Changes

Line 7,623: Line 7,623:  
In their application to the present example, namely, the logical transformation ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))›, the operators E and D respectively produce the enlarged map E''F'' = ‹E''f'', E''g''› and the difference map D''F'' = ‹D''f'', D''g''›, whose components can be given as follows, if the reader, in lieu of a special font for the logical parentheses, can forgive a syntactically bilingual formulation:
 
In their application to the present example, namely, the logical transformation ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))›, the operators E and D respectively produce the enlarged map E''F'' = ‹E''f'', E''g''› and the difference map D''F'' = ‹D''f'', D''g''›, whose components can be given as follows, if the reader, in lieu of a special font for the logical parentheses, can forgive a syntactically bilingual formulation:
   −
<pre>
+
<br><font face="courier new">
o-------------------------------------------------o
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
|                                                 |
+
|
|   Ef = ((u + du)(v + dv))                     |
+
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
|                                                 |
+
| width="8%"  | E''f''
|   Eg = ((u + du, v + dv))                     |
+
| width="4%" | =
|                                                 |
+
| width="88%" | ((''u'' + d''u'')(''v'' + d''v''))
o-------------------------------------------------o
+
|-
</pre>
+
| width="8%"  | E''g''
 +
| width="4%" | =
 +
| width="88%" | ((''u'' + d''u'', ''v'' + d''v''))
 +
|}
 +
|}
 +
</font><br>
    
<pre>
 
<pre>
12,080

edits