User:Jon Awbrey/SYMBOL

MyWikiBiz, Author Your Legacy — Saturday November 23, 2024
Jump to navigationJump to search

Formula Help

Mathematical Symbols

This page is a quick reference for the "standard" mathematical symbols in HTML that should work on most browsers, and is intended mainly for people editing mathematical articles on Wikipedia.

  • Numbers: Template:Unicode ¼ ½ ¾ ¹ ² ³
  • Analysis: Template:Unicode ∂ ∫ ∑ ∏ √ ∞ ∇ ℘ ℑ ℜ
  • Arrows: Template:Unicode ← ↓ → ↑ ↔ ↵ ⇐ ⇓ ⇒ ⇑ ⇔
  • Logic: Template:Unicode ¬ ∧ ∨ ∃ ∀
  • Sets: Template:Unicode ∈ ∉ ∋ ∅ ⊆ ⊇ ⊃ ⊂ ⊄ ∪ ∩ ℵ
  • Relations: Template:Unicode ≠ ≤ ≥ < > ≡ ≅ ≈ ∝
  • Binary operations: Template:Unicode ± − × ÷ ⁄ ⊥ ⊕ ⊗ ∗
  • Delimiters: Template:Unicode ⌈ ⌉ ⌊⌋ ⟨ ⟩ « »
  • Miscellaneous: Template:Unicode † ¦ ∠ ∴ ◊ • ♠ ♣ ♥ ♦
  • Punctuation: Template:Unicode ′ ″ ‾ ˆ ° ⋅ · … – —
  • Spacing: thin ( ), n-width ( ), m-width ( ), and non-breaking spaces ( ).        
  • Greek: α β γ Α Β Γ etc. α β γ Α Β Γ etc.
  • Unicode: ⊢ (for example) gives the character ⊢ with unicode number x22A2 (hexadecimal). Warning: many of the more obscure unicode characters do not yet work on all browsers.

It might be easier to just copy and paste the symbols instead of using them by reference.

See also

External links


Bytes & Parses

· ·
'''·''' ·
<code>&middot;</code> ·
<code>'''&middot;'''</code> ·
&sdot;
'''&sdot'''
<code>&sdot;</code>
<code>'''&sdot;'''</code>
&bull;
&lowast;
&loz;
{{unicode|&middot;}} Template:Unicode
{{unicode|&sdot;}} Template:Unicode
{{unicode|&bull;}} Template:Unicode
{{unicode|&lowast;}} Template:Unicode
{{unicode|&loz;}} Template:Unicode
\(\cdot\) \(\cdot\)
\(\cdot\!\) \(\cdot\!\)
 
&isin;
&epsilon; ε
\(\in\) \(\in\)
\(\in\!\) \(\in\!\)
\(\epsilon\) \(\epsilon\)
\(\epsilon\!\) \(\epsilon\!\)
\(\varepsilon\) \(\varepsilon\)
\(\varepsilon\!\) \(\varepsilon\!\)
 
&eta; η
\(\eta\) \(\eta\)
\(\eta\!\) \(\eta\!\)
 
&theta; θ
\(\theta\) \(\theta\)
\(\theta\!\) \(\theta\!\)
\(\vartheta\) \(\vartheta\)
\(\vartheta\!\) \(\vartheta\!\)
 
&chi; χ
\(\chi\) \(\chi\)
\(\chi\!\) \(\chi\!\)


x = xJ = ¢(J) = J¢ = J ¢ = J¢ = J ¢

x = xJ = ¢(J) = J¢ = J ¢ = J¢ = J ¢

Display

New

W : ( [ Bn ] [ Bk ] )     ( [ Bn × Dn ] [ Bk × Dk ] ) .
Concrete type \(\epsilon\) : ( U X ) ( EU X )
Abstract type \(\epsilon\) : ( [Bn] [Bk] ) ( [Bn × Dn] [Bk] )
Concrete type W : ( U X ) ( EU dX )
Abstract type W : ( [Bn] [Bk] ) ( [Bn × Dn] [Dk] )
\(\epsilon\)F : ( EU X EX ) \(\cong\) ( [Bn × Dn] [Bk] [Bk × Dk] )
WF : ( EU dX EX ) \(\cong\) ( [Bn × Dn] [Dk] [Bk × Dk] )

Old

W : ( [ Bn ] [ Bk ] )     ( [ Bn × Dn ] [ Bk × Dk ] ) .
Concrete type \(\epsilon\) : ( U X ) ( EU X )
Abstract type \(\epsilon\) : ( [Bn] [Bk] ) ( [Bn × Dn] [Bk] )
Concrete type W : ( U X ) ( EU dX )
Abstract type W : ( [Bn] [Bk] ) ( [Bn × Dn] [Dk] )
\(\epsilon\)F : ( EU X EX ) \(\cong\) ( [Bn × Dn] [Bk] [Bk × Dk] )
WF : ( EU dX EX ) \(\cong\) ( [Bn × Dn] [Dk] [Bk × Dk] )

Epitext

Rosebud
Rosebud
Rosebud

Gallery

‹ ›

〈 〉

( )

( , )


A = {ai} = {a1, …, an}
A = 〈A〉 = 〈a1, …, an〉= {‹a1, …, an›}
A^ = (A → B)
A = [A] = [a1, …, an]


dA = {dai} = {da1, …, dan}
dA = 〈dA〉 = 〈da1, …, dan〉= {‹da1, …, dan›}
dA^ = (dA → B)
dA = [dA] = [da1, …, dan]


EA = A ∪ dA = {ai} ∪ {dai} = {a1, …, an, da1, …, dan}
EA = 〈EA〉 = 〈a1, …, an, da1, …, dan〉= {‹a1, …, an, da1, …, dan›}
EA^ = (EA → B)
EA = [EA] = [a1, …, an, da1, …, dan]


X = {xi} = {x1, …, xn}
X = 〈X〉 = 〈x1, …, xn〉= {‹x1, …, xn›}
X^ = (X → B)
X = [X] = [x1, …, xn]


dX = {dxi} = {dx1, …, dxn}
dX = 〈dX〉 = 〈dx1, …, dxn〉= {‹dx1, …, dxn›}
dX^ = (dX → B)
dX = [dX] = [dx1, …, dxn]


X = {xi} = {x1, …, xn}
X = 〈X〉 = 〈x1, …, xn〉= {‹x1, …, xn›}
X^ = (X → B)
X = [X] = [x1, …, xn]


f : Bk → B

f : Bn → B

f–1

Pow(X) = 2X

Arbitrary Bn → B X → B
Basic ¸> Bn ¸> B X ¸> B
Linear +> Bn +> B X +> B
Positive ¥> Bn ¥> B X ¥> B
Singular ××> Bn ××> B X ××> B

The linear propositions, {hom : Bn → B} = (Bn +> B), may be expressed as sums of the following form:

\[\textstyle \sum_{i=1}^n e_i = e_1 + \ldots + e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 0.\]

The positive propositions, {pos : Bn → B} = (Bn ¥> B), may be expressed as products of the following form:

\[\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 1.\]

The singular propositions, {x : Bn → B} = (Bn ××> B), may be expressed as products of the following form:

\[\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = (a_i) = \lnot a_i.\]

I = {1, …, n}.

JI

J ⊆ I

AJ

AJ

lJ : Bk → B

\(\ell_J : \mathbb{B}^k \to \mathbb{B}\)

θ : (Kn → K) → K

\(\theta\) : (Kn → K) → K

\(\theta\!\) : (Kn → K) → K

\(\vartheta\) : (Kn → K) → K

\(\vartheta\!\) : (Kn → K) → K

\(\chi\!\) : X → \(\bigcup_x \ \chi_x\!\)

\(\chi\!\) : Kn → ((Kn → K) → K)

\(\chi\!\) : (Kn → K) → (Kn → K)

\(\cong\)

\(\lceil x \rceil\)

xi(x) χ(xLi) \(\lceil x \in L_i \rceil\) Li(x)
xi(x) \(\chi (x \in L_i)\) \(\lceil x \in L_i \rceil\) Li(x)
‹0, 0, 0› ‹0, 0, 0›
‹0, 0, 1› ‹0, 0, 1›
‹0, 1, 0› ‹0, 1, 0›
‹0, 1, 1› ‹0, 1, 1›
‹1, 0, 0› ‹1, 0, 0›
‹1, 0, 1› ‹1, 0, 1›
‹1, 1, 0› ‹1, 1, 0›
‹1, 1, 1› ‹1, 1, 1›