Changes

Line 2,278: Line 2,278:  
===Definition 5===
 
===Definition 5===
   −
<pre>
+
====Variant 1====
Definition 5
     −
If X c U,
+
<br>
   −
then the following are identical propositions:
+
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%"
 +
|
 +
{| align="center" cellpadding="0" cellspacing="0" width="100%"
 +
|- style="height:40px; text-align:center"
 +
| width="80%" | &nbsp;
 +
| width="20%" | <math>\text{Definition 5}\!</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" cellpadding="0" cellspacing="0" width="100%"
 +
|- style="height:40px"
 +
| width="2%"  style="border-top:1px solid black" | &nbsp;
 +
| width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math>
 +
| width="80%" style="border-top:1px solid black" | <math>Q ~\subseteq~ X</math>
 +
|- style="height:40px"
 +
| &nbsp;
 +
| <math>\text{then}\!</math>
 +
| <math>\text{the following are identical propositions:}\!</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" cellpadding="0" cellspacing="0" width="100%"
 +
|- style="height:40px"
 +
| width="2%"  style="border-top:1px solid black" | &nbsp;
 +
| width="18%" style="border-top:1px solid black" | <math>\operatorname{D5a.}</math>
 +
| width="80%" style="border-top:1px solid black" | <math>\upharpoonleft Q \upharpoonright</math>
 +
|- style="height:60px"
 +
| &nbsp;
 +
| <math>\operatorname{D5b.}</math>
 +
|
 +
<math>\begin{array}{lcl}
 +
f    & : & X \to \underline\mathbb{B}
 +
\\
 +
f(x) & = & \downharpoonleft x \in Q \downharpoonright \quad (\forall x \in X)
 +
\end{array}</math>
 +
|}
 +
|}
   −
D5a. {X}.
+
<br>
   −
D5b. f : U -> B
+
====Variant 2====
 
  −
: f(u) = [u C X], for all u C U.
  −
</pre>
      
<br>
 
<br>
Line 2,322: Line 2,354:  
|- style="height:60px"
 
|- style="height:60px"
 
| &nbsp;
 
| &nbsp;
| valign="top" |<math>\operatorname{D5b.}</math>
+
| <math>\operatorname{D5b.}</math>
 
|
 
|
<math>\begin{array}{lcl}
+
<math>\begin{array}{ccccl}
f   & : & X \to \underline\mathbb{B}
+
f & : & X & \to     & \underline\mathbb{B}
 
\\
 
\\
f(x) & = & \downharpoonleft x \in Q \downharpoonright \quad (\forall x \in X)
+
f & : & x & \mapsto & \downharpoonleft x \in Q \downharpoonright
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
12,089

edits