Ascii Tables
Table A1. Propositional Forms On Two Variables
o---------o---------o---------o----------o------------------o----------o
| L_1 | L_2 | L_3 | L_4 | L_5 | L_6 |
| | | | | | |
| Decimal | Binary | Vector | Cactus | English | Ordinary |
o---------o---------o---------o----------o------------------o----------o
| | x : 1 1 0 0 | | | |
| | y : 1 0 1 0 | | | |
o---------o---------o---------o----------o------------------o----------o
| | | | | | |
| f_0 | f_0000 | 0 0 0 0 | () | false | 0 |
| | | | | | |
| f_1 | f_0001 | 0 0 0 1 | (x)(y) | neither x nor y | ~x & ~y |
| | | | | | |
| f_2 | f_0010 | 0 0 1 0 | (x) y | y and not x | ~x & y |
| | | | | | |
| f_3 | f_0011 | 0 0 1 1 | (x) | not x | ~x |
| | | | | | |
| f_4 | f_0100 | 0 1 0 0 | x (y) | x and not y | x & ~y |
| | | | | | |
| f_5 | f_0101 | 0 1 0 1 | (y) | not y | ~y |
| | | | | | |
| f_6 | f_0110 | 0 1 1 0 | (x, y) | x not equal to y | x + y |
| | | | | | |
| f_7 | f_0111 | 0 1 1 1 | (x y) | not both x and y | ~x v ~y |
| | | | | | |
| f_8 | f_1000 | 1 0 0 0 | x y | x and y | x & y |
| | | | | | |
| f_9 | f_1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y |
| | | | | | |
| f_10 | f_1010 | 1 0 1 0 | y | y | y |
| | | | | | |
| f_11 | f_1011 | 1 0 1 1 | (x (y)) | not x without y | x => y |
| | | | | | |
| f_12 | f_1100 | 1 1 0 0 | x | x | x |
| | | | | | |
| f_13 | f_1101 | 1 1 0 1 | ((x) y) | not y without x | x <= y |
| | | | | | |
| f_14 | f_1110 | 1 1 1 0 | ((x)(y)) | x or y | x v y |
| | | | | | |
| f_15 | f_1111 | 1 1 1 1 | (()) | true | 1 |
| | | | | | |
o---------o---------o---------o----------o------------------o----------o
Table A2. Propositional Forms On Two Variables
o---------o---------o---------o----------o------------------o----------o
| L_1 | L_2 | L_3 | L_4 | L_5 | L_6 |
| | | | | | |
| Decimal | Binary | Vector | Cactus | English | Ordinary |
o---------o---------o---------o----------o------------------o----------o
| | x : 1 1 0 0 | | | |
| | y : 1 0 1 0 | | | |
o---------o---------o---------o----------o------------------o----------o
| | | | | | |
| f_0 | f_0000 | 0 0 0 0 | () | false | 0 |
| | | | | | |
o---------o---------o---------o----------o------------------o----------o
| | | | | | |
| f_1 | f_0001 | 0 0 0 1 | (x)(y) | neither x nor y | ~x & ~y |
| | | | | | |
| f_2 | f_0010 | 0 0 1 0 | (x) y | y and not x | ~x & y |
| | | | | | |
| f_4 | f_0100 | 0 1 0 0 | x (y) | x and not y | x & ~y |
| | | | | | |
| f_8 | f_1000 | 1 0 0 0 | x y | x and y | x & y |
| | | | | | |
o---------o---------o---------o----------o------------------o----------o
| | | | | | |
| f_3 | f_0011 | 0 0 1 1 | (x) | not x | ~x |
| | | | | | |
| f_12 | f_1100 | 1 1 0 0 | x | x | x |
| | | | | | |
o---------o---------o---------o----------o------------------o----------o
| | | | | | |
| f_6 | f_0110 | 0 1 1 0 | (x, y) | x not equal to y | x + y |
| | | | | | |
| f_9 | f_1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y |
| | | | | | |
o---------o---------o---------o----------o------------------o----------o
| | | | | | |
| f_5 | f_0101 | 0 1 0 1 | (y) | not y | ~y |
| | | | | | |
| f_10 | f_1010 | 1 0 1 0 | y | y | y |
| | | | | | |
o---------o---------o---------o----------o------------------o----------o
| | | | | | |
| f_7 | f_0111 | 0 1 1 1 | (x y) | not both x and y | ~x v ~y |
| | | | | | |
| f_11 | f_1011 | 1 0 1 1 | (x (y)) | not x without y | x => y |
| | | | | | |
| f_13 | f_1101 | 1 1 0 1 | ((x) y) | not y without x | x <= y |
| | | | | | |
| f_14 | f_1110 | 1 1 1 0 | ((x)(y)) | x or y | x v y |
| | | | | | |
o---------o---------o---------o----------o------------------o----------o
| | | | | | |
| f_15 | f_1111 | 1 1 1 1 | (()) | true | 1 |
| | | | | | |
o---------o---------o---------o----------o------------------o----------o
Table A3. Ef Expanded Over Differential Features {dx, dy}
o------o------------o------------o------------o------------o------------o
| | | | | | |
| | f | T_11 f | T_10 f | T_01 f | T_00 f |
| | | | | | |
| | | Ef| dx dy | Ef| dx(dy) | Ef| (dx)dy | Ef|(dx)(dy)|
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_0 | () | () | () | () | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_1 | (x)(y) | x y | x (y) | (x) y | (x)(y) |
| | | | | | |
| f_2 | (x) y | x (y) | x y | (x)(y) | (x) y |
| | | | | | |
| f_4 | x (y) | (x) y | (x)(y) | x y | x (y) |
| | | | | | |
| f_8 | x y | (x)(y) | (x) y | x (y) | x y |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_3 | (x) | x | x | (x) | (x) |
| | | | | | |
| f_12 | x | (x) | (x) | x | x |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_6 | (x, y) | (x, y) | ((x, y)) | ((x, y)) | (x, y) |
| | | | | | |
| f_9 | ((x, y)) | ((x, y)) | (x, y) | (x, y) | ((x, y)) |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_5 | (y) | y | (y) | y | (y) |
| | | | | | |
| f_10 | y | (y) | y | (y) | y |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_7 | (x y) | ((x)(y)) | ((x) y) | (x (y)) | (x y) |
| | | | | | |
| f_11 | (x (y)) | ((x) y) | ((x)(y)) | (x y) | (x (y)) |
| | | | | | |
| f_13 | ((x) y) | (x (y)) | (x y) | ((x)(y)) | ((x) y) |
| | | | | | |
| f_14 | ((x)(y)) | (x y) | (x (y)) | ((x) y) | ((x)(y)) |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_15 | (()) | (()) | (()) | (()) | (()) |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | |
| Fixed Point Total | 4 | 4 | 4 | 16 |
| | | | | |
o-------------------o------------o------------o------------o------------o
Table A4. Df Expanded Over Differential Features {dx, dy}
o------o------------o------------o------------o------------o------------o
| | | | | | |
| | f | Df| dx dy | Df| dx(dy) | Df| (dx)dy | Df|(dx)(dy)|
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_0 | () | () | () | () | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_1 | (x)(y) | ((x, y)) | (y) | (x) | () |
| | | | | | |
| f_2 | (x) y | (x, y) | y | (x) | () |
| | | | | | |
| f_4 | x (y) | (x, y) | (y) | x | () |
| | | | | | |
| f_8 | x y | ((x, y)) | y | x | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_3 | (x) | (()) | (()) | () | () |
| | | | | | |
| f_12 | x | (()) | (()) | () | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_6 | (x, y) | () | (()) | (()) | () |
| | | | | | |
| f_9 | ((x, y)) | () | (()) | (()) | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_5 | (y) | (()) | () | (()) | () |
| | | | | | |
| f_10 | y | (()) | () | (()) | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_7 | (x y) | ((x, y)) | y | x | () |
| | | | | | |
| f_11 | (x (y)) | (x, y) | (y) | x | () |
| | | | | | |
| f_13 | ((x) y) | (x, y) | y | (x) | () |
| | | | | | |
| f_14 | ((x)(y)) | ((x, y)) | (y) | (x) | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_15 | (()) | () | () | () | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
Table A5. Ef Expanded Over Ordinary Features {x, y}
o------o------------o------------o------------o------------o------------o
| | | | | | |
| | f | Ef | xy | Ef | x(y) | Ef | (x)y | Ef | (x)(y)|
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_0 | () | () | () | () | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_1 | (x)(y) | dx dy | dx (dy) | (dx) dy | (dx)(dy) |
| | | | | | |
| f_2 | (x) y | dx (dy) | dx dy | (dx)(dy) | (dx) dy |
| | | | | | |
| f_4 | x (y) | (dx) dy | (dx)(dy) | dx dy | dx (dy) |
| | | | | | |
| f_8 | x y | (dx)(dy) | (dx) dy | dx (dy) | dx dy |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_3 | (x) | dx | dx | (dx) | (dx) |
| | | | | | |
| f_12 | x | (dx) | (dx) | dx | dx |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_6 | (x, y) | (dx, dy) | ((dx, dy)) | ((dx, dy)) | (dx, dy) |
| | | | | | |
| f_9 | ((x, y)) | ((dx, dy)) | (dx, dy) | (dx, dy) | ((dx, dy)) |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_5 | (y) | dy | (dy) | dy | (dy) |
| | | | | | |
| f_10 | y | (dy) | dy | (dy) | dy |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_7 | (x y) | ((dx)(dy)) | ((dx) dy) | (dx (dy)) | (dx dy) |
| | | | | | |
| f_11 | (x (y)) | ((dx) dy) | ((dx)(dy)) | (dx dy) | (dx (dy)) |
| | | | | | |
| f_13 | ((x) y) | (dx (dy)) | (dx dy) | ((dx)(dy)) | ((dx) dy) |
| | | | | | |
| f_14 | ((x)(y)) | (dx dy) | (dx (dy)) | ((dx) dy) | ((dx)(dy)) |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_15 | (()) | (()) | (()) | (()) | (()) |
| | | | | | |
o------o------------o------------o------------o------------o------------o
Table A6. Df Expanded Over Ordinary Features {x, y}
o------o------------o------------o------------o------------o------------o
| | | | | | |
| | f | Df | xy | Df | x(y) | Df | (x)y | Df | (x)(y)|
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_0 | () | () | () | () | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_1 | (x)(y) | dx dy | dx (dy) | (dx) dy | ((dx)(dy)) |
| | | | | | |
| f_2 | (x) y | dx (dy) | dx dy | ((dx)(dy)) | (dx) dy |
| | | | | | |
| f_4 | x (y) | (dx) dy | ((dx)(dy)) | dx dy | dx (dy) |
| | | | | | |
| f_8 | x y | ((dx)(dy)) | (dx) dy | dx (dy) | dx dy |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_3 | (x) | dx | dx | dx | dx |
| | | | | | |
| f_12 | x | dx | dx | dx | dx |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_6 | (x, y) | (dx, dy) | (dx, dy) | (dx, dy) | (dx, dy) |
| | | | | | |
| f_9 | ((x, y)) | (dx, dy) | (dx, dy) | (dx, dy) | (dx, dy) |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_5 | (y) | dy | dy | dy | dy |
| | | | | | |
| f_10 | y | dy | dy | dy | dy |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_7 | (x y) | ((dx)(dy)) | (dx) dy | dx (dy) | dx dy |
| | | | | | |
| f_11 | (x (y)) | (dx) dy | ((dx)(dy)) | dx dy | dx (dy) |
| | | | | | |
| f_13 | ((x) y) | dx (dy) | dx dy | ((dx)(dy)) | (dx) dy |
| | | | | | |
| f_14 | ((x)(y)) | dx dy | dx (dy) | (dx) dy | ((dx)(dy)) |
| | | | | | |
o------o------------o------------o------------o------------o------------o
| | | | | | |
| f_15 | (()) | () | () | () | () |
| | | | | | |
o------o------------o------------o------------o------------o------------o
o----------o----------o----------o----------o----------o
| % | | | |
| · % T_00 | T_01 | T_10 | T_11 |
| % | | | |
o==========o==========o==========o==========o==========o
| % | | | |
| T_00 % T_00 | T_01 | T_10 | T_11 |
| % | | | |
o----------o----------o----------o----------o----------o
| % | | | |
| T_01 % T_01 | T_00 | T_11 | T_10 |
| % | | | |
o----------o----------o----------o----------o----------o
| % | | | |
| T_10 % T_10 | T_11 | T_00 | T_01 |
| % | | | |
o----------o----------o----------o----------o----------o
| % | | | |
| T_11 % T_11 | T_10 | T_01 | T_00 |
| % | | | |
o----------o----------o----------o----------o----------o
o---------o---------o---------o---------o---------o
| % | | | |
| · % e | f | g | h |
| % | | | |
o=========o=========o=========o=========o=========o
| % | | | |
| e % e | f | g | h |
| % | | | |
o---------o---------o---------o---------o---------o
| % | | | |
| f % f | e | h | g |
| % | | | |
o---------o---------o---------o---------o---------o
| % | | | |
| g % g | h | e | f |
| % | | | |
o---------o---------o---------o---------o---------o
| % | | | |
| h % h | g | f | e |
| % | | | |
o---------o---------o---------o---------o---------o
Permutation Substitutions in Sym {A, B, C}
o---------o---------o---------o---------o---------o---------o
| | | | | | |
| e | f | g | h | i | j |
| | | | | | |
o=========o=========o=========o=========o=========o=========o
| | | | | | |
| A B C | A B C | A B C | A B C | A B C | A B C |
| | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | |
| v v v | v v v | v v v | v v v | v v v | v v v |
| | | | | | |
| A B C | C A B | B C A | A C B | C B A | B A C |
| | | | | | |
o---------o---------o---------o---------o---------o---------o
Matrix Representations of Permutations in Sym(3)
o---------o---------o---------o---------o---------o---------o
| | | | | | |
| e | f | g | h | i | j |
| | | | | | |
o=========o=========o=========o=========o=========o=========o
| | | | | | |
| 1 0 0 | 0 0 1 | 0 1 0 | 1 0 0 | 0 0 1 | 0 1 0 |
| 0 1 0 | 1 0 0 | 0 0 1 | 0 0 1 | 0 1 0 | 1 0 0 |
| 0 0 1 | 0 1 0 | 1 0 0 | 0 1 0 | 1 0 0 | 0 0 1 |
| | | | | | |
o---------o---------o---------o---------o---------o---------o
Symmetric Group S_3
o-------------------------------------------------o
| |
| ^ |
| e / \ e |
| / \ |
| / e \ |
| f / \ / \ f |
| / \ / \ |
| / f \ f \ |
| g / \ / \ / \ g |
| / \ / \ / \ |
| / g \ g \ g \ |
| h / \ / \ / \ / \ h |
| / \ / \ / \ / \ |
| / h \ e \ e \ h \ |
| i / \ / \ / \ / \ / \ i |
| / \ / \ / \ / \ / \ |
| / i \ i \ f \ j \ i \ |
| j / \ / \ / \ / \ / \ / \ j |
| / \ / \ / \ / \ / \ / \ |
| ( j \ j \ j \ i \ h \ j ) |
| \ / \ / \ / \ / \ / \ / |
| \ / \ / \ / \ / \ / \ / |
| \ h \ h \ e \ j \ i / |
| \ / \ / \ / \ / \ / |
| \ / \ / \ / \ / \ / |
| \ i \ g \ f \ h / |
| \ / \ / \ / \ / |
| \ / \ / \ / \ / |
| \ f \ e \ g / |
| \ / \ / \ / |
| \ / \ / \ / |
| \ g \ f / |
| \ / \ / |
| \ / \ / |
| \ e / |
| \ / |
| \ / |
| v |
| |
o-------------------------------------------------o
Wiki Tables : New Versions
Propositional Forms on Two Variables
Table A1. Propositional Forms on Two Variables
L1 |
L2 |
L3 |
L4 |
L5 |
L6 |
---|
|
x :
|
1 1 0 0
|
|
|
|
|
y :
|
1 0 1 0
|
|
|
|
f0 |
f0000 |
0 0 0 0
|
( )
|
false
|
0
|
f1 |
f0001 |
0 0 0 1
|
(x)(y)
|
neither x nor y
|
¬x ∧ ¬y
|
f2 |
f0010 |
0 0 1 0
|
(x) y
|
y and not x
|
¬x ∧ y
|
f3 |
f0011 |
0 0 1 1
|
(x)
|
not x
|
¬x
|
f4 |
f0100 |
0 1 0 0
|
x (y)
|
x and not y
|
x ∧ ¬y
|
f5 |
f0101 |
0 1 0 1
|
(y)
|
not y
|
¬y
|
f6 |
f0110 |
0 1 1 0
|
(x, y)
|
x not equal to y
|
x ≠ y
|
f7 |
f0111 |
0 1 1 1
|
(x y)
|
not both x and y
|
¬x ∨ ¬y
|
f8 |
f1000 |
1 0 0 0
|
x y
|
x and y
|
x ∧ y
|
f9 |
f1001 |
1 0 0 1
|
((x, y))
|
x equal to y
|
x = y
|
f10 |
f1010 |
1 0 1 0
|
y
|
y
|
y
|
f11 |
f1011 |
1 0 1 1
|
(x (y))
|
not x without y
|
x ⇒ y
|
f12 |
f1100 |
1 1 0 0
|
x
|
x
|
x
|
f13 |
f1101 |
1 1 0 1
|
((x) y)
|
not y without x
|
x ⇐ y
|
f14 |
f1110 |
1 1 1 0
|
((x)(y))
|
x or y
|
x ∨ y
|
f15 |
f1111 |
1 1 1 1
|
(( ))
|
true |
1
|
Table A2. Propositional Forms on Two Variables
L1 |
L2 |
L3 |
L4 |
L5 |
L6 |
---|
|
x :
|
1 1 0 0
|
|
|
|
|
y :
|
1 0 1 0
|
|
|
|
f0 |
f0000 |
0 0 0 0
|
( )
|
false
|
0
|
|
|
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
|
|
|
neither x nor y
not x but y
x but not y
x and y
|
|
¬x ∧ ¬y
¬x ∧ y
x ∧ ¬y
x ∧ y
|
|
|
|
|
|
|
|
|
|
|
|
x not equal to y
x equal to y
|
|
|
|
|
|
|
|
|
|
|
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
|
|
(x y)
(x (y))
((x) y)
((x)(y))
|
|
not both x and y
not x without y
not y without x
x or y
|
|
¬x ∨ ¬y
x ⇒ y
x ⇐ y
x ∨ y
|
|
f15 |
f1111 |
1 1 1 1
|
(( ))
|
true
|
1
|
Differential Propositions
Table 14. Differential Propositions
|
A :
|
1 1 0 0
|
|
|
|
|
dA :
|
1 0 1 0
|
|
|
|
f0 |
g0 |
0 0 0 0
|
( )
|
False
|
0
|
|
|
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
|
|
(A)(dA)
(A) dA
A (dA)
A dA
|
|
Neither A nor dA
Not A but dA
A but not dA
A and dA
|
|
¬A ∧ ¬dA
¬A ∧ dA
A ∧ ¬dA
A ∧ dA
|
|
|
|
|
|
|
|
|
|
|
|
A not equal to dA
A equal to dA
|
|
|
|
|
|
|
|
|
|
|
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
|
|
(A dA)
(A (dA))
((A) dA)
((A)(dA))
|
|
Not both A and dA
Not A without dA
Not dA without A
A or dA
|
|
¬A ∨ ¬dA
A ⇒ dA
A ⇐ dA
A ∨ dA
|
|
f3 |
g15 |
1 1 1 1
|
(( ))
|
True
|
1
|
Wiki Tables : Old Versions
Propositional Forms on Two Variables
Table 1. Propositional Forms on Two Variables
L1 |
L2 |
L3 |
L4 |
L5 |
L6 |
---|
|
x :
|
1 1 0 0
|
|
|
|
|
y :
|
1 0 1 0
|
|
|
|
f0 |
f0000 |
0 0 0 0 |
( ) |
false |
0
|
f1 |
f0001 |
0 0 0 1 |
(x)(y) |
neither x nor y |
¬x ∧ ¬y
|
f2 |
f0010 |
0 0 1 0 |
(x) y |
y and not x |
¬x ∧ y
|
f3 |
f0011 |
0 0 1 1 |
(x) |
not x |
¬x
|
f4 |
f0100 |
0 1 0 0 |
x (y) |
x and not y |
x ∧ ¬y
|
f5 |
f0101 |
0 1 0 1 |
(y) |
not y |
¬y
|
f6 |
f0110 |
0 1 1 0 |
(x, y) |
x not equal to y |
x ≠ y
|
f7 |
f0111 |
0 1 1 1 |
(x y) |
not both x and y |
¬x ∨ ¬y
|
f8 |
f1000 |
1 0 0 0 |
x y |
x and y |
x ∧ y
|
f9 |
f1001 |
1 0 0 1 |
((x, y)) |
x equal to y |
x = y
|
f10 |
f1010 |
1 0 1 0 |
y |
y |
y
|
f11 |
f1011 |
1 0 1 1 |
(x (y)) |
not x without y |
x → y
|
f12 |
f1100 |
1 1 0 0 |
x |
x |
x
|
f13 |
f1101 |
1 1 0 1 |
((x) y) |
not y without x |
x ← y
|
f14 |
f1110 |
1 1 1 0 |
((x)(y)) |
x or y |
x ∨ y
|
f15 |
f1111 |
1 1 1 1 |
(( )) |
true |
1
|
Differential Propositions
Table 14. Differential Propositions
|
A :
|
1 1 0 0
|
|
|
|
|
dA :
|
1 0 1 0
|
|
|
|
f0 |
g0 |
0 0 0 0
|
( )
|
False
|
0
|
|
|
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
|
|
(A)(dA)
(A) dA
A (dA)
A dA
|
|
Neither A nor dA
Not A but dA
A but not dA
A and dA
|
|
¬A ∧ ¬dA
¬A ∧ dA
A ∧ ¬dA
A ∧ dA
|
|
|
|
|
|
|
|
|
|
|
|
A not equal to dA
A equal to dA
|
|
|
|
|
|
|
|
|
|
|
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
|
|
(A dA)
(A (dA))
((A) dA)
((A)(dA))
|
|
Not both A and dA
Not A without dA
Not dA without A
A or dA
|
|
¬A ∨ ¬dA
A → dA
A ← dA
A ∨ dA
|
|
f3 |
g15 |
1 1 1 1
|
(( ))
|
True
|
1
|
Wiki TeX Tables : PQ
\(\text{Table A1.}~~\text{Propositional Forms on Two Variables}\)
\(\mathcal{L}_1\)
\(\text{Decimal}\)
|
\(\mathcal{L}_2\)
\(\text{Binary}\)
|
\(\mathcal{L}_3\)
\(\text{Vector}\)
|
\(\mathcal{L}_4\)
\(\text{Cactus}\)
|
\(\mathcal{L}_5\)
\(\text{English}\)
|
\(\mathcal{L}_6\)
\(\text{Ordinary}\)
|
|
\(p\colon\!\)
|
\(1~1~0~0\!\)
|
|
|
|
|
\(q\colon\!\)
|
\(1~0~1~0\!\)
|
|
|
|
\(\begin{matrix}
f_0
\'"`UNIQ-MathJax1-QINU`"'
'''Generalized''' or '''n-ary''' XOR is true when the number of 1-bits is odd.
'"`UNIQ--pre-00000016-QINU`"'
'"`UNIQ--pre-00000017-QINU`"'
'"`UNIQ--pre-00000018-QINU`"'
'"`UNIQ-MathJax2-QINU`"'
===='"`UNIQ--h-34--QINU`"'[[Logical implication]]====
The '''material conditional''' and '''logical implication''' are both associated with an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if the first operand is true and the second operand is false.
The [[truth table]] associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical Implication'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ⇒ q
|-
| F || F || T
|-
| F || T || T
|-
| T || F || F
|-
| T || T || T
|}
<br>
===='"`UNIQ--h-35--QINU`"'[[Logical NAND]]====
The '''NAND operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are true. In other words, it produces a value of ''true'' if and only if at least one of its operands is false.
The [[truth table]] of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NAND'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ↑ q
|-
| F || F || T
|-
| F || T || T
|-
| T || F || T
|-
| T || T || F
|}
<br>
===='"`UNIQ--h-36--QINU`"'[[Logical NNOR]]====
The '''NNOR operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are false. In other words, it produces a value of ''false'' if and only if at least one of its operands is true.
The [[truth table]] of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NOR'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ↓ q
|-
| F || F || T
|-
| F || T || F
|-
| T || F || F
|-
| T || T || F
|}
<br>
=='"`UNIQ--h-37--QINU`"'Relational Tables==
==='"`UNIQ--h-38--QINU`"'Factorization===
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:60%"
|+ '''Table 7. Plural Denotation'''
|- style="background:#f0f0ff"
| width="33%" | \(\text{Object}\!\)
|
\(\text{Sign}\!\)
|
\(\text{Interpretant}\!\)
|
\(\begin{matrix}
o_1 \\ o_2 \\ o_3 \\ \ldots \\ o_k \\ \ldots
\end{matrix}\)
|
\(\begin{matrix}
s \\ s \\ s \\ \ldots \\ s \\ \ldots
\end{matrix}\)
|
\(\begin{matrix}
\ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots
\end{matrix}\)
|
Sign Relations
|
O |
= |
Object Domain
|
|
S |
= |
Sign Domain
|
|
I |
= |
Interpretant Domain
|
|
O
|
=
|
{Ann, Bob}
|
=
|
{A, B}
|
|
S
|
=
|
{"Ann", "Bob", "I", "You"}
|
=
|
{"A", "B", "i", "u"}
|
|
I
|
=
|
{"Ann", "Bob", "I", "You"}
|
=
|
{"A", "B", "i", "u"}
|
LA = Sign Relation of Interpreter A
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"i"
|
A |
"i" |
"A"
|
A |
"i" |
"i"
|
B |
"B" |
"B"
|
B |
"B" |
"u"
|
B |
"u" |
"B"
|
B |
"u" |
"u"
|
LB = Sign Relation of Interpreter B
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"u"
|
A |
"u" |
"A"
|
A |
"u" |
"u"
|
B |
"B" |
"B"
|
B |
"B" |
"i"
|
B |
"i" |
"B"
|
B |
"i" |
"i"
|
Triadic Relations
Algebraic Examples
L0 = {(x, y, z) ∈ B3 : x + y + z = 0}
X |
Y |
Z
|
---|
0 |
0 |
0
|
0 |
1 |
1
|
1 |
0 |
1
|
1 |
1 |
0
|
L1 = {(x, y, z) ∈ B3 : x + y + z = 1}
X |
Y |
Z
|
---|
0 |
0 |
1
|
0 |
1 |
0
|
1 |
0 |
0
|
1 |
1 |
1
|
Semiotic Examples
LA = Sign Relation of Interpreter A
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"i"
|
A |
"i" |
"A"
|
A |
"i" |
"i"
|
B |
"B" |
"B"
|
B |
"B" |
"u"
|
B |
"u" |
"B"
|
B |
"u" |
"u"
|
LB = Sign Relation of Interpreter B
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"u"
|
A |
"u" |
"A"
|
A |
"u" |
"u"
|
B |
"B" |
"B"
|
B |
"B" |
"i"
|
B |
"i" |
"B"
|
B |
"i" |
"i"
|
Dyadic Projections
|
LOS |
=
|
projOS(L)
|
=
|
{ (o, s) ∈ O × S : (o, s, i) ∈ L for some i ∈ I }
|
|
LSO |
=
|
projSO(L)
|
=
|
{ (s, o) ∈ S × O : (o, s, i) ∈ L for some i ∈ I }
|
|
LIS |
=
|
projIS(L)
|
=
|
{ (i, s) ∈ I × S : (o, s, i) ∈ L for some o ∈ O }
|
|
LSI |
=
|
projSI(L)
|
=
|
{ (s, i) ∈ S × I : (o, s, i) ∈ L for some o ∈ O }
|
|
LOI |
=
|
projOI(L)
|
=
|
{ (o, i) ∈ O × I : (o, s, i) ∈ L for some s ∈ S }
|
|
LIO |
=
|
projIO(L)
|
=
|
{ (i, o) ∈ I × O : (o, s, i) ∈ L for some s ∈ S }
|
Method 1 : Subtitles as Captions
projOS(LA)
Object
|
Sign
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
| |
projOS(LB)
Object
|
Sign
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
| |
projSI(LA)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"i"
| "i" |
"A"
| "i" |
"i"
| "B" |
"B"
| "B" |
"u"
| "u" |
"B"
| "u" |
"u"
| |
projSI(LB)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"u"
| "u" |
"A"
| "u" |
"u"
| "B" |
"B"
| "B" |
"i"
| "i" |
"B"
| "i" |
"i"
| |
projOI(LA)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
| |
projOI(LB)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
| |
Method 2 : Subtitles as Top Rows
projOS(LA)
Object
|
Sign
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
|
|
projOS(LB)
Object
|
Sign
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
|
|
projSI(LA)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"i"
| "i" |
"A"
| "i" |
"i"
| "B" |
"B"
| "B" |
"u"
| "u" |
"B"
| "u" |
"u"
|
|
projSI(LB)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"u"
| "u" |
"A"
| "u" |
"u"
| "B" |
"B"
| "B" |
"i"
| "i" |
"B"
| "i" |
"i"
|
|
projOI(LA)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
|
|
projOI(LB)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
|
|
Relation Reduction
Method 1 : Subtitles as Captions
L0 = {(x, y, z) ∈ B3 : x + y + z = 0}
X |
Y |
Z
|
---|
0 |
0 |
0
|
0 |
1 |
1
|
1 |
0 |
1
|
1 |
1 |
0
|
L1 = {(x, y, z) ∈ B3 : x + y + z = 1}
X |
Y |
Z
|
---|
0 |
0 |
1
|
0 |
1 |
0
|
1 |
0 |
0
|
1 |
1 |
1
|
projXY(L0)
X |
Y
|
---|
0 |
0
| 0 |
1
| 1 |
0
| 1 |
1
| |
projXZ(L0)
X |
Z
|
---|
0 |
0
| 0 |
1
| 1 |
1
| 1 |
0
| |
projYZ(L0)
Y |
Z
|
---|
0 |
0
| 1 |
1
| 0 |
1
| 1 |
0
| |
projXY(L1)
X |
Y
|
---|
0 |
0
| 0 |
1
| 1 |
0
| 1 |
1
| |
projXZ(L1)
X |
Z
|
---|
0 |
1
| 0 |
0
| 1 |
0
| 1 |
1
| |
projYZ(L1)
Y |
Z
|
---|
0 |
1
| 1 |
0
| 0 |
0
| 1 |
1
| |
projXY(L0) = projXY(L1)
|
projXZ(L0) = projXZ(L1)
|
projYZ(L0) = projYZ(L1)
|
LA = Sign Relation of Interpreter A
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"i"
|
A |
"i" |
"A"
|
A |
"i" |
"i"
|
B |
"B" |
"B"
|
B |
"B" |
"u"
|
B |
"u" |
"B"
|
B |
"u" |
"u"
|
LB = Sign Relation of Interpreter B
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"u"
|
A |
"u" |
"A"
|
A |
"u" |
"u"
|
B |
"B" |
"B"
|
B |
"B" |
"i"
|
B |
"i" |
"B"
|
B |
"i" |
"i"
|
projXY(LA)
Object
|
Sign
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
| |
projXZ(LA)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
| |
projYZ(LA)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"i"
| "i" |
"A"
| "i" |
"i"
| "B" |
"B"
| "B" |
"u"
| "u" |
"B"
| "u" |
"u"
| |
projXY(LB)
Object
|
Sign
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
| |
projXZ(LB)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
| |
projYZ(LB)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"u"
| "u" |
"A"
| "u" |
"u"
| "B" |
"B"
| "B" |
"i"
| "i" |
"B"
| "i" |
"i"
| |
projXY(LA) ≠ projXY(LB)
|
projXZ(LA) ≠ projXZ(LB)
|
projYZ(LA) ≠ projYZ(LB)
|
Method 2 : Subtitles as Top Rows
L0 = {(x, y, z) ∈ B3 : x + y + z = 0}
X |
Y |
Z
|
---|
0 |
0 |
0
|
0 |
1 |
1
|
1 |
0 |
1
|
1 |
1 |
0
|
L1 = {(x, y, z) ∈ B3 : x + y + z = 1}
X |
Y |
Z
|
---|
0 |
0 |
1
|
0 |
1 |
0
|
1 |
0 |
0
|
1 |
1 |
1
|
projXY(L0)
|
projXZ(L0)
|
projYZ(L0)
|
projXY(L1)
|
projXZ(L1)
|
projYZ(L1)
|
projXY(L0) = projXY(L1)
|
projXZ(L0) = projXZ(L1)
|
projYZ(L0) = projYZ(L1)
|
LA = Sign Relation of Interpreter A
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"i"
|
A |
"i" |
"A"
|
A |
"i" |
"i"
|
B |
"B" |
"B"
|
B |
"B" |
"u"
|
B |
"u" |
"B"
|
B |
"u" |
"u"
|
LB = Sign Relation of Interpreter B
Object
|
Sign
|
Interpretant
|
---|
A |
"A" |
"A"
|
A |
"A" |
"u"
|
A |
"u" |
"A"
|
A |
"u" |
"u"
|
B |
"B" |
"B"
|
B |
"B" |
"i"
|
B |
"i" |
"B"
|
B |
"i" |
"i"
|
projXY(LA)
Object
|
Sign
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
|
|
projXZ(LA)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"i"
| B |
"B"
| B |
"u"
|
|
projYZ(LA)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"i"
| "i" |
"A"
| "i" |
"i"
| "B" |
"B"
| "B" |
"u"
| "u" |
"B"
| "u" |
"u"
|
|
projXY(LB)
Object
|
Sign
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
|
|
projXZ(LB)
Object
|
Interpretant
|
---|
A |
"A"
| A |
"u"
| B |
"B"
| B |
"i"
|
|
projYZ(LB)
Sign
|
Interpretant
|
---|
"A" |
"A"
| "A" |
"u"
| "u" |
"A"
| "u" |
"u"
| "B" |
"B"
| "B" |
"i"
| "i" |
"B"
| "i" |
"i"
|
|
projXY(LA) ≠ projXY(LB)
|
projXZ(LA) ≠ projXZ(LB)
|
projYZ(LA) ≠ projYZ(LB)
|
Formatted Text Display
- So in a triadic fact, say, the example
- we make no distinction in the ordinary logic of relations between the subject nominative, the direct object, and the indirect object. We say that the proposition has three logical subjects. We regard it as a mere affair of English grammar that there are six ways of expressing this:
A gives B to C
|
A benefits C with B
|
B enriches C at expense of A
|
C receives B from A
|
C thanks A for B
|
B leaves A for C
|
- These six sentences express one and the same indivisible phenomenon. (C.S. Peirce, "The Categories Defended", MS 308 (1903), EP 2, 170-171).