Changes

→‎Umpire Operators: sub [ <math>\iff</math> / <math>\Leftrightarrow</math> ] + cleanup
Line 507: Line 507:  
We now examine measures at the high end of the standard ordering.  Instrumental to this purpose we define a couple of higher order operators, <math>\Upsilon_1 : (\langle u, v \rangle \to \mathbb{B}) \to \mathbb{B}</math> and <math>\Upsilon : (\langle u, v \rangle \to \mathbb{B})^2 \to \mathbb{B},</math> both symbolized by cursive upsilon characters and referred to as the absolute and relative ''umpire operators'', respectively.  If either one of these operators is defined in terms of more primitive notions then the remaining operator can be defined in terms of the one first established.
 
We now examine measures at the high end of the standard ordering.  Instrumental to this purpose we define a couple of higher order operators, <math>\Upsilon_1 : (\langle u, v \rangle \to \mathbb{B}) \to \mathbb{B}</math> and <math>\Upsilon : (\langle u, v \rangle \to \mathbb{B})^2 \to \mathbb{B},</math> both symbolized by cursive upsilon characters and referred to as the absolute and relative ''umpire operators'', respectively.  If either one of these operators is defined in terms of more primitive notions then the remaining operator can be defined in terms of the one first established.
   −
Given an ordered pair of propositions <math>e, f : \langle u, v \rangle \to \mathbb{B}</math> as arguments, the relative operator reports the value 1 if the first implies the second, otherwise 0.
+
Given an ordered pair of propositions <math>e, f : \langle u, v \rangle \to \mathbb{B}</math> as arguments, the relative operator reports the value <math>1\!</math> if the first implies the second, otherwise <math>0.\!</math>
    
{| align="center" cellpadding="8" style="text-align:center"
 
{| align="center" cellpadding="8" style="text-align:center"
Line 519: Line 519:  
{| align="center" cellpadding="8" style="text-align:center"
 
{| align="center" cellpadding="8" style="text-align:center"
 
| <math>\Upsilon (e, f) = 1\!</math>
 
| <math>\Upsilon (e, f) = 1\!</math>
| <math>\Leftrightarrow</math>
+
| <math>\iff</math>
 
| <math>\texttt{(} e \texttt{(} f \texttt{))} = 1</math>
 
| <math>\texttt{(} e \texttt{(} f \texttt{))} = 1</math>
 
|}
 
|}
Line 527: Line 527:  
{| align="center" cellpadding="8" style="text-align:center"
 
{| align="center" cellpadding="8" style="text-align:center"
 
| <math>\Upsilon (e, f) = 1 \in \mathbb{B}</math>
 
| <math>\Upsilon (e, f) = 1 \in \mathbb{B}</math>
| <math>\Leftrightarrow</math>
+
| <math>\iff</math>
 
| <math>\texttt{(} e \texttt{(} f \texttt{))} = 1 : \langle u, v \rangle \to \mathbb{B}</math>
 
| <math>\texttt{(} e \texttt{(} f \texttt{))} = 1 : \langle u, v \rangle \to \mathbb{B}</math>
 
|}
 
|}
Line 535: Line 535:  
{| align="center" cellpadding="8" style="text-align:center"
 
{| align="center" cellpadding="8" style="text-align:center"
 
| <math>\Upsilon (e, f) = 1_\mathbb{B}</math>
 
| <math>\Upsilon (e, f) = 1_\mathbb{B}</math>
| <math>\Leftrightarrow</math>
+
| <math>\iff</math>
 
| <math>\texttt{(} e \texttt{(} f \texttt{))} = 1_{X \to \mathbb{B}}</math>
 
| <math>\texttt{(} e \texttt{(} f \texttt{))} = 1_{X \to \mathbb{B}}</math>
 
|}
 
|}
Line 541: Line 541:  
Finally, it is often convenient to write the first argument as a subscript, hence <math>\Upsilon_e (f) = \Upsilon (e, f).\!</math>
 
Finally, it is often convenient to write the first argument as a subscript, hence <math>\Upsilon_e (f) = \Upsilon (e, f).\!</math>
   −
As a special application of this operator, we next define the absolute umpire operator, also called the ''umpire measure''.  This is a higher order proposition <math>\Upsilon_1 : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> which is given by the relation <math>\Upsilon_1 (f) = \Upsilon (1, f).\!</math>  Here, the subscript 1 on the left and the argument 1 on the right both refer to the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}.</math>  In most contexts where <math>\Upsilon_1\!</math> is actually applied the subscript 1 is safely omitted, since the number of arguments indicates which type of operator is intended.  Thus, we have the following identities and equivalents:
+
As a special application of this operator, we next define the absolute umpire operator, also called the ''umpire measure''.  This is a higher order proposition <math>\Upsilon_1 : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> which is given by the relation <math>\Upsilon_1 (f) = \Upsilon (1, f).\!</math>  Here, the subscript <math>1\!</math> on the left and the argument <math>1\!</math> on the right both refer to the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}.</math>  In most contexts where <math>\Upsilon_1\!</math> is actually applied the subscript <math>1\!</math> is safely omitted, since the number of arguments indicates which type of operator is intended.  Thus, we have the following identities and equivalents:
    
{| align="center" cellpadding="10" style="text-align:center"
 
{| align="center" cellpadding="10" style="text-align:center"
 
| <math>\Upsilon f = \Upsilon_1 (f) = 1 \in \mathbb{B}</math>
 
| <math>\Upsilon f = \Upsilon_1 (f) = 1 \in \mathbb{B}</math>
| <math>\Leftrightarrow</math>
+
| <math>\iff</math>
| <math>\underline{(1~(f))} = \underline{1}</math>
+
| <math>\texttt{(} 1 ~ \texttt{(} f \texttt{))} = 1</math>
| <math>\Leftrightarrow</math>
+
| <math>\iff</math>
| <math>f = 1 : \mathbb{B}^2 \to \mathbb{B}.</math>
+
| <math>f = 1 : \mathbb{B}^2 \to \mathbb{B}</math>
 
|}
 
|}
   −
The umpire measure is defined at the level of truth functions, but can also be understood in terms of its implied judgments at the syntactic level.  Interpreted this way, <math>\Upsilon_1\!</math> recognizes theorems of the propositional calculus over <math>[u, v],\!</math> giving a score of "1" to tautologies and a score of "0" to everything else, regarding all contingent statements as no better than falsehoods.
+
The umpire measure is defined at the level of truth functions, but can also be understood in terms of its implied judgments at the syntactic level.  Interpreted this way, <math>\Upsilon_1\!</math> recognizes theorems of the propositional calculus over <math>[u, v],\!</math> giving a score of <math>1\!</math> to tautologies and a score of <math>0\!</math> to everything else, regarding all contingent statements as no better than falsehoods.
   −
One remark in passing for those who might prefer an alternative definition.  If we had originally taken <math>\Upsilon\!</math> to mean the absolute measure, then the relative version could have been defined as <math>\Upsilon_e f = \Upsilon \underline{(e (f))}.\!</math>
+
One remark in passing for those who might prefer an alternative definition.  If we had originally taken <math>\Upsilon\!</math> to mean the absolute measure, then the relative version could have been defined as <math>\Upsilon_e f = \Upsilon \texttt{(} e \texttt{(} f \texttt{))}.</math>
    
===Measure for Measure===
 
===Measure for Measure===
12,080

edits