Changes

Line 907: Line 907:  
The '''ante-representation''' of <math>x_i\!</math> in <math>G\!</math> is a function from <math>G\!</math> to <math>G\!</math> that is formed by considering the effects of <math>x_i\!</math> on the elements of <math>G\!</math> when <math>x_i\!</math> acts in the role of the first operand of the group operation.  Notating this function as <math>h_1(x_i) : G \to G,\!</math> the '''regular ante-representation''' of <math>G\!</math> is a map <math>h_1 : G \to (G \to G)\!</math> that is schematized in Table&nbsp;32.2.  Here, each of the functions <math>h_1(x_i) : G \to G\!</math> is represented as a set of ordered pairs of the form <math>(x_j ~,~ x_i * x_j).\!</math>
 
The '''ante-representation''' of <math>x_i\!</math> in <math>G\!</math> is a function from <math>G\!</math> to <math>G\!</math> that is formed by considering the effects of <math>x_i\!</math> on the elements of <math>G\!</math> when <math>x_i\!</math> acts in the role of the first operand of the group operation.  Notating this function as <math>h_1(x_i) : G \to G,\!</math> the '''regular ante-representation''' of <math>G\!</math> is a map <math>h_1 : G \to (G \to G)\!</math> that is schematized in Table&nbsp;32.2.  Here, each of the functions <math>h_1(x_i) : G \to G\!</math> is represented as a set of ordered pairs of the form <math>(x_j ~,~ x_i * x_j).\!</math>
   −
<pre>
+
The '''post-representation''' of <math>x_i\!</math> in <math>G\!</math> is a function from <math>G\!</math> to <math>G\!</math> that is formed by considering the effects of <math>x_i\!</math> on the elements of <math>G\!</math> when <math>x_i\!</math> acts in the role of the second operand of the group operation.  Notating this function as <math>h_2(x_i) : G \to G,\!</math> the '''regular post-representation''' of <math>G\!</math> is a map <math>h_2 : G \to (G \to G)\!</math> that is schematized in Table&nbsp;32.3.  Here, each of the functions <math>h_2(x_i) : G \to G\!</math> is represented as a set of ordered pairs of the form <math>(x_j ~,~ x_j * x_i).\!</math>
The "post-representation" of xi in G is a function from G to G that is formed by considering the effects of xi on the elements of G when xi acts in the role of the second operand of the group operation.  Notating this function as "h2(xi) : G >G", the "regular post representation" of G is a map h2 : G > (G >G) that is schematized in Table 32.3.  Here, each of the functions h2(xi) : G >G is represented as a set of ordered pairs of the form <xj, xj*xi>.
+
 
+
<pre>
 
Table 32.1  Scheme of a Group Multiplication Table
 
Table 32.1  Scheme of a Group Multiplication Table
 
* x0 ... xj ...
 
* x0 ... xj ...
12,089

edits