Open main menu
Home
Random
Log in
Settings
About MyWikiBiz
Disclaimers
MyWikiBiz
Search
User:Jon Awbrey/SANDBOX
Language
Watch
Edit
<
User:Jon Awbrey
Revision as of 12:28, 22 January 2009 by
Jon Awbrey
(
talk
|
contribs
)
(
→Grammar Stuff
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Grammar Stuff
Table 13. Algorithmic Translation Rules
\(\text{Sentence in PARCE}\!\)
\(\xrightarrow{\operatorname{Parse}}\)
\(\text{Graph in PARC}\!\)
\(\operatorname{Conc}^0\)
\(\xrightarrow{\operatorname{Parse}}\)
\(\operatorname{Node}^0\)
\(\operatorname{Conc}_{j=1}^k s_j\)
\(\xrightarrow{\operatorname{Parse}}\)
\(\operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j)\)
\(\operatorname{Surc}^0\)
\(\xrightarrow{\operatorname{Parse}}\)
\(\operatorname{Lobe}^0\)
\(\operatorname{Surc}_{j=1}^k s_j\)
\(\xrightarrow{\operatorname{Parse}}\)
\(\operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j)\)
Table 14.1 Semantic Translation : Functional Form
\(\operatorname{Sentence}\)
\(\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}}\)
\(\operatorname{Graph}\)
\(\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}}\)
\(\operatorname{Proposition}\)
\(s_j\!\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(C_j\!\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(q_j\!\)
\(\operatorname{Conc}^0\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(\operatorname{Node}^0\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(\underline{1}\)
\(\operatorname{Conc}^k_j s_j\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(\operatorname{Node}^k_j c_j\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(\operatorname{Conj}^k_j q_j\)
\(\operatorname{Surc}^0\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(\operatorname{Lobe}^0\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(\underline{0}\)
\(\operatorname{Surc}^k_j s_j\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(\operatorname{Lobe}^k_j c_j\)
\(\xrightarrow{\operatorname{~~~~~~~~~~}}\)
\(\operatorname{Surj}^k_j q_j\)
Table Stuff
f
i
‹
x
,
y
›
u =
v =
1 1 0 0
1 0 1 0
= u
= v
f
j
‹
u
,
v
›
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›
A
u =
v =
1 1 0 0
1 0 1 0
= u
= v
B
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›
u =
v =
1 1 0 0
1 0 1 0
= u
= v
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›
u =
v =
x =
y =
1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
= u
= v
= f‹u, v›
= g‹u, v›