ (i, s) ∈ I × S : (o, s, i) ∈ L for some o ∈ O }
|
|
LSI |
=
|
projSI(L)
|
=
|
{ (s, i) ∈ S × I : (o, s, i) ∈ L for some o ∈ O }
|
|
LOI |
=
|
projOI(L)
|
=
|
{ (o, i) ∈ O × I : (o, s, i) ∈ L for some s ∈ S }
|
|
LIO |
=
|
projIO(L)
|
=
|
{ (i, o) ∈ I × O : (o, s, i) ∈ L for some s ∈ S }
|
Method 1 : Subtitles as Captions
projOS(LA)
Object
|
Sign
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
| |
projOS(LB)
Object
|
Sign
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
| |
projSI(LA)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"i"
| "i" |
"A"
| "i" |
"i"
| "B" |
"B"
| "B" |
"u"
| "u" |
"B"
| "u" |
"u"
| |
projSI(LB)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"u"
| "u" |
"A"
| "u" |
"u"
| "B" |
"B"
| "B" |
"i"
| "i" |
"B"
| "i" |
"i"
| |
projOI(LA)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
| |
projOI(LB)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
| |
Method 2 : Subtitles as Top Rows
projOS(LA)
Object
|
Sign
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
|
|
projOS(LB)
Object
|
Sign
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
|
|
projSI(LA)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"i"
| "i" |
"A"
| "i" |
"i"
| "B" |
"B"
| "B" |
"u"
| "u" |
"B"
| "u" |
"u"
|
|
projSI(LB)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"u"
| "u" |
"A"
| "u" |
"u"
| "B" |
"B"
| "B" |
"i"
| "i" |
"B"
| "i" |
"i"
|
|
projOI(LA)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
|
|
projOI(LB)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
|
|
Relation Reduction
Method 1 : Subtitles as Captions
L0 = {(x, y, z) ∈ B3 : x + y + z = 0}
X |
Y |
Z
|
---|
0 |
0 |
0
|
0 |
1 |
1
|
1 |
0 |
1
|
1 |
1 |
0
|
L1 = {(x, y, z) ∈ B3 : x + y + z = 1}
X |
Y |
Z
|
---|
0 |
0 |
1
|
0 |
1 |
0
|
1 |
0 |
0
|
1 |
1 |
1
|
projXY(L0)
X |
Y
|
---|
0 |
0
| 0 |
1
| 1 |
0
| 1 |
1
| |
projXZ(L0)
X |
Z
|
---|
0 |
0
| 0 |
1
| 1 |
1
| 1 |
0
| |
projYZ(L0)
Y |
Z
|
---|
0 |
0
| 1 |
1
| 0 |
1
| 1 |
0
| |
projXY(L1)
X |
Y
|
---|
0 |
0
| 0 |
1
| 1 |
0
| 1 |
1
| |
projXZ(L1)
X |
Z
|
---|
0 |
1
| 0 |
0
| 1 |
0
| 1 |
1
| |
projYZ(L1)
Y |
Z
|
---|
0 |
1
| 1 |
0
| 0 |
0
| 1 |
1
| |
projXY(L0) = projXY(L1)
|
projXZ(L0) = projXZ(L1)
|
projYZ(L0) = projYZ(L1)
|
LA = Sign Relation of Interpreter A
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"i"
|
A |
"i" |
"A"
|
A |
"i" |
"i"
|
B |
"B" |
"B"
|
B |
"B" |
"u"
|
B |
"u" |
"B"
|
B |
"u" |
"u"
|
LB = Sign Relation of Interpreter B
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"u"
|
A |
"u" |
"A"
|
A |
"u" |
"u"
|
B |
"B" |
"B"
|
B |
"B" |
"i"
|
B |
"i" |
"B"
|
B |
"i" |
"i"
|
projXY(LA)
Object
|
Sign
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
| |
projXZ(LA)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
| |
projYZ(LA)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"i"
| "i" |
"A"
| "i" |
"i"
| "B" |
"B"
| "B" |
"u"
| "u" |
"B"
| "u" |
"u"
| |
projXY(LB)
Object
|
Sign
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
| |
projXZ(LB)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
| |
projYZ(LB)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"u"
| "u" |
"A"
| "u" |
"u"
| "B" |
"B"
| "B" |
"i"
| "i" |
"B"
| "i" |
"i"
| |
projXY(LA) ≠ projXY(LB)
|
projXZ(LA) ≠ projXZ(LB)
|
projYZ(LA) ≠ projYZ(LB)
|
Method 2 : Subtitles as Top Rows
L0 = {(x, y, z) ∈ B3 : x + y + z = 0}
X |
Y |
Z
|
---|
0 |
0 |
0
|
0 |
1 |
1
|
1 |
0 |
1
|
1 |
1 |
0
|
L1 = {(x, y, z) ∈ B3 : x + y + z = 1}
X |
Y |
Z
|
---|
0 |
0 |
1
|
0 |
1 |
0
|
1 |
0 |
0
|
1 |
1 |
1
|
projXY(L0)
|
projXZ(L0)
|
projYZ(L0)
|
projXY(L1)
|
projXZ(L1)
|
projYZ(L1)
|
projXY(L0) = projXY(L1)
|
projXZ(L0) = projXZ(L1)
|
projYZ(L0) = projYZ(L1)
|
LA = Sign Relation of Interpreter A
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"i"
|
A |
"i" |
"A"
|
A |
"i" |
"i"
|
B |
"B" |
"B"
|
B |
"B" |
"u"
|
B |
"u" |
"B"
|
B |
"u" |
"u"
|
LB = Sign Relation of Interpreter B
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"u"
|
A |
"u" |
"A"
|
A |
"u" |
"u"
|
B |
"B" |
"B"
|
B |
"B" |
"i"
|
B |
"i" |
"B"
|
B |
"i" |
"i"
|
projXY(LA)
Object
|
Sign
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
|
|
projXZ(LA)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
|
|
projYZ(LA)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"i"
| "i" |
"A"
| "i" |
"i"
| "B" |
"B"
| "B" |
"u"
| "u" |
"B"
| "u" |
"u"
|
|
projXY(LB)
Object
|
Sign
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
|
|
projXZ(LB)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
|
|
projYZ(LB)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"u"
| "u" |
"A"
| "u" |
"u"
| "B" |
"B"
| "B" |
"i"
| "i" |
"B"
| "i" |
"i"
|
|
projXY(LA) ≠ projXY(LB)
|
projXZ(LA) ≠ projXZ(LB)
|
projYZ(LA) ≠ projYZ(LB)
|
Formatted Text Display
- So in a triadic fact, say, the example
- we make no distinction in the ordinary logic of relations between the subject nominative, the direct object, and the indirect object. We say that the proposition has three logical subjects. We regard it as a mere affair of English grammar that there are six ways of expressing this:
A gives B to C
|
A benefits C with B
|
B enriches C at expense of A
|
C receives B from A
|
C thanks A for B
|
B leaves A for C
|
- These six sentences express one and the same indivisible phenomenon. (C.S. Peirce, "The Categories Defended", MS 308 (1903), EP 2, 170-171).