User:Jon Awbrey/Figures and Tables 1

Format Samples

  • \(\rightsquigarrow\)
  • \(\leftrightsquigarrow\)
  • \(\xrightarrow{\mathrm{Parse}}\)

Table 14. Semantic Translation • Functional Form


\(\text{Table 14. Semantic Translation : Functional Form}\)
\(\mathrm{Sentence}\) \(\xrightarrow[\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}]{\mathrm{Parse}}\) \(\mathrm{Graph}\) \(\xrightarrow[\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}]{\mathrm{Denotation}}\) \(\mathrm{Proposition}\)
\(s_j\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(C_j\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(q_j\)
\(\mathrm{Conc}^0\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(\mathrm{Node}^0\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(1\)
\(\mathrm{Conc}^k_j s_j\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(\mathrm{Node}^k_j C_j\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(\mathrm{Conj}^k_j q_j\)
\(\mathrm{Surc}^0\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(\mathrm{Lobe}^0\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(0\)
\(\mathrm{Surc}^k_j s_j\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(\mathrm{Lobe}^k_j C_j\) \(\xrightarrow{\mathrm{~ ~ ~ ~ ~ ~ ~ ~ ~ ~}}\) \(\mathrm{Surj}^k_j q_j\)


Table 15. Semantic Translation • Equational Form


\(\text{Table 15. Semantic Translation : Equational Form}\)
\(\downharpoonleft \mathrm{Sentence} \downharpoonright\) \(\stackrel{\mathrm{Parse}}{=}\) \(\downharpoonleft \mathrm{Graph} \downharpoonright\) \(\stackrel{\mathrm{Denotation}}{=}\) \(\mathrm{Proposition}\)
\(\downharpoonleft s_j \downharpoonright\) \(=\) \(\downharpoonleft C_j \downharpoonright\) \(=\) \(q_j\)
\(\downharpoonleft \mathrm{Conc}^0 \downharpoonright\) \(=\) \(\downharpoonleft \mathrm{Node}^0 \downharpoonright\) \(=\) \(1\)
\(\downharpoonleft \mathrm{Conc}^k_j s_j \downharpoonright\) \(=\) \(\downharpoonleft \mathrm{Node}^k_j C_j \downharpoonright\) \(=\) \(\mathrm{Conj}^k_j q_j\)
\(\downharpoonleft \mathrm{Surc}^0 \downharpoonright\) \(=\) \(\downharpoonleft \mathrm{Lobe}^0 \downharpoonright\) \(=\) \(0\)
\(\downharpoonleft \mathrm{Surc}^k_j s_j \downharpoonright\) \(=\) \(\downharpoonleft \mathrm{Lobe}^k_j C_j \downharpoonright\) \(=\) \(\mathrm{Surj}^k_j q_j\)