| Line 92: |
Line 92: |
| | ====Original Format==== | | ====Original Format==== |
| | | | |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" |
| | |+ '''Table 5. A Bridge Over Troubled Waters''' | | |+ '''Table 5. A Bridge Over Troubled Waters''' |
| | |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| Line 101: |
Line 101: |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \mathcal{X} & = & | + | \mathcal{X} & = & \{x_1, \ldots, x_n\} \\ |
| − | \{x_1, \ldots, x_n\} \\ | |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \underline\mathcal{X} & = & | + | \underline\mathcal{X} & = & \{\underline{x}_1, \ldots, \underline{x}_n\} \\ |
| − | \{\underline{x}_1, \ldots, \underline{x}_n\} \\ | |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \mathcal{A} & = & | + | \mathcal{A} & = & \{a_1, \ldots, a_n\} \\ |
| − | \{a_1, \ldots, a_n\} \\ | |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | X_i & = & | + | X_i & = & \langle x_i \rangle \\ |
| − | \langle x_i \rangle \cong \mathbb{K} \\ | + | & \cong & \mathbb{K} \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \underline{X}_i & = & | + | \underline{X}_i & = & \{(\underline{x}_i), \underline{x}_i \} \\ |
| − | \{(\underline{x}_i), \underline{x}_i \} \cong \mathbb{B} \\ | + | & \cong & \mathbb{B} \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | A_i & = & | + | A_i & = & \{(a_i), a_i \} \\ |
| − | \{(a_i), a_i \} \cong \mathbb{B} \\ | + | & \cong & \mathbb{B} \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| − | ''X''<br>
| + | <math>\begin{matrix} |
| − | 〈<font face="lucida calligraphy">X</font>〉<br>
| + | X & = & \langle \mathcal{X} \rangle \\ |
| − | 〈''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>〉<br>
| + | & = & \langle x_1, \ldots, x_n \rangle \\ |
| − | {‹''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>›}<br>
| + | & = & X_1 \times \ldots \times X_n \\ |
| − | ''X''<sub>1</sub> × … × ''X''<sub>''n''</sub><br>
| + | & = & \prod_{i=1}^n X_i \\ |
| − | ∏<sub>''i''</sub> ''X''<sub>''i''</sub><br> | + | & \cong & \mathbb{K}^n \\ |
| − | isomorphic to '''K'''<sup>''n''</sup>
| + | \end{matrix}</math> |
| | | | | | |
| − | <u>''X''</u><br> | + | <math>\begin{matrix} |
| − | 〈<font face="lucida calligraphy"><u>X</u></font>〉<br>
| + | \underline{X} & = & \langle \underline\mathcal{X} \rangle \\ |
| − | 〈<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>〉<br>
| + | & = & \langle \underline{x}_1, \ldots, \underline{x}_n \rangle \\ |
| − | {‹<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>›}<br> | + | & = & \underline{X}_1 \times \ldots \times \underline{X}_n \\ |
| − | <u>''X''</u><sub>1</sub> × … × <u>''X''</u><sub>''n''</sub><br>
| + | & = & \prod_{i=1}^n \underline{X}_i \\ |
| − | ∏<sub>''i''</sub> <u>''X''</u><sub>''i''</sub><br> | + | & \cong & \mathbb{B}^n \\ |
| − | isomorphic to '''B'''<sup>''n''</sup>
| + | \end{matrix}</math> |
| | | | | | |
| − | ''A''<br>
| + | <math>\begin{matrix} |
| − | 〈<font face="lucida calligraphy">A</font>〉<br>
| + | A & = & \langle \mathcal{A} \rangle \\ |
| − | 〈''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>〉<br>
| + | & = & \langle a_1, \ldots, a_n \rangle \\ |
| − | {‹''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>›}<br>
| + | & = & A_1 \times \ldots \times A_n \\ |
| − | ''A''<sub>1</sub> × … × ''A''<sub>''n''</sub><br>
| + | & = & \prod_{i=1}^n A_i \\ |
| − | ∏<sub>''i''</sub> ''A''<sub>''i''</sub><br> | + | & \cong & \mathbb{B}^n \\ |
| − | isomorphic to '''B'''<sup>''n''</sup>
| + | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |