Changes

Import Raw Text (IRT)
Line 1: Line 1:  
{{DISPLAYTITLE:Functional Logic : Inquiry and Analogy}}
 
{{DISPLAYTITLE:Functional Logic : Inquiry and Analogy}}
 +
<pre>
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
IDS -- Fumctional Logic
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
FL.  Note 1
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
Inquiry and Analogy
 +
 +
| Version:  Draft 3.25
 +
| Created:  01 Jan 1995
 +
| Revised:  24 Dec 2001
 +
| Revised:  12 Mar 2004
 +
 +
Abstract
 +
 +
This report discusses C.S. Peirce's treatment of analogy,
 +
placing it in relation to his overall theory of inquiry.
 +
The first order of business is to introduce the three
 +
fundamental types of reasoning that Peirce adopted
 +
from classical logic.  In Peirce's analysis both
 +
inquiry and analogy are complex programs of
 +
reasoning which develop through stages of
 +
these three types, although normally in
 +
different orders.
 +
 +
1.  Three Types of Reasoning
 +
 +
1.1.  Types of Reasoning in Aristotle
 +
 +
1.2.  Types of Reasoning in C.S. Peirce
 +
 +
1.3.  Comparison of the Analyses
 +
 +
1.4.  Aristotle's "Apagogy":  Abductive Reasoning as Problem Reduction
 +
 +
1.5.  Aristotle's "Paradigm":  Reasoning by Analogy or Example
 +
 +
1.6.  Peirce's Formulation of Analogy
 +
 +
1.7.  Dewey's "Sign of Rain":  An Example of Inquiry
 +
 +
2.  Functional Conception of Quantification Theory
 +
 +
Up till now quantification theory has been based on the assumption of
 +
individual variables ranging over universal collections of perfectly
 +
determined elements.  Merely to write down quantified notations like
 +
"(For All)_(x in X) F(x)" and "(For Some)_(x in X) F(x)" involves a
 +
subscription to such notions, as shown by the membership relations
 +
invoked in their indices.  Reflected on pragmatic and constructive
 +
principles, these ideas begin to appear as problematic hypotheses
 +
whose warrants to be granted are not beyond question, as projects
 +
of exhaustive determination that overreach the powers of finite
 +
information and control to manage.  Consequently, it is worth
 +
considering how we might shift the medium of quantification
 +
theory closer to familiar ground, toward the predicates
 +
themselves that represent our continuing acquaintance
 +
with phenomena.
 +
 +
2.1.  Higher Order Propositional Expressions
 +
 +
By way of equipping this inquiry with a bit of concrete material, I begin
 +
with a consideration of "higher order propositional expressions" (HOPE's),
 +
in particular, those that stem from the propositions on 1 and 2 variables.
 +
 +
2.1.1.  Higher Order Propositions and Logical Operators (n = 1)
 +
 +
A "higher order" proposition is, very roughly speaking, a proposition about propositions.
 +
If the original order of propositions is a class of indicator functions F : X -> B, then
 +
the next higher order of propositions consists of maps of the type m : (X -> B) -> B.
 +
 +
For example, consider the case where X = B.  Then there are exactly four
 +
propositions F : B -> B, and exactly sixteen higher order propositions
 +
that are based on this set, all bearing the type m : (B -> B) -> B.
 +
 +
Table 10 lists the sixteen higher order propositions about propositions on
 +
one boolean variable, organized in the following fashion:  Columns 1 & 2
 +
form a truth table for the four F : B -> B, turned on its side from the
 +
way that one is most likely accustomed to see truth tables, with the
 +
row leaders in Column 1 displaying the names of the functions F_i,
 +
for i = 1 to 4, while the entries in Column 2 give the values of
 +
each function for the argument values that are listed in the
 +
corresponding column head.  Column 3 displays one of the
 +
more usual expressions for the proposition in question.
 +
The last sixteen columns are topped by a collection of
 +
conventional names for the higher order propositions,
 +
also known as the "measures" m_j, for j = 0 to 15,
 +
where the entries in the body of the Table record
 +
the values that each m_j assigns to each F_i.
 +
 +
Table 10.  Higher Order Propositions (n = 1)
 +
o------o-----o-----o---o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
 +
|  \ x | 1 0 |  F  | m |m |m |m |m |m |m |m |m |m |m |m |m |m |m |m |
 +
| F \  |    |    | 00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|
 +
o------o-----o-----o---o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
 +
|      |    |    |                                                |
 +
| F_0  | 0 0 |  0  | 0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 |
 +
|      |    |    |                                                |
 +
| F_1  | 0 1 | (x) | 0  0  1  1  0  0  1  1  0  0  1  1  0  0  1  1 |
 +
|      |    |    |                                                |
 +
| F_2  | 1 0 |  x  | 0  0  0  0  1  1  1  1  0  0  0  0  1  1  1  1 |
 +
|      |    |    |                                                |
 +
| F_3  | 1 1 |  1  | 0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1 |
 +
|      |    |    |                                                |
 +
o------o-----o-----o---o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
 +
 +
I am going to put off explaining Table 11, that presents a sample of
 +
what I call "Interpretive Categories for Higher Order Propositions",
 +
until after we get beyond the 1-dimensional case, since these lower
 +
dimensional cases tend to be a bit "condensed" or "degenerate" in
 +
their structures, and a lot of what is going on here will almost
 +
automatically become clearer as soon as we get even two logical
 +
variables into the mix.
 +
 +
Table 11.  Interpretive Categories for Higher Order Propositions (n = 1)
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
|Measure| Happening| Exactness  | Existence  | Linearity|Uniformity|Information|
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_0  | nothing  |            |            |          |          |          |
 +
|      | happens  |            |            |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_1  |          |            | nothing    |          |          |          |
 +
|      |          | just false | exists    |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_2  |          |            |            |          |          |          |
 +
|      |          | just not x |            |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_3  |          |            | nothing    |          |          |          |
 +
|      |          |            | is x      |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_4  |          |            |            |          |          |          |
 +
|      |          | just x    |            |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_5  |          |            | everything | F is    |          |          |
 +
|      |          |            | is x      | linear  |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_6  |          |            |            |          | F is not | F is      |
 +
|      |          |            |            |          | uniform  | informed  |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_7  |          | not        |            |          |          |          |
 +
|      |          | just true  |            |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_8  |          |            |            |          |          |          |
 +
|      |          | just true  |            |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_9  |          |            |            |          | F is    | F is not  |
 +
|      |          |            |            |          | uniform  | informed  |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_10  |          |            | something  | F is not |          |          |
 +
|      |          |            | is not x  | linear  |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_11  |          | not        |            |          |          |          |
 +
|      |          | just x    |            |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_12  |          |            | something  |          |          |          |
 +
|      |          |            | is x      |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_13  |          | not        |            |          |          |          |
 +
|      |          | just not x |            |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_14  |          | not        | something  |          |          |          |
 +
|      |          | just false | exists    |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
| m_15  | anything |            |            |          |          |          |
 +
|      | happens  |            |            |          |          |          |
 +
o-------o----------o------------o------------o----------o----------o-----------o
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
FL.  Note 2
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
2.1.2.  Higher Order Propositions and Logical Operators (n = 2)
 +
 +
By way of reviewing notation and preparing to extend it to
 +
higher order universes of discourse, let us first consider
 +
the universe of discourse X% = [!X!] = [x_1, x_2] = [x, y],
 +
based on two logical features or boolean variables x and y.
 +
 +
1.  The points of X% are collected in the space:
 +
 +
    X  =  <|x, y|>  =  {<x, y>}  ~=~  B^2.
 +
 +
    In other words, written out in full:
 +
 +
    X  =  {<"(x)", "(y)">,
 +
            <"(x)", " y ">,
 +
            <" x ", "(y)">,
 +
            <" x ", " y ">}
 +
 +
    X  ~=~  {<0, 0>,
 +
            <0, 1>,
 +
            <1, 0>,
 +
            <1, 1>}
 +
 +
2.  The propositions of X% make up the space:
 +
 +
    X^  =  (X -> B)  =  {f : X -> B}  ~=~  (B^2 -> B).
 +
 +
As always, it is frequently convenient to omit a few of the
 +
finer markings of distinctions among isomorphic structures,
 +
so long as one is aware of their presence and knows when
 +
it is crucial to call upon them again.
 +
 +
The next higher order universe of discourse that is built on X% is
 +
X%2 = [X%] = [[x, y]], which may be developed in the following way.
 +
The propositions of X% become the points of X%2, and the mappings
 +
of type m : (X -> B) -> B become the propositions of the second
 +
order universe of discourse X%2.  In addition, it is convenient
 +
to equip the discussion with a selected set of higher order
 +
operators on propositions, all of which have the form
 +
w : (B^2 -> B)^k -> B.
 +
 +
To save a few words in the remainder of this discussion, I will use the terms
 +
"measure" and "qualifier" to refer to all types of "higher order" propositions
 +
and operators.  To describe the present arrangement in picturesque terms, the
 +
propositions of [x, y] may be regarded as a gallery of sixteen venn diagrams,
 +
while the measures m : (X -> B) -> B are analogous to a body of judges or
 +
a collection of critical viewers, each of whom evaluates each picture as
 +
a whole and reports the ones that find favor or not.  In this way, each
 +
judge m_j partitions the gallery of pictures into two aesthetic portions,
 +
the pictures (m_j)^(-1)(1) that m_j likes and the pictures (m_j)^(-1)(0)
 +
that m_j dislikes.
 +
 +
There are 2^16 = 65536 measures of type m : (B^2 -> B) -> B.
 +
Table 12 introduces the first sixteen of these measures in the
 +
fashion of the higher order truth table that I set out before.
 +
The column headed "m_j" shows the values of the measure m_j on
 +
each of the propositions f_i : B^2 -> B, for i = 0 to 15, with
 +
a blank entry in the Table being optional for a value of zero.
 +
The arrangement of measures that continues in accord with this
 +
plan will be referred to as the "standard ordering" of measures.
 +
In this scheme of things, the index j of the measure m_j is the
 +
decimal equivalent of the bit string that is associated with
 +
m_j's functional values, which can be obtained in turn by
 +
reading the j^th column of binary digits in the Table as
 +
the corresponding range of boolean values, taking them
 +
in order from bottom to top.
 +
 +
Table 12.  Higher Order Propositions (n = 2)
 +
o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
 +
|  | x | 1100 |    f    |m|m|m|m|m|m|m|m|m|m|m|m|m|m|m|m|.|
 +
|  | y | 1010 |          |0|0|0|0|0|0|0|0|0|0|1|1|1|1|1|1|.|
 +
| f \  |      |          |0|1|2|3|4|5|6|7|8|9|0|1|2|3|4|5|.|
 +
o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
 +
|      |      |          |                                |
 +
| f_0  | 0000 |    ()    |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  |
 +
|      |      |          |                                |
 +
| f_1  | 0001 |  (x)(y)  |    1 1 0 0 1 1 0 0 1 1 0 0 1 1  |
 +
|      |      |          |                                |
 +
| f_2  | 0010 |  (x) y  |        1 1 1 1 0 0 0 0 1 1 1 1  |
 +
|      |      |          |                                |
 +
| f_3  | 0011 |  (x)    |                1 1 1 1 1 1 1 1  |
 +
|      |      |          |                                |
 +
| f_4  | 0100 |  x (y)  |                                |
 +
|      |      |          |                                |
 +
| f_5  | 0101 |    (y)  |                                |
 +
|      |      |          |                                |
 +
| f_6  | 0110 |  (x, y)  |                                |
 +
|      |      |          |                                |
 +
| f_7  | 0111 |  (x  y)  |                                |
 +
|      |      |          |                                |
 +
o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
 +
|      |      |          |                                |
 +
| f_8  | 1000 |  x  y  |                                |
 +
|      |      |          |                                |
 +
| f_9  | 1001 | ((x, y)) |                                |
 +
|      |      |          |                                |
 +
| f_10 | 1010 |      y  |                                |
 +
|      |      |          |                                |
 +
| f_11 | 1011 |  (x (y)) |                                |
 +
|      |      |          |                                |
 +
| f_12 | 1100 |  x      |                                |
 +
|      |      |          |                                |
 +
| f_13 | 1101 | ((x) y)  |                                |
 +
|      |      |          |                                |
 +
| f_14 | 1110 | ((x)(y)) |                                |
 +
|      |      |          |                                |
 +
| f_15 | 1111 |  (())  |                                |
 +
|      |      |          |                                |
 +
o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
FL.  Note 3
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
2.1.3.  Umpire Operators
 +
 +
In order to get a handle on the space of higher order propositions and
 +
eventually to carry out a functional approach to quantification theory,
 +
it serves to construct some specialized tools.  Specifically, I define
 +
a higher order operator !Y!, called the "umpire operator", which takes
 +
up to three propositions as arguments and returns a single truth value
 +
as the result.  Formally, this so-called "multi-grade" property of !Y!
 +
can be expressed as a union of function types, in the following manner:
 +
 +
  !Y! : |_|^(m = 1, 2, 3) ((B^k -> B)^m -> B).
 +
 +
In contexts of application the intended sense can be discerned by
 +
the number of arguments that actually appear in the argument list.
 +
Often, the first and last arguments appear as indices, the one in
 +
the middle being treated as the main argument while the other two
 +
arguments serve to modulate the sense of the operator in question.
 +
 +
Accordingly, the employment of umpires may be
 +
contingent on the following application forms:
 +
 +
  !Y!_p^r <q>  =  !Y!<p, q, r>
 +
 +
  !Y!_p^r : (B^k -> B) -> B
 +
 +
The intention of this operator is that we evaluate the proposition q
 +
on each model of the proposition p and combine the results according
 +
to the method indicated by the connective parameter r.  In principle,
 +
the index r might specify any connective on as many as 2^k arguments,
 +
but usually we have in mind a much simpler form of combination, most
 +
often either collective products or collective sums.  By convention,
 +
each of the accessory indices p, r is assigned a default value that
 +
is understood to apply when the corresponding place is left blank,
 +
specifically, the constant proposition 1 : B^k -> B for the lower
 +
index p, and the continued conjunction or continued product ]^[
 +
for the upper index r.  Taking the upper default value gives
 +
license to the following readings:
 +
 +
  1.  !Y!_p <q>  =  !Y!<p, q>  =  !Y!<p, q, product>
 +
 +
  2.  !Y!_p      =  !Y!<p, _, product> : (B^k -> B) -> B
 +
 +
This means that !Y!_p <q> = 1 if and only if q holds for all models of p.
 +
In propositional terms, this is tantamount to the assertion that p => q,
 +
or that (p (q)) = 1.  Throwing in the lower default value licences the
 +
following abbreviations:
 +
 +
  3.  !Y!q  =  !Y!<q>  =  !Y!_1 q  =  !Y!<1, q, product)
 +
 +
  4.  !Y!  =  !Y!<1, _, product> : (B^k -> B) -> B
 +
 +
This means that !Y!q = 1 if and only if q holds true over the entire
 +
universe of discourse in question, in other words, if and only if q
 +
is the constant true proposition 1 : B^k -> B.  The ambiguities of
 +
this trial usage will not be a problem so long as we distinguish
 +
the context of definition from the context of application and
 +
restrict all shorthand notations to the latter.
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
FL.  Note 4
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
2.1.4.  Measure for Measure
 +
 +
An acquaintance with the functions of the umpire operator can be gained
 +
from Tables 13 & 14, where the 2-dimensional case is worked out in full.
 +
 +
The auxiliary notations:
 +
 +
  !a!_i f  =  !Y!<f_i, f>,
 +
 +
  !b!_i f  =  !Y!<f, f_i>,
 +
 +
define two series of measures:
 +
 +
  !a!_i, !b!_i  :  (B^2 -> B) -> B,
 +
 +
incidentally providing compact names for
 +
the column headings of these two Tables.
 +
 +
Table 13.  Qualifiers of Implication Ordering:  !a!_i f  =  !Y!<f_i => f>
 +
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
 +
|  | x | 1100 |    f    |a |a |a |a |a |a |a |a |a |a |a |a |a |a |a |a |
 +
|  | y | 1010 |          |1 |1 |1 |1 |1 |1 |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 |
 +
| f \  |      |          |5 |4 |3 |2 |1 |0 |9 |8 |7 |6 |5 |4 |3 |2 |1 |0 |
 +
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
 +
|      |      |          |                                              |
 +
| f_0  | 0000 |    ()    |                                            1 |
 +
|      |      |          |                                              |
 +
| f_1  | 0001 |  (x)(y)  |                                          1  1 |
 +
|      |      |          |                                              |
 +
| f_2  | 0010 |  (x) y  |                                      1    1 |
 +
|      |      |          |                                              |
 +
| f_3  | 0011 |  (x)    |                                    1  1  1  1 |
 +
|      |      |          |                                              |
 +
| f_4  | 0100 |  x (y)  |                                1          1 |
 +
|      |      |          |                                              |
 +
| f_5  | 0101 |    (y)  |                              1  1        1  1 |
 +
|      |      |          |                                              |
 +
| f_6  | 0110 |  (x, y)  |                          1    1    1    1 |
 +
|      |      |          |                                              |
 +
| f_7  | 0111 |  (x  y)  |                        1  1  1  1  1  1  1  1 |
 +
|      |      |          |                                              |
 +
| f_8  | 1000 |  x  y  |                    1                      1 |
 +
|      |      |          |                                              |
 +
| f_9  | 1001 | ((x, y)) |                  1  1                    1  1 |
 +
|      |      |          |                                              |
 +
| f_10 | 1010 |      y  |              1    1                1    1 |
 +
|      |      |          |                                              |
 +
| f_11 | 1011 |  (x (y)) |            1  1  1  1              1  1  1  1 |
 +
|      |      |          |                                              |
 +
| f_12 | 1100 |  x      |        1          1          1          1 |
 +
|      |      |          |                                              |
 +
| f_13 | 1101 | ((x) y)  |      1  1        1  1        1  1        1  1 |
 +
|      |      |          |                                              |
 +
| f_14 | 1110 | ((x)(y)) |  1    1    1    1    1    1    1    1 |
 +
|      |      |          |                                              |
 +
| f_15 | 1111 |  (())  |1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 |
 +
|      |      |          |                                              |
 +
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
 +
 +
 +
Table 14.  Qualifiers of Implication Ordering:  !b!_i f  =  !Y!<f => f_i>
 +
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
 +
|  | x | 1100 |    f    |b |b |b |b |b |b |b |b |b |b |b |b |b |b |b |b |
 +
|  | y | 1010 |          |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 |1 |1 |1 |1 |1 |1 |
 +
| f \  |      |          |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |0 |1 |2 |3 |4 |5 |
 +
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
 +
|      |      |          |                                              |
 +
| f_0  | 0000 |    ()    |1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 |
 +
|      |      |          |                                              |
 +
| f_1  | 0001 |  (x)(y)  |  1    1    1    1    1    1    1    1 |
 +
|      |      |          |                                              |
 +
| f_2  | 0010 |  (x) y  |      1  1        1  1        1  1        1  1 |
 +
|      |      |          |                                              |
 +
| f_3  | 0011 |  (x)    |        1          1          1          1 |
 +
|      |      |          |                                              |
 +
| f_4  | 0100 |  x (y)  |            1  1  1  1              1  1  1  1 |
 +
|      |      |          |                                              |
 +
| f_5  | 0101 |    (y)  |              1    1                1    1 |
 +
|      |      |          |                                              |
 +
| f_6  | 0110 |  (x, y)  |                  1  1                    1  1 |
 +
|      |      |          |                                              |
 +
| f_7  | 0111 |  (x  y)  |                    1                      1 |
 +
|      |      |          |                                              |
 +
| f_8  | 1000 |  x  y  |                        1  1  1  1  1  1  1  1 |
 +
|      |      |          |                                              |
 +
| f_9  | 1001 | ((x, y)) |                          1    1    1    1 |
 +
|      |      |          |                                              |
 +
| f_10 | 1010 |      y  |                              1  1        1  1 |
 +
|      |      |          |                                              |
 +
| f_11 | 1011 |  (x (y)) |                                1          1 |
 +
|      |      |          |                                              |
 +
| f_12 | 1100 |  x      |                                    1  1  1  1 |
 +
|      |      |          |                                              |
 +
| f_13 | 1101 | ((x) y)  |                                      1    1 |
 +
|      |      |          |                                              |
 +
| f_14 | 1110 | ((x)(y)) |                                          1  1 |
 +
|      |      |          |                                              |
 +
| f_15 | 1111 |  (())  |                                            1 |
 +
|      |      |          |                                              |
 +
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
 +
 +
Applied to a given proposition f, the qualifiers !a!_i and !b!_i tell whether
 +
f rests "above f_i" or "below f_i", respectively, in the implication ordering.
 +
By way of example, let us trace the effects of several such measures, namely,
 +
those that occupy the limiting positions of the Tables.
 +
 +
  !a!_00 f = 1  iff  f_00 => f  iff  0 => f, hence !a!_00 f = 1 for all f.
 +
 +
  !a!_15 f = 1  iff  f_15 => f  iff  1 => f, hence !a!_15 f = 1 iff f = 1.
 +
 +
  !b!_00 f = 1  iff  f => f_00  iff  f => 0, hence !b!_00 f = 1 iff f = 0.
 +
 +
  !b!_15 f = 1  iff  f => f_15  iff  f => 1, hence !b!_15 f = 1 for all f.
 +
 +
In short, !a!_0 = !b!_15 is a totally indiscriminate measure,
 +
one that accepts all of the propositions f : B^2 -> B, while
 +
!a!_15 and !b!_0 are measures that appreciate the constant
 +
propositions 1 : B^2 -> B and 0 : B^2 -> B, respectively,
 +
above all others.
 +
 +
Finally, in conformity with the use of the fiber notation to
 +
indicate sets of models, it is natural to use notations like
 +
the following to denote classes of propositions that satisfy
 +
the umpires in question:
 +
 +
  [| !a!_i |]  =  (!a!_i)^(-1)(1)
 +
 +
  [| !b!_i |]  =  (!b!_i)^(-1)(1)
 +
 +
  [| !Y!_p |]  =  (!Y!_p)^(-1)(1)
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
FL.  Note 5
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
2.1.5.  Extending the Existential Interpretation to Quantificational Logic
 +
 +
Previously I introduced a calculus for propositional logic, fixing its meaning
 +
according to what C.S. Peirce called the "existential interpretation".  As far
 +
as it concerns propositional calculus this interpretation settles the meanings
 +
that are associated with merely the most basic symbols and logical connectives.
 +
Now we must extend and refine the existential interpretation to comprehend the
 +
analysis of "quantifications", that is, quantified propositions.  In doing so
 +
we recognize two additional aspects of logic that need to be developed, over
 +
and above the material of propositional logic.  At the formal extreme there
 +
is the aspect of higher order functional types, into which we have already
 +
ventured a little above.  At the level of the fundamental content of the
 +
available propositions we have to introduce a different interpretation
 +
for what we may call "elemental" or "singular" propositions.
 +
 +
Let us return to the 2-dimensional universe X% = [x, y].
 +
In order to construct a bridge between propositions and
 +
quantifications it serves to create a set of qualifiers
 +
L_uv : (B^2 -> B) -> B that take on the following forms:
 +
 +
  L_00 f  =  L_<(x)(y)> f
 +
 +
            =  !a!_1 f
 +
 +
            =  !Y!_<(x)(y)> f
 +
 +
            =  !Y!<(x)(y) => f>
 +
 +
            =  <f likes (x)(y)>
 +
 +
  L_01 f  =  L_<(x) y > f
 +
 +
            =  !a!_2 f
 +
 +
            =  !Y!_<(x) y > f
 +
 +
            =  !Y!<(x) y  => f>
 +
 +
            =  <f likes (x) y >
 +
 +
  L_10 f  =  L_< x (y)> f
 +
 +
            =  !a!_4 f
 +
 +
            =  !Y!_< x (y)> f
 +
 +
            =  !Y!< x (y) => f>
 +
 +
            =  <f likes  x (y)>
 +
 +
  L_11 f  =  L_< x  y > f
 +
 +
            =  !a!_8 f
 +
 +
            =  !Y!_< x  y > f
 +
 +
            =  !Y!< x  y => f>
 +
 +
            =  <f likes  x  y >
 +
 +
Intuitively, the L_uv operators may be thought of as qualifying propositions
 +
according to the elements of the universe of discourse that each proposition
 +
positively values.  Taken together, these measures provide us with the means
 +
to express many useful observations about the propositions in X% = [x, y],
 +
and so they mediate a subtext [L_00, L_01, L_10, L_11] that takes place
 +
within the higher order universe of discourse X%2 = [X%] = [[x, y]].
 +
 +
Figure 15 summarizes the action of the L_uv on the f_i in X%2.
 +
 +
o-------------------------------------------------o
 +
|                                                |
 +
|                        o                        |
 +
|                      / \                      |
 +
|                      /  \                      |
 +
|                    /x  y\                    |
 +
|                    / o---o \                    |
 +
|                  o  \ /  o                  |
 +
|                  / \  o  / \                  |
 +
|                /  \  |  /  \                |
 +
|                /    \ @ /    \                |
 +
|              / x  y \ / x  y \              |
 +
|              o  o---o  o  o---o  o              |
 +
|            / \  \    / \    /  / \            |
 +
|            /  \  @  /  \  @  /  \            |
 +
|          /    \  /    \  /    \          |
 +
|          /  y  \ /      \ /  y  \          |
 +
|        o    @    o    @    o    o    o        |
 +
|        / \      / \      / \  |  / \        |
 +
|      /  \    /  \    /  \  @  /  \      |
 +
|      /    \  /x  y\  /    \  /    \      |
 +
|    /  x y  \ / o  o \ /  x y  \ / x  y \    |
 +
|    o    @    o  \ /  o    o    o  o  o  o    |
 +
|    |\      / \  o  / \  |  / \  \ /  /|    |
 +
|    | \    /  \  |  /  \  @  /  \  @  / |    |
 +
|    |  \  /    \ @ /    \  /    \  /  |    |
 +
|    |  \ /  x  \ / x  y \ /  x  \ /  |    |
 +
|    |    o    @    o  o---o  o    o    o    |    |
 +
|    |    |\      / \  \ /  / \  |  /|    |    |
 +
|    |    | \    /  \  @  /  \  @  / |    |    |
 +
|    |    |  \  /    \  /    \  /  |    |    |
 +
|    |L_11|  \ /  o y \ / x o  \ /  |L_00|    |
 +
|    o---------o    |    o    |    o---------o    |
 +
|        |    \ x @  / \  @ y /    |        |
 +
|        |      \    /  \    /      |        |
 +
|        |      \  /    \  /      |        |
 +
|        |L_10    \ /  o  \ /    L_01|        |
 +
|        o---------o    |    o---------o        |
 +
|                    \  @  /                    |
 +
|                    \    /                    |
 +
|                      \  /                      |
 +
|                      \ /                      |
 +
|                        o                        |
 +
|                                                |
 +
o-------------------------------------------------o
 +
Figure 15.  Higher Order Universe [L_uv] c [[x, y]]
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
FL.  Note 6
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
2.1.6.  Application of Higher Order Propositions to Quantification Theory
 +
 +
Our excursion into the vastening landscape of higher order propositions
 +
has finally come round to the stage where we can bring its returns to
 +
bear on opening up new perspectives for quantificational logic.
 +
 +
There is a question arising next that is still experimental in my mind.
 +
Whether it makes much difference from a purely formal point of view is
 +
not a question I can answer yet, but it does seem to aid the intuition
 +
to invent a slightly different interpretation for the two-valued space
 +
that we use as the target of our basic indicator functions.  Therefore,
 +
let us establish a type of "existence-valued" functions f : B^k -> %E%,
 +
where %E% = {-e-, +e+} = {"empty", "exist"} is a couple of values that
 +
we interpret as indicating whether of not anything exists in the cells
 +
of the underlying universe of discourse, venn diagram, or other domain.
 +
As usual, let us not be too strict about the coding of these functions,
 +
reverting to binary codes whenever the interpretation is clear enough.
 +
 +
With this interpretation in mind we note the following correspondences
 +
between classical quantifications and higher order indicator functions:
 +
 +
Table 16.  Syllogistic Premisses as Higher Order Indicator Functions
 +
o---o---------------------o-----------------o----------------------------o
 +
|  |                    |                |                            |
 +
| A | Universal Affrmtve  | All  x  is  y  | Indicator of < x (y)> = 0  |
 +
|  |                    |                |                            |
 +
| E | Universal Negative  | All  x  is (y) | Indicator of < x  y > = 0  |
 +
|  |                    |                |                            |
 +
| I | Particular Affrmtve | Some  x  is  y  | Indicator of < x  y > = 1  |
 +
|  |                    |                |                            |
 +
| O | Particular Negative | Some  x  is (y) | Indicator of < x (y)> = 1  |
 +
|  |                    |                |                            |
 +
o---o---------------------o-----------------o----------------------------o
 +
 +
Tables 17 and 18 develop these ideas in greater detail.
 +
 +
Table 17.  Relation of Quantifiers to Higher Order Propositions
 +
o------------o------------o-----------o-----------o-----------o----------o
 +
| Mnemonic  | Category  | Classical | Alternate | Symmetric | Operator |
 +
|            |            |  Form    |  Form    |  Form    |          |
 +
o============o============o===========o===========o===========o==========o
 +
|    E      | Universal  |  All  x  |          |  No  x  |  (L_11)  |
 +
| Exclusive  |  Negative  |  is  (y) |          |  is  y  |          |
 +
o------------o------------o-----------o-----------o-----------o----------o
 +
|    A      | Universal  |  All  x  |          |  No  x  |  (L_10)  |
 +
| Absolute  |  Affrmtve  |  is  y  |          |  is  (y) |          |
 +
o------------o------------o-----------o-----------o-----------o----------o
 +
|            |            |  All  y  |  No  y  |  No  (x) |  (L_01)  |
 +
|            |            |  is  x  |  is  (x) |  is  y  |          |
 +
o------------o------------o-----------o-----------o-----------o----------o
 +
|            |            |  All  (y) |  No  (y) |  No  (x) |  (L_00)  |
 +
|            |            |  is  x  |  is  (x) |  is  (y) |          |
 +
o------------o------------o-----------o-----------o-----------o----------o
 +
|            |            | Some  (x) |          | Some  (x) |  L_00  |
 +
|            |            |  is  (y) |          |  is  (y) |          |
 +
o------------o------------o-----------o-----------o-----------o----------o
 +
|            |            | Some  (x) |          | Some  (x) |  L_01  |
 +
|            |            |  is  y  |          |  is  y  |          |
 +
o------------o------------o-----------o-----------o-----------o----------o
 +
|    O      | Particular | Some  x  |          | Some  x  |  L_10  |
 +
| Obtrusive  |  Negative  |  is  (y) |          |  is  (y) |          |
 +
o------------o------------o-----------o-----------o-----------o----------o
 +
|    I      | Particular | Some  x  |          | Some  x  |  L_11  |
 +
| Indefinite |  Affrmtve  |  is  y  |          |  is  y  |          |
 +
o------------o------------o-----------o-----------o-----------o----------o
 +
 +
Table 18.  Simple Qualifiers of Propositions (n = 2)
 +
o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o
 +
|  | x | 1100 |    f    |(L11)|(L10)|(L01)|(L00)| L00 | L01 | L10 | L11 |
 +
|  | y | 1010 |          |no  x|no  x|no ~x|no ~x|sm ~x|sm ~x|sm  x|sm  x|
 +
| f \  |      |          |is  y|is ~y|is  y|is ~y|is ~y|is  y|is ~y|is  y|
 +
o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o
 +
|      |      |          |                                              |
 +
| f_0  | 0000 |    ()    |  1    1    1    1                          |
 +
|      |      |          |                                              |
 +
| f_1  | 0001 |  (x)(y)  |  1    1    1          1                    |
 +
|      |      |          |                                              |
 +
| f_2  | 0010 |  (x) y  |  1    1          1          1              |
 +
|      |      |          |                                              |
 +
| f_3  | 0011 |  (x)    |  1    1                1    1              |
 +
|      |      |          |                                              |
 +
| f_4  | 0100 |  x (y)  |  1          1    1                1        |
 +
|      |      |          |                                              |
 +
| f_5  | 0101 |    (y)  |  1          1          1          1        |
 +
|      |      |          |                                              |
 +
| f_6  | 0110 |  (x, y)  |  1                1          1    1        |
 +
|      |      |          |                                              |
 +
| f_7  | 0111 |  (x  y)  |  1                      1    1    1        |
 +
|      |      |          |                                              |
 +
| f_8  | 1000 |  x  y  |        1    1    1                      1  |
 +
|      |      |          |                                              |
 +
| f_9  | 1001 | ((x, y)) |        1    1          1                1  |
 +
|      |      |          |                                              |
 +
| f_10 | 1010 |      y  |        1          1          1          1  |
 +
|      |      |          |                                              |
 +
| f_11 | 1011 |  (x (y)) |        1                1    1          1  |
 +
|      |      |          |                                              |
 +
| f_12 | 1100 |  x      |              1    1                1    1  |
 +
|      |      |          |                                              |
 +
| f_13 | 1101 | ((x) y)  |              1          1          1    1  |
 +
|      |      |          |                                              |
 +
| f_14 | 1110 | ((x)(y)) |                    1          1    1    1  |
 +
|      |      |          |                                              |
 +
| f_15 | 1111 |  (())  |                          1    1    1    1  |
 +
|      |      |          |                                              |
 +
o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
FL.  Note 7
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
FL.  Note 0
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
To:  NKS
 +
 +
I will need to focus on the DATA thread while I have
 +
the concentration to do so, but an exagoric inquiry
 +
from a reader of that thread prompts me to revisit
 +
for a moment a topic where I previously noticed
 +
some fractal shades lurking about my tables.
 +
I am reorganizing this material on a couple
 +
of other discussion lists, starting here:
 +
 +
FL.  http://suo.ieee.org/ontology/thrd1.html#05480
 +
FL.  http://stderr.org/pipermail/inquiry/2004-March/thread.html#1256
 +
 +
See especially FL Note 4, at either of these web loci:
 +
 +
FL 4.  http://suo.ieee.org/ontology/msg05483.html
 +
FL 4.  http://stderr.org/pipermail/inquiry/2004-March/001259.html
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
FL.  Functional Logic
 +
 +
Ontology List
 +
 +
01.  http://suo.ieee.org/ontology/msg05480.html
 +
02.  http://suo.ieee.org/ontology/msg05481.html
 +
03.  http://suo.ieee.org/ontology/msg05482.html
 +
04.  http://suo.ieee.org/ontology/msg05483.html
 +
05.  http://suo.ieee.org/ontology/msg05484.html
 +
06.  http://suo.ieee.org/ontology/msg05485.html
 +
07.
 +
 +
Inquiry List
 +
 +
01.  http://stderr.org/pipermail/inquiry/2004-March/001256.html
 +
02.  http://stderr.org/pipermail/inquiry/2004-March/001257.html
 +
03.  http://stderr.org/pipermail/inquiry/2004-March/001258.html
 +
04.  http://stderr.org/pipermail/inquiry/2004-March/001259.html
 +
05.  http://stderr.org/pipermail/inquiry/2004-March/001260.html
 +
06.  http://stderr.org/pipermail/inquiry/2004-March/001261.html
 +
07.
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
</pre>
12,080

edits