1. The parse of the concatenation Conc^k of the k sentences S_j,
for j = 1 to k, is defined recursively as follows:
a. Parse(Conc^0) = Node^0.
b. For k > 0,
Parse(Conc^k_j S_j) = Node^k_j Parse(S_j).
2. The parse of the surcatenation Surc^k of the k sentences S_j,
for j = 1 to k, is defined recursively as follows:
a. Parse(Surc^0) = Lobe^0.
b. For k > 0,
Parse(Surc^k_j S_j) = Lobe^k_j Parse(S_j).
- The parse of the concatenation \(\operatorname{Conc}_{j=1}^k\) of the \(k\!\) sentences \((s_j)_{j=1}^k\) is defined recursively as follows:
- \(\operatorname{Parse} (\operatorname{Conc}^0) ~=~ \operatorname{Node}^0.\)
-
For \(k > 0,\!\)
\(\operatorname{Parse} (\operatorname{Conc}_{j=1}^k s_j) ~=~ \operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j).\)
- The parse of the surcatenation \(\operatorname{Surc}_{j=1}^k\) of the \(k\!\) sentences \((s_j)_{j=1}^k\) is defined recursively as follows:
- \(\operatorname{Parse} (\operatorname{Surc}^0) ~=~ \operatorname{Lobe}^0.\)
-
For \(k > 0,\!\)
\(\operatorname{Parse} (\operatorname{Surc}_{j=1}^k s_j) ~=~ \operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j).\)