| Line 3,341: |
Line 3,341: |
| | ===Note 14=== | | ===Note 14=== |
| | | | |
| − | Table 5 sums up the facts of the physical situation at equilibrium. If we let <math>\mathbf{B} = \{ \mathrm{note}, \mathrm{rest} \} = \{ \mathrm{moving}, \mathrm{steady} \} = \{ \mathrm{charged}, \mathrm{resting} \},</math> or whatever candidates you pick for the 2-membered set in question, the Table shows a function <math>f : \mathbf{B} \times \mathbf{B} \to \mathbf{B},</math> where <math>f(x, y) = (x, y) = \operatorname{XOR}(x, y).\!</math> | + | Table 5 sums up the facts of the physical situation at equilibrium. If we let <math>\mathbf{B} = \{ \mathrm{charged}, \mathrm{resting} \} = \{ \mathrm{moving}, \mathrm{steady} \} = \{ \mathrm{note}, \mathrm{rest} \},</math> or whatever candidates you pick for the 2-membered set in question, the Table shows a function <math>f : \mathbf{B} \times \mathbf{B} \to \mathbf{B},</math> where <math>f(x, y) = (x, y) = \operatorname{XOR}(x, y).\!</math> |
| | | | |
| | <pre> | | <pre> |
| Line 3,356: |
Line 3,356: |
| | | resting | resting | charged | | | | resting | resting | charged | |
| | o---------o---------o---------o | | o---------o---------o---------o |
| | + | </pre> |
| | | | |
| − | There are two ways that this physical function | + | There are two ways that this physical function might be taken to represent a logical function: |
| − | might be taken to represent a logical function: | |
| | | | |
| − | 1. If we make the identifications:
| + | *<p>If we make the identifications:</p><p><math>\mathrm{charged} = \mathrm{true}\ (= \mathrm{indicated}),\!</math></p><p><math>\mathrm{resting} = \mathrm{false}\ (= \mathrm{otherwise}),\!</math></p><p>then the physical function <math>f : \mathbf{B} \times \mathbf{B} \to \mathbf{B}</math> is tantamount to the logical function that is commonly known as ''logical equivalence'', or just plain ''equality'':</p> |
| − |
| |
| − | charged = true (= indicated),
| |
| − |
| |
| − | resting = false (= otherwise),
| |
| − |
| |
| − | then the physical function f : B x B -> B
| |
| − | is tantamount to the logical function that
| |
| − | is commonly known as "logical equivalence",
| |
| − | or just plain "equality":
| |
| | | | |
| | + | <pre> |
| | Table 6. Equality Function | | Table 6. Equality Function |
| | o---------o---------o---------o | | o---------o---------o---------o |
| Line 3,383: |
Line 3,375: |
| | | false | false | true | | | | false | false | true | |
| | o---------o---------o---------o | | o---------o---------o---------o |
| | + | </pre> |
| | | | |
| | + | <pre> |
| | 2. If we make the identifications: | | 2. If we make the identifications: |
| | | | |