Difference between revisions of "User:Jon Awbrey/TABLE"
| Jon Awbrey (talk | contribs)  (→Wiki TeX Tables:  copy prototype table) | Jon Awbrey (talk | contribs)  | ||
| (67 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | == | + | ==Cactus Language== | 
| ===Ascii Tables=== | ===Ascii Tables=== | ||
| + | {| align="center" cellpadding="6" style="text-align:center; width:90%" | ||
| + | | | ||
| <pre> | <pre> | ||
| − | + | o-------------------o | |
| − | o--------- | + | |                   | | 
| − | |  | + | |         @         | | 
| − | |          | + | |                   | | 
| − | |  | + | o-------------------o | 
| − | o--------- | + | |                   | | 
| − | |  | + | |         o         | | 
| − | |         |  | + | |         |         | | 
| − | o--------- | + | |         @         | | 
| − | |  | + | |                   | | 
| − | |  | + | o-------------------o | 
| − | |          | + | |                   | | 
| − | |  | + | |         a         | | 
| − | |          | + | |         @         | | 
| − | |  | + | |                   | | 
| − | |  | + | o-------------------o | 
| − | |  | + | |                   | | 
| − | |          | + | |         a         | | 
| − | |  | + | |         o         | | 
| − | |  | + | |         |         | | 
| − | + | |         @         | | |
| − | |  | + | |                   | | 
| − | + | o-------------------o | |
| − | |  | + | |                   | | 
| − | |  | + | |       a b c       | | 
| − | |          | + | |         @         | | 
| − | |  | + | |                   | | 
| − | + | o-------------------o | |
| − | |  | + | |                   | | 
| − | |          | + | |       a b c       | | 
| − | + | |       o o o       | | |
| − | |          | + | |        \|/        | | 
| − | |  | + | |         o         | | 
| − | |  | + | |         |         | | 
| − | |  | + | |         @         | | 
| − | |  | + | |                   | | 
| − | + | o-------------------o | |
| − | + | |                   | | |
| − | + | |         a   b     | | |
| − | |          | + | |         o---o     | | 
| − | + | |         |         | | |
| − | |  | + | |         @         | | 
| − | o--------- | + | |                   | | 
| + | o-------------------o | ||
| + | |                   | | ||
| + | |       a   b       | | ||
| + | |       o---o       | | ||
| + | |        \ /        | | ||
| + | |         @         | | ||
| + | |                   | | ||
| + | o-------------------o | ||
| + | |                   | | ||
| + | |       a   b       | | ||
| + | |       o---o       | | ||
| + | |        \ /        | | ||
| + | |         o         | | ||
| + | |         |         | | ||
| + | |         @         | | ||
| + | |                   | | ||
| + | o-------------------o | ||
| + | |                   | | ||
| + | |      a  b  c      | | ||
| + | |      o--o--o      | | ||
| + | |       \   /       | | ||
| + | |        \ /        | | ||
| + | |         @         | | ||
| + | |                   | | ||
| + | o-------------------o | ||
| + | |                   | | ||
| + | |      a  b  c      | | ||
| + | |      o  o  o      | | ||
| + | |      |  |  |      | | ||
| + | |      o--o--o      | | ||
| + | |       \   /       | | ||
| + | |        \ /        | | ||
| + | |         @         | | ||
| + | |                   | | ||
| + | o-------------------o | ||
| + | |                   | | ||
| + | |         b  c      | | ||
| + | |         o  o      | | ||
| + | |      a  |  |      | | ||
| + | |      o--o--o      | | ||
| + | |       \   /       | | ||
| + | |        \ /        | | ||
| + | |         @         | | ||
| + | |                   | | ||
| + | o-------------------o | ||
| </pre> | </pre> | ||
| + | |} | ||
| + | {| align="center" cellpadding="6" style="text-align:center; width:90%" | ||
| + | | | ||
| <pre> | <pre> | ||
| − | Table  | + | Table 13.  The Existential Interpretation | 
| − | o----- | + | o----o-------------------o-------------------o-------------------o | 
| − | |  | + | | Ex |   Cactus Graph    | Cactus Expression |    Existential    | | 
| − | |  | + | |    |                   |                   |  Interpretation   | | 
| − | + | o----o-------------------o-------------------o-------------------o | |
| − | o------- | + | |    |                   |                   |                   | | 
| − | |  | + | |  1 |         @         |        " "        |       true.       | | 
| − | |         |        | + | |    |                   |                   |                   | | 
| − | o------ | + | o----o-------------------o-------------------o-------------------o | 
| − | |  | + | |    |                   |                   |                   | | 
| − | |  | + | |    |         o         |                   |                   | | 
| − | |         |  | + | |    |         |         |                   |                   | | 
| − | o--------- | + | |  2 |         @         |        ( )        |      untrue.      | | 
| − | |  | + | |    |                   |                   |                   | | 
| − | |  | + | o----o-------------------o-------------------o-------------------o | 
| − | |          | + | |    |                   |                   |                   | | 
| − | |  | + | |    |         a         |                   |                   | | 
| − | + | |  3 |         @         |         a         |         a.        | | |
| − | + | |    |                   |                   |                   | | |
| − | |  | + | o----o-------------------o-------------------o-------------------o | 
| − | |  | + | |    |                   |                   |                   | | 
| − | |  | + | |    |         a         |                   |                   | | 
| − | + | |    |         o         |                   |                   | | |
| − | |  | + | |    |         |         |                   |                   | | 
| − | |  | + | |  4 |         @         |        (a)        |       not a.      | | 
| − | |  | + | |    |                   |                   |                   | | 
| − | |  | + | o----o-------------------o-------------------o-------------------o | 
| − | + | |    |                   |                   |                   | | |
| − | + | |    |       a b c       |                   |                   | | |
| − | |  | + | |  5 |         @         |       a b c       |   a and b and c.  | | 
| − | |  | + | |    |                   |                   |                   | | 
| − | |  | + | o----o-------------------o-------------------o-------------------o | 
| − | |  | + | |    |                   |                   |                   | | 
| − | |         |  | + | |    |       a b c       |                   |                   | | 
| − | + | |    |       o o o       |                   |                   | | |
| − | |  | + | |    |        \|/        |                   |                   | | 
| − | |  | + | |    |         o         |                   |                   | | 
| − | |  | + | |    |         |         |                   |                   | | 
| − | |  | + | |  6 |         @         |    ((a)(b)(c))    |    a or b or c.   | | 
| − | |  | + | |    |                   |                   |                   | | 
| − | o--------- | + | o----o-------------------o-------------------o-------------------o | 
| − | |  | + | |    |                   |                   |                   | | 
| − | |  | + | |    |                   |                   |    a implies b.   | | 
| − | |  | + | |    |         a   b     |                   |                   | | 
| − | |  | + | |    |         o---o     |                   |    if a then b.   | | 
| − | |          | + | |    |         |         |                   |                   | | 
| − | |  | + | |  7 |         @         |     ( a (b))      |    no a sans b.   | | 
| − | + | |    |                   |                   |                   | | |
| − | + | o----o-------------------o-------------------o-------------------o | |
| − | + | |    |                   |                   |                   | | |
| − | + | |    |       a   b       |                   |                   | | |
| − | |         |         |          | + | |    |       o---o       |                   | a exclusive-or b. | | 
| − | |  | + | |    |        \ /        |                   |                   | | 
| − | + | |  8 |         @         |     ( a , b )     | a not equal to b. | | |
| − | + | |    |                   |                   |                   | | |
| − | < | + | o----o-------------------o-------------------o-------------------o | 
| + | |    |                   |                   |                   | | ||
| + | |    |       a   b       |                   |                   | | ||
| + | |    |       o---o       |                   |                   | | ||
| + | |    |        \ /        |                   |                   | | ||
| + | |    |         o         |                   | a if & only if b. | | ||
| + | |    |         |         |                   |                   | | ||
| + | |  9 |         @         |    (( a , b ))    | a equates with b. | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |      a  b  c      |                   |                   | | ||
| + | |    |      o--o--o      |                   |                   | | ||
| + | |    |       \   /       |                   |                   | | ||
| + | |    |        \ /        |                   |  just one false   | | ||
| + | | 10 |         @         |   ( a , b , c )   |  out of a, b, c.  | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |      a  b  c      |                   |                   | | ||
| + | |    |      o  o  o      |                   |                   | | ||
| + | |    |      |  |  |      |                   |                   | | ||
| + | |    |      o--o--o      |                   |                   | | ||
| + | |    |       \   /       |                   |                   | | ||
| + | |    |        \ /        |                   |   just one true   | | ||
| + | | 11 |         @         |   ((a),(b),(c))   |   among a, b, c.  | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |                   |                   |   genus a over    | | ||
| + | |    |         b  c      |                   |   species b, c.   | | ||
| + | |    |         o  o      |                   |                   | | ||
| + | |    |      a  |  |      |                   |   partition a     | | ||
| + | |    |      o--o--o      |                   |   among b & c.    | | ||
| + | |    |       \   /       |                   |                   | | ||
| + | |    |        \ /        |                   |   whole pie a:    | | ||
| + | | 12 |         @         |   ( a ,(b),(c))   |   slices b, c.    | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | </pre> | ||
| + | |} | ||
| + | |||
| + | {| align="center" cellpadding="6" style="text-align:center; width:90%" | ||
| + | | | ||
| + | <pre> | ||
| + | Table 14.  The Entitative Interpretation | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | | En |   Cactus Graph    | Cactus Expression |    Entitative     | | ||
| + | |    |                   |                   |  Interpretation   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |  1 |         @         |        " "        |      untrue.      | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |         o         |                   |                   | | ||
| + | |    |         |         |                   |                   | | ||
| + | |  2 |         @         |        ( )        |       true.       | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |         a         |                   |                   | | ||
| + | |  3 |         @         |         a         |         a.        | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |         a         |                   |                   | | ||
| + | |    |         o         |                   |                   | | ||
| + | |    |         |         |                   |                   | | ||
| + | |  4 |         @         |        (a)        |       not a.      | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |       a b c       |                   |                   | | ||
| + | |  5 |         @         |       a b c       |    a or b or c.   | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |       a b c       |                   |                   | | ||
| + | |    |       o o o       |                   |                   | | ||
| + | |    |        \|/        |                   |                   | | ||
| + | |    |         o         |                   |                   | | ||
| + | |    |         |         |                   |                   | | ||
| + | |  6 |         @         |    ((a)(b)(c))    |   a and b and c.  | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |                   |                   |    a implies b.   | | ||
| + | |    |                   |                   |                   | | ||
| + | |    |         o a       |                   |    if a then b.   | | ||
| + | |    |         |         |                   |                   | | ||
| + | |  7 |         @ b       |      (a) b        |    not a, or b.   | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |       a   b       |                   |                   | | ||
| + | |    |       o---o       |                   | a if & only if b. | | ||
| + | |    |        \ /        |                   |                   | | ||
| + | |  8 |         @         |     ( a , b )     | a equates with b. | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |       a   b       |                   |                   | | ||
| + | |    |       o---o       |                   |                   | | ||
| + | |    |        \ /        |                   |                   | | ||
| + | |    |         o         |                   | a exclusive-or b. | | ||
| + | |    |         |         |                   |                   | | ||
| + | |  9 |         @         |    (( a , b ))    | a not equal to b. | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |      a  b  c      |                   |                   | | ||
| + | |    |      o--o--o      |                   |                   | | ||
| + | |    |       \   /       |                   |                   | | ||
| + | |    |        \ /        |                   | not just one true | | ||
| + | | 10 |         @         |   ( a , b , c )   | out of a, b, c.   | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |      a  b  c      |                   |                   | | ||
| + | |    |      o--o--o      |                   |                   | | ||
| + | |    |       \   /       |                   |                   | | ||
| + | |    |        \ /        |                   |                   | | ||
| + | |    |         o         |                   |                   | | ||
| + | |    |         |         |                   |   just one true   | | ||
| + | | 11 |         @         |  (( a , b , c ))  |   among a, b, c.  | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | |    |                   |                   |                   | | ||
| + | |    |      a            |                   |                   | | ||
| + | |    |      o            |                   |   genus a over    | | ||
| + | |    |      |  b  c      |                   |   species b, c.   | | ||
| + | |    |      o--o--o      |                   |                   | | ||
| + | |    |       \   /       |                   |   partition a     | | ||
| + | |    |        \ /        |                   |   among b & c.    | | ||
| + | |    |         o         |                   |                   | | ||
| + | |    |         |         |                   |   whole pie a:    | | ||
| + | | 12 |         @         |  (((a), b , c ))  |   slices b, c.    | | ||
| + | |    |                   |                   |                   | | ||
| + | o----o-------------------o-------------------o-------------------o | ||
| + | </pre> | ||
| + | |} | ||
| + | |||
| + | {| align="center" cellpadding="6" style="text-align:center; width:90%" | ||
| + | | | ||
| + | <pre> | ||
| + | Table 15.  Existential & Entitative Interpretations of Cactus Structures | ||
| + | o-----------------o-----------------o-----------------o-----------------o | ||
| + | |  Cactus Graph   |  Cactus String  |  Existential    |   Entitative    | | ||
| + | |                 |                 | Interpretation  | Interpretation  | | ||
| + | o-----------------o-----------------o-----------------o-----------------o | ||
| + | |                 |                 |                 |                 | | ||
| + | |        @        |       " "       |      true       |      false      | | ||
| + | |                 |                 |                 |                 | | ||
| + | o-----------------o-----------------o-----------------o-----------------o | ||
| + | |                 |                 |                 |                 | | ||
| + | |        o        |                 |                 |                 | | ||
| + | |        |        |                 |                 |                 | | ||
| + | |        @        |       ( )       |      false      |      true       | | ||
| + | |                 |                 |                 |                 | | ||
| + | o-----------------o-----------------o-----------------o-----------------o | ||
| + | |                 |                 |                 |                 | | ||
| + | |   C_1 ... C_k   |                 |                 |                 | | ||
| + | |        @        |   C_1 ... C_k   | C_1 & ... & C_k | C_1 v ... v C_k | | ||
| + | |                 |                 |                 |                 | | ||
| + | o-----------------o-----------------o-----------------o-----------------o | ||
| + | |                 |                 |                 |                 | | ||
| + | |  C_1 C_2   C_k  |                 |  Just one       |  Not just one   | | ||
| + | |   o---o-...-o   |                 |                 |                 | | ||
| + | |    \       /    |                 |  of the C_j,    |  of the C_j,    | | ||
| + | |     \     /     |                 |                 |                 | | ||
| + | |      \   /      |                 |  j = 1 to k,    |  j = 1 to k,    | | ||
| + | |       \ /       |                 |                 |                 | | ||
| + | |        @        | (C_1, ..., C_k) |  is not true.   |  is true.       | | ||
| + | |                 |                 |                 |                 | | ||
| + | o-----------------o-----------------o-----------------o-----------------o | ||
| + | </pre> | ||
| + | |} | ||
| + | |||
| + | ===Wiki TeX Tables=== | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" | ||
| + | |+ <math>\text{Table A.}~~\text{Existential Interpretation}</math> | ||
| + | |- style="background:#f0f0ff" | ||
| + | | <math>\text{Cactus Graph}\!</math> | ||
| + | | <math>\text{Cactus Expression}\!</math> | ||
| + | | <math>\text{Interpretation}\!</math> | ||
| + | |- | ||
| + | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] | ||
| + | | <math>{}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}</math> | ||
| + | | <math>\operatorname{true}.</math> | ||
| + | |- | ||
| + | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] | ||
| + | | <math>\texttt{(~)}</math> | ||
| + | | <math>\operatorname{false}.</math> | ||
| + | |- | ||
| + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] | ||
| + | | <math>a\!</math> | ||
| + | | <math>a.\!</math> | ||
| + | |- | ||
| + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] | ||
| + | | <math>\texttt{(} a \texttt{)}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \tilde{a} | ||
| + | \\[2pt] | ||
| + | a^\prime | ||
| + | \\[2pt] | ||
| + | \lnot a | ||
| + | \\[2pt] | ||
| + | \operatorname{not}~ a. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] | ||
| + | | <math>a~b~c</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | a \land b \land c | ||
| + | \\[6pt] | ||
| + | a ~\operatorname{and}~ b ~\operatorname{and}~ c. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] | ||
| + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | a \lor b \lor c | ||
| + | \\[6pt] | ||
| + | a ~\operatorname{or}~ b ~\operatorname{or}~ c. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="120px" | [[Image:Cactus (A(B)) Big.jpg|60px]] | ||
| + | | <math>\texttt{(} a \texttt{(} b \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | a \Rightarrow b | ||
| + | \\[2pt] | ||
| + | a ~\operatorname{implies}~ b. | ||
| + | \\[2pt] | ||
| + | \operatorname{if}~ a ~\operatorname{then}~ b. | ||
| + | \\[2pt] | ||
| + | \operatorname{not}~ a ~\operatorname{without}~ b. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] | ||
| + | | <math>\texttt{(} a, b \texttt{)}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | a + b | ||
| + | \\[2pt] | ||
| + | a \neq b | ||
| + | \\[2pt] | ||
| + | a ~\operatorname{exclusive-or}~ b. | ||
| + | \\[2pt] | ||
| + | a ~\operatorname{not~equal~to}~ b. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] | ||
| + | | <math>\texttt{((} a, b \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | a = b | ||
| + | \\[2pt] | ||
| + | a \iff b | ||
| + | \\[2pt] | ||
| + | a ~\operatorname{equals}~ b. | ||
| + | \\[2pt] | ||
| + | a ~\operatorname{if~and~only~if}~ b. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] | ||
| + | | <math>\texttt{(} a, b, c \texttt{)}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{just~one~of} | ||
| + | \\ | ||
| + | a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~false}. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="160px" | [[Image:Cactus ((A),(B),(C)) Big.jpg|65px]] | ||
| + | | <math>\texttt{((} a \texttt{)}, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{just~one~of} | ||
| + | \\ | ||
| + | a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~true}. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="160px" | [[Image:Cactus (A,(B),(C)) Big.jpg|65px]] | ||
| + | | <math>\texttt{(} a, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{genus}~ a ~\operatorname{of~species}~ b, c. | ||
| + | \\[6pt] | ||
| + | \operatorname{partition}~ a ~\operatorname{into}~ b, c. | ||
| + | \\[6pt] | ||
| + | \operatorname{pie}~ a ~\operatorname{of~slices}~ b, c. | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| − | < | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" | 
| − | Table  | + | |+ <math>\text{Table B.}~~\text{Entitative Interpretation}</math> | 
| − | + | |- style="background:#f0f0ff" | |
| − | |  | + | | <math>\text{Cactus Graph}\!</math> | 
| − | |  | + | | <math>\text{Cactus Expression}\!</math> | 
| − | |  | + | | <math>\text{Interpretation}\!</math> | 
| − | |  | + | |- | 
| − | |  | + | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] | 
| − | + | | <math>{}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}</math> | |
| − | |  | + | | <math>\operatorname{false}.</math> | 
| − | |  | + | |- | 
| − | |  | + | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] | 
| − | + | | <math>\texttt{(~)}</math> | |
| − | |  | + | | <math>\operatorname{true}.</math> | 
| − | |  | + | |- | 
| − | |  | + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] | 
| − | + | | <math>a\!</math> | |
| − | |  | + | | <math>a.\!</math> | 
| − | |  | + | |- | 
| − | |  | + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] | 
| − | |  | + | | <math>\texttt{(} a \texttt{)}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \tilde{a} | |
| − | + | \\[2pt] | |
| − | + | a^\prime | |
| − | + | \\[2pt] | |
| − | + | \lnot a | |
| − | + | \\[2pt] | |
| − | |  | + | \operatorname{not}~ a. | 
| − | |  | + | \end{matrix}</math> | 
| − | |  | + | |- | 
| − | |  | + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] | 
| − | + | | <math>a~b~c</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | a \lor b \lor c | |
| − | + | \\[6pt] | |
| − | + | a ~\operatorname{or}~ b ~\operatorname{or}~ c. | |
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | |  | + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] | 
| − | |  | + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | a \land b \land c | |
| − | + | \\[6pt] | |
| − | |  | + | a ~\operatorname{and}~ b ~\operatorname{and}~ c. | 
| − | |  | + | \end{matrix}</math> | 
| − | + | |- | |
| − | + | | height="120px" | [[Image:Cactus (A)B Big.jpg|35px]] | |
| − | + | | <math>\texttt{(} a \texttt{)} b</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | a \Rightarrow b | |
| − | + | \\[2pt] | |
| − | + | a ~\operatorname{implies}~ b. | |
| − | |  | + | \\[2pt] | 
| − | + | \operatorname{if}~ a ~\operatorname{then}~ b. | |
| − | < | + | \\[2pt] | 
| + | \operatorname{not}~ a, ~\operatorname{or}~ b. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] | ||
| + | | <math>\texttt{(} a, b \texttt{)}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | a = b | ||
| + | \\[2pt] | ||
| + | a \iff b | ||
| + | \\[2pt] | ||
| + | a ~\operatorname{equals}~ b. | ||
| + | \\[2pt] | ||
| + | a ~\operatorname{if~and~only~if}~ b. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] | ||
| + | | <math>\texttt{((} a, b \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | a + b | ||
| + | \\[2pt] | ||
| + | a \neq b | ||
| + | \\[2pt] | ||
| + | a ~\operatorname{exclusive-or}~ b. | ||
| + | \\[2pt] | ||
| + | a ~\operatorname{not~equal~to}~ b. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] | ||
| + | | <math>\texttt{(} a, b, c \texttt{)}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{not~just~one~of} | ||
| + | \\ | ||
| + | a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~true}. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="160px" | [[Image:Cactus ((A,B,C)) Big.jpg|65px]] | ||
| + | | <math>\texttt{((} a, b, c \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{just~one~of} | ||
| + | \\ | ||
| + | a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~true}. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="200px" | [[Image:Cactus (((A),B,C)) Big.jpg|65px]] | ||
| + | | <math>\texttt{(((} a \texttt{)}, b, c \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{genus}~ a ~\operatorname{of~species}~ b, c. | ||
| + | \\[6pt] | ||
| + | \operatorname{partition}~ a ~\operatorname{into}~ b, c. | ||
| + | \\[6pt] | ||
| + | \operatorname{pie}~ a ~\operatorname{of~slices}~ b, c. | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| − | < | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" | 
| − | Table  | + | |+ <math>\text{Table C.}~~\text{Dualing Interpretations}</math> | 
| − | + | |- style="background:#f0f0ff" | |
| − | |  | + | | <math>\text{Graph}\!</math> | 
| − | |  | + | | <math>\text{String}\!</math> | 
| − | |  | + | | <math>\text{Existential}\!</math> | 
| − | + | | <math>\text{Entitative}\!</math> | |
| − | |  | + | |- | 
| − | |  | + | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] | 
| − | |  | + | | <math>{}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}</math> | 
| − | + | | <math>\operatorname{true}.</math> | |
| − | |  | + | | <math>\operatorname{false}.</math> | 
| − | |  | + | |- | 
| − | |  | + | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] | 
| − | |  | + | | <math>\texttt{(~)}</math> | 
| − | |  | + | | <math>\operatorname{false}.</math> | 
| − | |  | + | | <math>\operatorname{true}.</math> | 
| − | |  | + | |- | 
| − | |  | + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] | 
| − | |  | + | | <math>a\!</math> | 
| − | + | | <math>a.\!</math> | |
| − | |  | + | | <math>a.\!</math> | 
| − | + | |- | |
| − | |  | + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] | 
| − | |  | + | | <math>\texttt{(} a \texttt{)}</math> | 
| − | + | | <math>\lnot a</math> | |
| − | + | | <math>\lnot a</math> | |
| − | |  | + | |- | 
| − | |  | + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] | 
| − | |  | + | | <math>a~b~c</math> | 
| − | |  | + | | <math>a \land b \land c</math> | 
| − | + | | <math>a \lor  b \lor  c</math> | |
| − | + | |- | |
| − | |  | + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] | 
| − | |  | + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> | 
| − | |  | + | | <math>a \lor  b \lor  c</math> | 
| − | + | | <math>a \land b \land c</math> | |
| − | |  | + | |- | 
| − | + | | height="120px" | [[Image:Cactus (A(B)) Big.jpg|60px]] | |
| − | + | | <math>\texttt{(} a \texttt{(} b \texttt{))}</math> | |
| − | + | | <math>a \Rightarrow b</math> | |
| − | |  | + | |   | 
| − | |  | + | |- | 
| − | |  | + | | height="120px" | [[Image:Cactus (A)B Big.jpg|35px]] | 
| − | + | | <math>\texttt{(} a \texttt{)} b</math> | |
| − | |  | + | |   | 
| − | |  | + | | <math>a \Rightarrow b</math> | 
| − | |  | + | |- | 
| − | + | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] | |
| − | + | | <math>\texttt{(} a, b \texttt{)}</math> | |
| − | + | | <math>a \neq b</math> | |
| − | |  | + | | <math>a   =  b\!</math> | 
| − | + | |- | |
| − | </ | + | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] | 
| + | | <math>\texttt{((} a, b \texttt{))}</math> | ||
| + | | <math>a   =  b\!</math> | ||
| + | | <math>a \neq b\!</math> | ||
| + | |- | ||
| + | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] | ||
| + | | <math>\texttt{(} a, b, c \texttt{)}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{just~one} | ||
| + | \\ | ||
| + | \operatorname{of}~ a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~false}. | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{not~just~one} | ||
| + | \\ | ||
| + | \operatorname{of}~ a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~true}. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="160px" | [[Image:Cactus ((A),(B),(C)) Big.jpg|65px]] | ||
| + | | <math>\texttt{((} a \texttt{)}, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{just~one} | ||
| + | \\ | ||
| + | \operatorname{of}~ a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~true}. | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{not~just~one} | ||
| + | \\ | ||
| + | \operatorname{of}~ a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~false}. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="160px" | [[Image:Cactus ((A,B,C)) Big.jpg|65px]] | ||
| + | | <math>\texttt{((} a, b, c \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{not~just~one} | ||
| + | \\ | ||
| + | \operatorname{of}~ a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~false}. | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{just~one} | ||
| + | \\ | ||
| + | \operatorname{of}~ a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~true}. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="200px" | [[Image:Cactus (((A),(B),(C))) Big.jpg|65px]] | ||
| + | | <math>\texttt{(((} a \texttt{)}, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{)))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{not~just~one} | ||
| + | \\ | ||
| + | \operatorname{of}~ a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~true}. | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{just~one} | ||
| + | \\ | ||
| + | \operatorname{of}~ a, b, c | ||
| + | \\ | ||
| + | \operatorname{is~false}. | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | height="160px" | [[Image:Cactus (A,(B),(C)) Big.jpg|65px]] | ||
| + | | <math>\texttt{(} a, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{partition}~ a | ||
| + | \\ | ||
| + | \operatorname{into}~ b, c. | ||
| + | \end{matrix}</math> | ||
| + | |   | ||
| + | |- | ||
| + | | height="200px" | [[Image:Cactus (((A),B,C)) Big.jpg|65px]] | ||
| + | | <math>\texttt{(((} a \texttt{)}, b, c \texttt{))}</math> | ||
| + | |   | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{partition}~ a | ||
| + | \\ | ||
| + | \operatorname{into}~ b, c. | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| − | <pre> | + | <br> | 
| − | Table  | + | |
| − | o------ | + | ==Differential Logic== | 
| − | |  | + | |
| − | |  | + | ===Ascii Tables=== | 
| − | |  | + | |
| − | o------ | + | <pre> | 
| − | |  | + | Table A1.  Propositional Forms On Two Variables | 
| − | |  | + | o---------o---------o---------o----------o------------------o----------o | 
| − | |  | + | | L_1     | L_2     | L_3     | L_4      | L_5              | L_6      | | 
| − | o------ | + | |         |         |         |          |                  |          | | 
| − | |  | + | | Decimal | Binary  | Vector  | Cactus   | English          | Ordinary | | 
| − | |  | + | o---------o---------o---------o----------o------------------o----------o | 
| − | |  | + | |         |       x : 1 1 0 0 |          |                  |          | | 
| − | |  | + | |         |       y : 1 0 1 0 |          |                  |          | | 
| − | |  | + | o---------o---------o---------o----------o------------------o----------o | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_0     | f_0000  | 0 0 0 0 |    ()    | false            |    0     | | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_1     | f_0001  | 0 0 0 1 |  (x)(y)  | neither x nor y  | ~x & ~y  | | 
| − | + | |         |         |         |          |                  |          | | |
| − | |  | + | | f_2     | f_0010  | 0 0 1 0 |  (x) y   | y and not x      | ~x &  y  | | 
| − | + | |         |         |         |          |                  |          | | |
| − | |  | + | | f_3     | f_0011  | 0 0 1 1 |  (x)     | not x            | ~x       | | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_4     | f_0100  | 0 1 0 0 |   x (y)  | x and not y      |  x & ~y  | | 
| − | + | |         |         |         |          |                  |          | | |
| − | |  | + | | f_5     | f_0101  | 0 1 0 1 |     (y)  | not y            |      ~y  | | 
| − | + | |         |         |         |          |                  |          | | |
| − | |  | + | | f_6     | f_0110  | 0 1 1 0 |  (x, y)  | x not equal to y |  x +  y  | | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_7     | f_0111  | 0 1 1 1 |  (x  y)  | not both x and y | ~x v ~y  | | 
| − | + | |         |         |         |          |                  |          | | |
| − | |  | + | | f_8     | f_1000  | 1 0 0 0 |   x  y   | x and y          |  x &  y  | | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_9     | f_1001  | 1 0 0 1 | ((x, y)) | x equal to y     |  x =  y  | | 
| − | | f_10  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_10    | f_1010  | 1 0 1 0 |      y   | y                |       y  | | 
| − | + | |         |         |         |          |                  |          | | |
| − | |  | + | | f_11    | f_1011  | 1 0 1 1 |  (x (y)) | not x without y  |  x => y  | | 
| − | + | |         |         |         |          |                  |          | | |
| − | |  | + | | f_12    | f_1100  | 1 1 0 0 |   x      | x                |  x       | | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_13    | f_1101  | 1 1 0 1 | ((x) y)  | not y without x  |  x <= y  | | 
| − | | f_13 |  ((x) y)  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_14    | f_1110  | 1 1 1 0 | ((x)(y)) | x or y           |  x v  y  | | 
| − | | f_14 |  ((x)(y))  | + | |         |         |         |          |                  |          | | 
| − | + | | f_15    | f_1111  | 1 1 1 1 |   (())   | true             |    1     | | |
| − | + | |         |         |         |          |                  |          | | |
| − | |  | + | o---------o---------o---------o----------o------------------o----------o | 
| − | | f_15 |  | + | </pre> | 
| − | |  | ||
| − | o------ | ||
| − | </pre> | ||
| <pre> | <pre> | ||
| − | Table  | + | Table A2.  Propositional Forms On Two Variables | 
| − | o------ | + | o---------o---------o---------o----------o------------------o----------o | 
| − | |      |  | + | | L_1     | L_2     | L_3     | L_4      | L_5              | L_6      | | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | Decimal | Binary  | Vector  | Cactus   | English          | Ordinary | | 
| − | o------ | + | o---------o---------o---------o----------o------------------o----------o | 
| − | |  | + | |         |       x : 1 1 0 0 |          |                  |          | | 
| − | | f_0  |  | + | |         |       y : 1 0 1 0 |          |                  |          | | 
| − | |  | + | o---------o---------o---------o----------o------------------o----------o | 
| − | o------ | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_0     | f_0000  | 0 0 0 0 |    ()    | false            |    0     | | 
| − | | f_1  |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | o---------o---------o---------o----------o------------------o----------o | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_1     | f_0001  | 0 0 0 1 |  (x)(y)  | neither x nor y  | ~x & ~y  | | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_2     | f_0010  | 0 0 1 0 |  (x) y   | y and not x      | ~x &  y  | | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_4     | f_0100  | 0 1 0 0 |   x (y)  | x and not y      |  x & ~y  | | 
| − | o------ | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_8     | f_1000  | 1 0 0 0 |   x  y   | x and y          |  x &  y  | | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | o---------o---------o---------o----------o------------------o----------o | 
| − | |  | + | |         |         |         |          |                  |          | | 
| − | |  | + | | f_3     | f_0011  | 0 0 1 1 |  (x)     | not x            | ~x       | | 
| + | |         |         |         |          |                  |          | | ||
| + | | f_12    | f_1100  | 1 1 0 0 |   x      | x                |  x       | | ||
| + | |         |         |         |          |                  |          | | ||
| + | o---------o---------o---------o----------o------------------o----------o | ||
| + | |         |         |         |          |                  |          | | ||
| + | | f_6     | f_0110  | 0 1 1 0 |  (x, y)  | x not equal to y |  x +  y  | | ||
| + | |         |         |         |          |                  |          | | ||
| + | | f_9     | f_1001  | 1 0 0 1 | ((x, y)) | x equal to y     |  x =  y  | | ||
| + | |         |         |         |          |                  |          | | ||
| + | o---------o---------o---------o----------o------------------o----------o | ||
| + | |         |         |         |          |                  |          | | ||
| + | | f_5     | f_0101  | 0 1 0 1 |     (y)  | not y            |      ~y  | | ||
| + | |         |         |         |          |                  |          | | ||
| + | | f_10    | f_1010  | 1 0 1 0 |      y   | y                |       y  | | ||
| + | |         |         |         |          |                  |          | | ||
| + | o---------o---------o---------o----------o------------------o----------o | ||
| + | |         |         |         |          |                  |          | | ||
| + | | f_7     | f_0111  | 0 1 1 1 |  (x  y)  | not both x and y | ~x v ~y  | | ||
| + | |         |         |         |          |                  |          | | ||
| + | | f_11    | f_1011  | 1 0 1 1 |  (x (y)) | not x without y  |  x => y  | | ||
| + | |         |         |         |          |                  |          | | ||
| + | | f_13    | f_1101  | 1 1 0 1 | ((x) y)  | not y without x  |  x <= y  | | ||
| + | |         |         |         |          |                  |          | | ||
| + | | f_14    | f_1110  | 1 1 1 0 | ((x)(y)) | x or y           |  x v  y  | | ||
| + | |         |         |         |          |                  |          | | ||
| + | o---------o---------o---------o----------o------------------o----------o | ||
| + | |         |         |         |          |                  |          | | ||
| + | | f_15    | f_1111  | 1 1 1 1 |   (())   | true             |    1     | | ||
| + | |         |         |         |          |                  |          | | ||
| + | o---------o---------o---------o----------o------------------o----------o | ||
| + | </pre> | ||
| + | |||
| + | <pre> | ||
| + | Table A3.  Ef Expanded Over Differential Features {dx, dy} | ||
| o------o------------o------------o------------o------------o------------o | o------o------------o------------o------------o------------o------------o | ||
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| − | |  | + | |      |     f      |   T_11 f   |   T_10 f   |   T_01 f   |   T_00 f   | | 
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| − | |  | + | |      |            | Ef| dx dy  | Ef| dx(dy) | Ef| (dx)dy | Ef|(dx)(dy)| | 
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| o------o------------o------------o------------o------------o------------o | o------o------------o------------o------------o------------o------------o | ||
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| − | |  | + | | f_0  |     ()     |     ()     |     ()     |     ()     |     ()     | | 
| − | |||
| − | |||
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| o------o------------o------------o------------o------------o------------o | o------o------------o------------o------------o------------o------------o | ||
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| − | |  | + | | f_1  |   (x)(y)   |    x  y    |    x (y)   |   (x) y    |   (x)(y)   | | 
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| − | |  | + | | f_2  |   (x) y    |    x (y)   |    x  y    |   (x)(y)   |   (x) y    | | 
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| − | | f_13 |  ((x) y)   |    | + | | f_4  |    x (y)   |   (x) y    |   (x)(y)   |    x  y    |    x (y)   | | 
| + | |      |            |            |            |            |            | | ||
| + | | f_8  |    x  y    |   (x)(y)   |   (x) y    |    x (y)   |    x  y    | | ||
| + | |      |            |            |            |            |            | | ||
| + | o------o------------o------------o------------o------------o------------o | ||
| + | |      |            |            |            |            |            | | ||
| + | | f_3  |   (x)      |    x       |    x       |   (x)      |   (x)      | | ||
| + | |      |            |            |            |            |            | | ||
| + | | f_12 |    x       |   (x)      |   (x)      |    x       |    x       | | ||
| + | |      |            |            |            |            |            | | ||
| + | o------o------------o------------o------------o------------o------------o | ||
| + | |      |            |            |            |            |            | | ||
| + | | f_6  |   (x, y)   |   (x, y)   |  ((x, y))  |  ((x, y))  |   (x, y)   | | ||
| + | |      |            |            |            |            |            | | ||
| + | | f_9  |  ((x, y))  |  ((x, y))  |   (x, y)   |   (x, y)   |  ((x, y))  | | ||
| + | |      |            |            |            |            |            | | ||
| + | o------o------------o------------o------------o------------o------------o | ||
| + | |      |            |            |            |            |            | | ||
| + | | f_5  |      (y)   |       y    |      (y)   |       y    |      (y)   | | ||
| + | |      |            |            |            |            |            | | ||
| + | | f_10 |       y    |      (y)   |       y    |      (y)   |       y    | | ||
| + | |      |            |            |            |            |            | | ||
| + | o------o------------o------------o------------o------------o------------o | ||
| + | |      |            |            |            |            |            | | ||
| + | | f_7  |   (x  y)   |  ((x)(y))  |  ((x) y)   |   (x (y))  |   (x  y)   | | ||
| + | |      |            |            |            |            |            | | ||
| + | | f_11 |   (x (y))  |  ((x) y)   |  ((x)(y))  |   (x  y)   |   (x (y))  | | ||
| + | |      |            |            |            |            |            | | ||
| + | | f_13 |  ((x) y)   |   (x (y))  |   (x  y)   |  ((x)(y))  |  ((x) y)   | | ||
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| − | | f_14 |  ((x)(y))  |    | + | | f_14 |  ((x)(y))  |   (x  y)   |   (x (y))  |  ((x) y)   |  ((x)(y))  | | 
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| o------o------------o------------o------------o------------o------------o | o------o------------o------------o------------o------------o------------o | ||
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| − | | f_15 |    (())    |  | + | | f_15 |    (())    |    (())    |    (())    |    (())    |    (())    | | 
| |      |            |            |            |            |            | | |      |            |            |            |            |            | | ||
| o------o------------o------------o------------o------------o------------o | o------o------------o------------o------------o------------o------------o | ||
| + | |                   |            |            |            |            | | ||
| + | | Fixed Point Total |      4     |      4     |      4     |     16     | | ||
| + | |                   |            |            |            |            | | ||
| + | o-------------------o------------o------------o------------o------------o | ||
| </pre> | </pre> | ||
| − | + | <pre> | |
| − | + | Table A4.  Df Expanded Over Differential Features {dx, dy} | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | + | |      |            |            |            |            |            | | |
| − | < | + | |      |     f      | Df| dx dy  | Df| dx(dy) | Df| (dx)dy | Df|(dx)(dy)| | 
| − | + | |      |            |            |            |            |            | | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | | | + | |      |            |            |            |            |            | | 
| − | | | + | | f_0  |     ()     |     ()     |     ()     |     ()     |     ()     | | 
| − | + | |      |            |            |            |            |            | | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_1  |   (x)(y)   |  ((x, y))  |    (y)     |    (x)     |     ()     | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_2  |   (x) y    |   (x, y)   |     y      |    (x)     |     ()     | | |
| − | | | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_4  |    x (y)   |   (x, y)   |    (y)     |     x      |     ()     | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_8  |    x  y    |  ((x, y))  |     y      |     x      |     ()     | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | + | | f_3  |   (x)      |    (())    |    (())    |     ()     |     ()     | | |
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_12 |    x       |    (())    |    (())    |     ()     |     ()     | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_6  |   (x, y)   |     ()     |    (())    |    (())    |     ()     | | 
| − | | | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_9  |  ((x, y))  |     ()     |    (())    |    (())    |     ()     | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | | ( | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_5  |      (y)   |    (())    |     ()     |    (())    |     ()     | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | + | | f_10 |       y    |    (())    |     ()     |    (())    |     ()     | | |
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | | (x)(y) | + | | f_7  |   (x  y)   |  ((x, y))  |     y      |     x      |     ()     | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_11 |   (x (y))  |   (x, y)   |    (y)     |     x      |     ()     | | 
| − | | | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_13 |  ((x) y)   |   (x, y)   |     y      |    (x)     |     ()     | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_14 |  ((x)(y))  |  ((x, y))  |    (y)     |    (x)     |     ()     | | 
| − | | (x) y | + | |      |            |            |            |            |            | | 
| − | | y  | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |- | + | | f_15 |    (())    |     ()     |     ()     |     ()     |     ()     | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | </pre> | 
| − | | (x) | + | |
| − | |  | + | <pre> | 
| − | |  | + | Table A5.  Ef Expanded Over Ordinary Features {x, y} | 
| − | |- | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | |      |     f      |  Ef | xy   | Ef | x(y)  | Ef | (x)y  | Ef | (x)(y)| | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | | x ( | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | | x  | + | | f_0  |     ()     |     ()     |     ()     |     ()     |     ()     | | 
| − | |- | + | |      |            |            |            |            |            | | 
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_1  |   (x)(y)   |   dx  dy   |   dx (dy)  |  (dx) dy   |  (dx)(dy)  | | 
| − | | (y) | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_2  |   (x) y    |   dx (dy)  |   dx  dy   |  (dx)(dy)  |  (dx) dy   | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |- | + | | f_4  |    x (y)   |  (dx) dy   |  (dx)(dy)  |   dx  dy   |   dx (dy)  | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_8  |    x  y    |  (dx)(dy)  |  (dx) dy   |   dx (dy)  |   dx  dy   | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | | (x, y) | + | o------o------------o------------o------------o------------o------------o | 
| − | | x  | + | |      |            |            |            |            |            | | 
| − | | x  | + | | f_3  |   (x)      |   dx       |   dx       |  (dx)      |  (dx)      | | 
| − | | | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_12 |    x       |  (dx)      |  (dx)      |   dx       |   dx       | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | | (x | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_6  |   (x, y)   |  (dx, dy)  | ((dx, dy)) | ((dx, dy)) |  (dx, dy)  | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |- | + | | f_9  |  ((x, y))  | ((dx, dy)) |  (dx, dy)  |  (dx, dy)  | ((dx, dy)) | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | |  | + | |      |            |            |            |            |            | | 
| − | | x | + | | f_5  |      (y)   |       dy   |      (dy)  |       dy   |      (dy)  | | 
| − | | x  | + | |      |            |            |            |            |            | | 
| − | | x  | + | | f_10 |       y    |      (dy)  |       dy   |      (dy)  |       dy   | | 
| − | |- | + | |      |            |            |            |            |            | | 
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_7  |   (x  y)   | ((dx)(dy)) | ((dx) dy)  |  (dx (dy)) |  (dx  dy)  | | 
| − | | (( | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_11 |   (x (y))  | ((dx) dy)  | ((dx)(dy)) |  (dx  dy)  |  (dx (dy)) | | 
| − | | x  | + | |      |            |            |            |            |            | | 
| − | | | + | | f_13 |  ((x) y)   |  (dx (dy)) |  (dx  dy)  | ((dx)(dy)) | ((dx) dy)  | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_14 |  ((x)(y))  |  (dx  dy)  |  (dx (dy)) | ((dx) dy)  | ((dx)(dy)) | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | | y | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | | y | + | | f_15 |    (())    |    (())    |    (())    |    (())    |    (())    | | 
| − | |- | + | |      |            |            |            |            |            | | 
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | |  | + | </pre> | 
| − | |  | ||
| − | | (x ( | ||
| − | |  | ||
| − | | x  | ||
| − | |- | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | | x | ||
| − | |  | ||
| − | | x | ||
| − | |- | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | | (( | ||
| − | |  | ||
| − | |  | ||
| − | |- | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | | (( | ||
| − | | x  | ||
| − | | x  | ||
| − | |- | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | | (( | ||
| − | |  | ||
| − | |||
| − | < | + | <pre> | 
| − | + | Table A6.  Df Expanded Over Ordinary Features {x, y} | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | + | |      |            |            |            |            |            | | |
| − | + | |      |     f      |  Df | xy   | Df | x(y)  | Df | (x)y  | Df | (x)(y)| | |
| − | + | |      |            |            |            |            |            | | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_0  |     ()     |     ()     |     ()     |     ()     |     ()     | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | | | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_1  |   (x)(y)   |   dx  dy   |   dx (dy)  |  (dx) dy   | ((dx)(dy)) | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_2  |   (x) y    |   dx (dy)  |   dx  dy   | ((dx)(dy)) |  (dx) dy   | | 
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_4  |    x (y)   |  (dx) dy   | ((dx)(dy)) |   dx  dy   |   dx (dy)  | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_8  |    x  y    | ((dx)(dy)) |  (dx) dy   |   dx (dy)  |   dx  dy   | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_3  |   (x)      |   dx       |   dx       |   dx       |   dx       | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_12 |    x       |   dx       |   dx       |   dx       |   dx       | | |
| − | + | |      |            |            |            |            |            | | |
| − | |  | + | o------o------------o------------o------------o------------o------------o | 
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_6  |   (x, y)   |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  | | |
| − | |  | + | |      |            |            |            |            |            | | 
| − | |  | + | | f_9  |  ((x, y))  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  | | 
| − | |  | + | |      |            |            |            |            |            | | 
| − | | | + | o------o------------o------------o------------o------------o------------o | 
| − | | | + | |      |            |            |            |            |            | | 
| − | + | | f_5  |      (y)   |       dy   |       dy   |       dy   |       dy   | | |
| − | | | + | |      |            |            |            |            |            | | 
| − | + | | f_10 |       y    |       dy   |       dy   |       dy   |       dy   | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_7  |   (x  y)   | ((dx)(dy)) |  (dx) dy   |   dx (dy)  |   dx  dy   | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_11 |   (x (y))  |  (dx) dy   | ((dx)(dy)) |   dx  dy   |   dx (dy)  | | |
| − | | | + | |      |            |            |            |            |            | | 
| − | + | | f_13 |  ((x) y)   |   dx (dy)  |   dx  dy   | ((dx)(dy)) |  (dx) dy   | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | | f_14 |  ((x)(y))  |   dx  dy   |   dx (dy)  |  (dx) dy   | ((dx)(dy)) | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | | | + | |      |            |            |            |            |            | | 
| − | + | | f_15 |    (())    |     ()     |     ()     |     ()     |     ()     | | |
| − | + | |      |            |            |            |            |            | | |
| − | + | o------o------------o------------o------------o------------o------------o | |
| − | + | </pre> | |
| − | + | ||
| − | + | <pre> | |
| − | + | o----------o----------o----------o----------o----------o | |
| − | + | |          %          |          |          |          | | |
| − | + | |    ·     %   T_00   |   T_01   |   T_10   |   T_11   | | |
| − | | | + | |          %          |          |          |          | | 
| − | + | o==========o==========o==========o==========o==========o | |
| − | + | |          %          |          |          |          | | |
| − | + | |   T_00   %   T_00   |   T_01   |   T_10   |   T_11   | | |
| − | + | |          %          |          |          |          | | |
| − | + | o----------o----------o----------o----------o----------o | |
| − | + | |          %          |          |          |          | | |
| − | + | |   T_01   %   T_01   |   T_00   |   T_11   |   T_10   | | |
| − | + | |          %          |          |          |          | | |
| − | + | o----------o----------o----------o----------o----------o | |
| − | + | |          %          |          |          |          | | |
| − | + | |   T_10   %   T_10   |   T_11   |   T_00   |   T_01   | | |
| − | + | |          %          |          |          |          | | |
| − | + | o----------o----------o----------o----------o----------o | |
| − | + | |          %          |          |          |          | | |
| − | + | |   T_11   %   T_11   |   T_10   |   T_01   |   T_00   | | |
| − | | | + | |          %          |          |          |          | | 
| − | + | o----------o----------o----------o----------o----------o | |
| − | + | </pre> | |
| − | + | ||
| − | + | <pre> | |
| − | + | o---------o---------o---------o---------o---------o | |
| + | |         %         |         |         |         | | ||
| + | |    ·    %    e    |    f    |    g    |    h    | | ||
| + | |         %         |         |         |         | | ||
| + | o=========o=========o=========o=========o=========o | ||
| + | |         %         |         |         |         | | ||
| + | |    e    %    e    |    f    |    g    |    h    | | ||
| + | |         %         |         |         |         | | ||
| + | o---------o---------o---------o---------o---------o | ||
| + | |         %         |         |         |         | | ||
| + | |    f    %    f    |    e    |    h    |    g    | | ||
| + | |         %         |         |         |         | | ||
| + | o---------o---------o---------o---------o---------o | ||
| + | |         %         |         |         |         | | ||
| + | |    g    %    g    |    h    |    e    |    f    | | ||
| + | |         %         |         |         |         | | ||
| + | o---------o---------o---------o---------o---------o | ||
| + | |         %         |         |         |         | | ||
| + | |    h    %    h    |    g    |    f    |    e    | | ||
| + | |         %         |         |         |         | | ||
| + | o---------o---------o---------o---------o---------o | ||
| + | </pre> | ||
| + | |||
| + | <pre> | ||
| + | Permutation Substitutions in Sym {A, B, C} | ||
| + | o---------o---------o---------o---------o---------o---------o | ||
| + | |         |         |         |         |         |         | | ||
| + | |    e    |    f    |    g    |    h    |    i    |    j    | | ||
| + | |         |         |         |         |         |         | | ||
| + | o=========o=========o=========o=========o=========o=========o | ||
| + | |         |         |         |         |         |         | | ||
| + | |  A B C  |  A B C  |  A B C  |  A B C  |  A B C  |  A B C  | | ||
| + | |         |         |         |         |         |         | | ||
| + | |  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |  | | |  | | ||
| + | |  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |  v v v  | | ||
| + | |         |         |         |         |         |         | | ||
| + | |  A B C  |  C A B  |  B C A  |  A C B  |  C B A  |  B A C  | | ||
| + | |         |         |         |         |         |         | | ||
| + | o---------o---------o---------o---------o---------o---------o | ||
| + | </pre> | ||
| + | |||
| + | <pre> | ||
| + | Matrix Representations of Permutations in Sym(3) | ||
| + | o---------o---------o---------o---------o---------o---------o | ||
| + | |         |         |         |         |         |         | | ||
| + | |    e    |    f    |    g    |    h    |    i    |    j    | | ||
| + | |         |         |         |         |         |         | | ||
| + | o=========o=========o=========o=========o=========o=========o | ||
| + | |         |         |         |         |         |         | | ||
| + | |  1 0 0  |  0 0 1  |  0 1 0  |  1 0 0  |  0 0 1  |  0 1 0  | | ||
| + | |  0 1 0  |  1 0 0  |  0 0 1  |  0 0 1  |  0 1 0  |  1 0 0  | | ||
| + | |  0 0 1  |  0 1 0  |  1 0 0  |  0 1 0  |  1 0 0  |  0 0 1  | | ||
| + | |         |         |         |         |         |         | | ||
| + | o---------o---------o---------o---------o---------o---------o | ||
| + | </pre> | ||
| + | |||
| + | <pre> | ||
| + | Symmetric Group S_3 | ||
| + | o-------------------------------------------------o | ||
| + | |                                                 | | ||
| + | |                        ^                        | | ||
| + | |                     e / \ e                     | | ||
| + | |                      /   \                      | | ||
| + | |                     /  e  \                     | | ||
| + | |                  f / \   / \ f                  | | ||
| + | |                   /   \ /   \                   | | ||
| + | |                  /  f  \  f  \                  | | ||
| + | |               g / \   / \   / \ g               | | ||
| + | |                /   \ /   \ /   \                | | ||
| + | |               /  g  \  g  \  g  \               | | ||
| + | |            h / \   / \   / \   / \ h            | | ||
| + | |             /   \ /   \ /   \ /   \             | | ||
| + | |            /  h  \  e  \  e  \  h  \            | | ||
| + | |         i / \   / \   / \   / \   / \ i         | | ||
| + | |          /   \ /   \ /   \ /   \ /   \          | | ||
| + | |         /  i  \  i  \  f  \  j  \  i  \         | | ||
| + | |      j / \   / \   / \   / \   / \   / \ j      | | ||
| + | |       /   \ /   \ /   \ /   \ /   \ /   \       | | ||
| + | |      (  j  \  j  \  j  \  i  \  h  \  j  )      | | ||
| + | |       \   / \   / \   / \   / \   / \   /       | | ||
| + | |        \ /   \ /   \ /   \ /   \ /   \ /        | | ||
| + | |         \  h  \  h  \  e  \  j  \  i  /         | | ||
| + | |          \   / \   / \   / \   / \   /          | | ||
| + | |           \ /   \ /   \ /   \ /   \ /           | | ||
| + | |            \  i  \  g  \  f  \  h  /            | | ||
| + | |             \   / \   / \   / \   /             | | ||
| + | |              \ /   \ /   \ /   \ /              | | ||
| + | |               \  f  \  e  \  g  /               | | ||
| + | |                \   / \   / \   /                | | ||
| + | |                 \ /   \ /   \ /                 | | ||
| + | |                  \  g  \  f  /                  | | ||
| + | |                   \   / \   /                   | | ||
| + | |                    \ /   \ /                    | | ||
| + | |                     \  e  /                     | | ||
| + | |                      \   /                      | | ||
| + | |                       \ /                       | | ||
| + | |                        v                        | | ||
| + | |                                                 | | ||
| + | o-------------------------------------------------o | ||
| + | </pre> | ||
| + | |||
| + | ===Wiki Tables : New Versions=== | ||
| + | |||
| + | ====Propositional Forms on Two Variables==== | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table A1.  Propositional Forms on Two Variables''' | ||
| + | |- style="background:#f0f0ff" | ||
| + | ! width="15%" | L<sub>1</sub> | ||
| + | ! width="15%" | L<sub>2</sub> | ||
| + | ! width="15%" | L<sub>3</sub> | ||
| + | ! width="15%" | L<sub>4</sub> | ||
| + | ! width="25%" | L<sub>5</sub> | ||
| + | ! width="15%" | L<sub>6</sub> | ||
| + | |- style="background:#f0f0ff" | ||
| + | |   | ||
| + | | align="right" | x : | ||
| + | | 1 1 0 0  | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- style="background:#f0f0ff" | ||
| + | |   | ||
| + | | align="right" | y : | ||
| + | | 1 0 1 0 | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- | ||
| + | | f<sub>0</sub> | ||
| + | | f<sub>0000</sub> | ||
| + | | 0 0 0 0 | ||
| + | | ( ) | ||
| + | | false | ||
| + | | 0 | ||
| + | |- | ||
| + | | f<sub>1</sub> | ||
| + | | f<sub>0001</sub> | ||
| + | | 0 0 0 1 | ||
| + | | (x)(y) | ||
| + | | neither x nor y | ||
| + | | ¬x ∧ ¬y | ||
| |- | |- | ||
| − | | | + | | f<sub>2</sub> | 
| − | + | | f<sub>0010</sub> | |
| − | + | | 0 0 1 0 | |
| − | + | | (x) y | |
| − | + | | y and not x | |
| − | | | + | | ¬x ∧ y | 
| − | | | + | |- | 
| − | + | | f<sub>3</sub> | |
| − | | | + | | f<sub>0011</sub> | 
| − | + | | 0 0 1 1 | |
| − | + | | (x) | |
| − | + | | not x | |
| − | + | | ¬x | |
| − | + | |- | |
| − | + | | f<sub>4</sub> | |
| − | + | | f<sub>0100</sub> | |
| − | + | | 0 1 0 0 | |
| − | | | + | | x (y) | 
| − | + | | x and not y | |
| − | + | | x ∧ ¬y | |
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | | | ||
| − | |||
| − | |||
| − | < | ||
| − | < | ||
| − | | | ||
| − | | | ||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| − | | | + | | f<sub>5</sub> | 
| − | + | | f<sub>0101</sub> | |
| − | + | | 0 1 0 1 | |
| − | + | | (y) | |
| − | + | | not y | |
| − | | | + | | ¬y | 
| − | | | + | |- | 
| − | + | | f<sub>6</sub> | |
| − | | | + | | f<sub>0110</sub> | 
| − | + | | 0 1 1 0 | |
| − | + | | (x, y) | |
| − | + | | x not equal to y | |
| − | + | | x ≠ y | |
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| − | | | + | | f<sub>7</sub> | 
| − | + | | f<sub>0111</sub> | |
| − | + | | 0 1 1 1 | |
| − | + | | (x y) | |
| − | + | | not both x and y | |
| − | | | + | | ¬x ∨ ¬y | 
| − | | | + | |- | 
| − | + | | f<sub>8</sub> | |
| − | | | + | | f<sub>1000</sub> | 
| − | + | | 1 0 0 0 | |
| − | + | | x y | |
| − | + | | x and y | |
| − | + | | x ∧ y | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| − | | | + | | f<sub>9</sub> | 
| − | + | | f<sub>1001</sub> | |
| − | + | | 1 0 0 1 | |
| − | + | | ((x, y)) | |
| − | + | | x equal to y | |
| − | + | | x = y | |
| − | + | |- | |
| − | | | + | | f<sub>10</sub> | 
| − | + | | f<sub>1010</sub> | |
| − | + | | 1 0 1 0 | |
| − | + | | y | |
| − | + | | y | |
| − | + | | y | |
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | | | ||
| − | |||
| − | |||
| − | < | ||
| − | < | ||
| − | |||
| − | |||
| − | | | ||
| − | | | ||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| − | | f<sub>15</sub> | + | | f<sub>11</sub> | 
| − | | f<sub>1111</sub> | + | | f<sub>1011</sub> | 
| − | | 1 1 1 1 | + | | 1 0 1 1 | 
| + | | (x (y)) | ||
| + | | not x without y | ||
| + | | x ⇒ y | ||
| + | |- | ||
| + | | f<sub>12</sub> | ||
| + | | f<sub>1100</sub> | ||
| + | | 1 1 0 0 | ||
| + | | x | ||
| + | | x | ||
| + | | x | ||
| + | |- | ||
| + | | f<sub>13</sub> | ||
| + | | f<sub>1101</sub> | ||
| + | | 1 1 0 1 | ||
| + | | ((x) y) | ||
| + | | not y without x | ||
| + | | x ⇐ y | ||
| + | |- | ||
| + | | f<sub>14</sub> | ||
| + | | f<sub>1110</sub> | ||
| + | | 1 1 1 0 | ||
| + | | ((x)(y)) | ||
| + | | x or y | ||
| + | | x ∨ y | ||
| + | |- | ||
| + | | f<sub>15</sub> | ||
| + | | f<sub>1111</sub> | ||
| + | | 1 1 1 1 | ||
| | (( )) | | (( )) | ||
| − | | true | + | | true || 1 | 
| − | | 1 | ||
| |} | |} | ||
| <br> | <br> | ||
| − | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:90%" | |
| − | + | |+ '''Table A2.  Propositional Forms on Two Variables''' | |
| − | + | |- style="background:#f0f0ff" | |
| − | + | ! width="15%" | L<sub>1</sub> | |
| − | {| align="center" border="1" cellpadding=" | + | ! width="15%" | L<sub>2</sub> | 
| − | |+ '''Table  | + | ! width="15%" | L<sub>3</sub> | 
| + | ! width="15%" | L<sub>4</sub> | ||
| + | ! width="25%" | L<sub>5</sub> | ||
| + | ! width="15%" | L<sub>6</sub> | ||
| |- style="background:#f0f0ff" | |- style="background:#f0f0ff" | ||
| |   | |   | ||
| − | | align="right" |  | + | | align="right" | x : | 
| | 1 1 0 0   | | 1 1 0 0   | ||
| |   | |   | ||
| Line 742: | Line 1,367: | ||
| |- style="background:#f0f0ff" | |- style="background:#f0f0ff" | ||
| |   | |   | ||
| − | | align="right" |  | + | | align="right" | y : | 
| | 1 0 1 0 | | 1 0 1 0 | ||
| |   | |   | ||
| Line 749: | Line 1,374: | ||
| |- | |- | ||
| | f<sub>0</sub> | | f<sub>0</sub> | ||
| − | |  | + | | f<sub>0000</sub> | 
| | 0 0 0 0 | | 0 0 0 0 | ||
| | ( ) | | ( ) | ||
| − | |  | + | | false | 
| | 0 | | 0 | ||
| |- | |- | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>f<sub>1</sub></p> | |
| − | + | <p>f<sub>2</sub></p> | |
| − | + | <p>f<sub>4</sub></p> | |
| − | + | <p>f<sub>8</sub></p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>f<sub>0001</sub></p> | |
| − | + | <p>f<sub>0010</sub></p> | |
| − | + | <p>f<sub>0100</sub></p> | |
| − | + | <p>f<sub>1000</sub></p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | 0 0 0 1< | + | <p>0 0 0 1</p> | 
| − | 0 0 1 0< | + | <p>0 0 1 0</p> | 
| − | 0 1 0 0< | + | <p>0 1 0 0</p> | 
| − | 1 0 0 0 | + | <p>1 0 0 0</p> | 
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | ( | + | <p>(x)(y)</p> | 
| − | ( | + | <p>(x) y </p> | 
| − | + | <p> x (y)</p> | |
| − | + | <p> x  y </p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>neither x nor y</p> | |
| − | + | <p>not x but y</p> | |
| − | + | <p>x but not y</p> | |
| − | + | <p>x and y</p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | ¬ | + | <p>¬x ∧ ¬y</p> | 
| − | ¬ | + | <p>¬x ∧ y</p> | 
| − | + | <p>x ∧ ¬y</p> | |
| − | + | <p>x ∧ y</p> | |
| |} | |} | ||
| |- | |- | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | f<sub> | + | <p>f<sub>3</sub></p> | 
| − | f<sub> | + | <p>f<sub>12</sub></p> | 
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>f<sub>0011</sub></p> | |
| − | + | <p>f<sub>1100</sub></p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | 0 0 1 1< | + | <p>0 0 1 1</p> | 
| − | 1 1 0 0 | + | <p>1 1 0 0</p> | 
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | ( | + | <p>(x)</p> | 
| − | + | <p> x </p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>not x</p> | |
| − | + | <p>x</p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | ¬ | + | <p>¬x</p> | 
| − | + | <p>x</p> | |
| |} | |} | ||
| |- | |- | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>f<sub>6</sub></p> | |
| − | + | <p>f<sub>9</sub></p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>f<sub>0110</sub></p> | |
| − | + | <p>f<sub>1001</sub></p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | 0 1 1 0< | + | <p>0 1 1 0</p> | 
| − | 1 0 0 1 | + | <p>1 0 0 1</p> | 
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | ( | + | <p> (x, y) </p> | 
| − | (( | + | <p>((x, y))</p> | 
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>x not equal to y</p> | |
| − | + | <p>x equal to y</p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>x ≠ y</p> | |
| − | + | <p>x = y</p> | |
| |} | |} | ||
| |- | |- | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>f<sub>5</sub></p> | |
| − | + | <p>f<sub>10</sub></p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>f<sub>0101</sub></p> | |
| − | + | <p>f<sub>1010</sub></p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | 0 1 0 1< | + | <p>0 1 0 1</p> | 
| − | 1 0 1 0 | + | <p>1 0 1 0</p> | 
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | ( | + | <p>(y)</p> | 
| − | + | <p> y </p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>not y</p> | |
| − | + | <p>y</p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | ¬ | + | <p>¬y</p> | 
| − | + | <p>y</p> | |
| |} | |} | ||
| |- | |- | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>f<sub>7</sub></p> | |
| − | + | <p>f<sub>11</sub></p> | |
| − | + | <p>f<sub>13</sub></p> | |
| − | + | <p>f<sub>14</sub></p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>f<sub>0111</sub></p> | |
| − | + | <p>f<sub>1011</sub></p> | |
| − | + | <p>f<sub>1101</sub></p> | |
| − | + | <p>f<sub>1110</sub></p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | 0 1 1 1< | + | <p>0 1 1 1</p> | 
| − | 1 0 1 1< | + | <p>1 0 1 1</p> | 
| − | 1 1 0 1< | + | <p>1 1 0 1</p> | 
| − | 1 1 1 0 | + | <p>1 1 1 0</p> | 
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | ( | + | <p>(x y)</p> | 
| − | ( | + | <p>(x (y))</p> | 
| − | (( | + | <p>((x) y)</p> | 
| − | (( | + | <p>((x)(y))</p> | 
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | + | <p>not both x and y</p> | |
| − | + | <p>not x without y</p> | |
| − | + | <p>not y without x</p> | |
| − | + | <p>x or y</p> | |
| |} | |} | ||
| | | | | ||
| − | {| | + | {| align="center" | 
| | | | | ||
| − | ¬ | + | <p>¬x ∨ ¬y</p> | 
| − | + | <p>x ⇒ y</p> | |
| − | + | <p>x ⇐ y</p> | |
| − | + | <p>x ∨ y</p> | |
| |} | |} | ||
| |- | |- | ||
| − | | f<sub> | + | | f<sub>15</sub> | 
| − | |  | + | | f<sub>1111</sub> | 
| | 1 1 1 1 | | 1 1 1 1 | ||
| | (( )) | | (( )) | ||
| − | |  | + | | true | 
| | 1 | | 1 | ||
| |} | |} | ||
| Line 974: | Line 1,599: | ||
| <br> | <br> | ||
| − | === | + | ====Differential Propositions==== | 
| − | |||
| − | |||
| <br> | <br> | ||
| − | {| align="center" border="1" cellpadding=" | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:90%" | 
| − | |+ '''Table  | + | |+ '''Table 14.  Differential Propositions''' | 
| − | |- style="background: | + | |- style="background:#f0f0ff" | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |   | |   | ||
| − | | align="right" |  | + | | align="right" | A : | 
| | 1 1 0 0   | | 1 1 0 0   | ||
| |   | |   | ||
| |   | |   | ||
| |   | |   | ||
| − | |- style="background: | + | |- style="background:#f0f0ff" | 
| |   | |   | ||
| − | | align="right" |  | + | | align="right" | dA : | 
| | 1 0 1 0 | | 1 0 1 0 | ||
| |   | |   | ||
| Line 1,004: | Line 1,620: | ||
| |   | |   | ||
| |- | |- | ||
| − | | f<sub>0</sub> | | + | | f<sub>0</sub> | 
| + | | g<sub>0</sub> | ||
| + | | 0 0 0 0 | ||
| + | | ( ) | ||
| + | | False | ||
| + | | 0 | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | {| | |
| − | |  | + | | | 
| − | | | + |  <br> | 
| − | + |  <br> | |
| − | + |  <br> | |
| − | + |   | |
| − | + | |} | |
| − | + | | | |
| − | + | {| | |
| − | + | | | |
| − | + | g<sub>1</sub><br> | |
| − | + | g<sub>2</sub><br> | |
| − | + | g<sub>4</sub><br> | |
| − | + | g<sub>8</sub> | |
| − | |||
| − | |  | ||
| − | | | ||
| − | |  | ||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |} | |} | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| {| | {| | ||
| | | | | ||
| − | + | 0 0 0 1<br> | |
| − | + | 0 0 1 0<br> | |
| − | + | 0 1 0 0<br> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | 0 0 0 1<br> | ||
| − | 0 0 1 0<br> | ||
| − | 0 1 0 0<br> | ||
| 1 0 0 0 | 1 0 0 0 | ||
| |} | |} | ||
| Line 1,271: | Line 1,831: | ||
| | | | | ||
| ¬A ∨ ¬dA<br> | ¬A ∨ ¬dA<br> | ||
| − | A & | + | A ⇒ dA<br> | 
| − | A & | + | A ⇐ dA<br> | 
| A ∨ dA | A ∨ dA | ||
| |} | |} | ||
| Line 1,286: | Line 1,846: | ||
| <br> | <br> | ||
| − | ===Wiki  | + | ===Wiki Tables : Old Versions=== | 
| + | |||
| + | ====Propositional Forms on Two Variables==== | ||
| <br> | <br> | ||
| − | {| align="center" border="1" cellpadding=" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | 
| − | |+  | + | |+ '''Table 1.  Propositional Forms on Two Variables''' | 
| − | |- style="background: | + | |- style="background:paleturquoise" | 
| − | + | ! width="15%" | L<sub>1</sub> | |
| − | + | ! width="15%" | L<sub>2</sub> | |
| − | + | ! width="15%" | L<sub>3</sub> | |
| − | + | ! width="15%" | L<sub>4</sub> | |
| − | + | ! width="25%" | L<sub>5</sub> | |
| − | + | ! width="15%" | L<sub>6</sub> | |
| − | + | |- style="background:paleturquoise" | |
| − | + | |   | |
| − | + | | align="right" | x : | |
| − | + | | 1 1 0 0  | |
| − | |||
| − | < | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |- style="background: | ||
| |   | |   | ||
| − | |||
| − | |||
| |   | |   | ||
| |   | |   | ||
| + | |- style="background:paleturquoise" | ||
| |   | |   | ||
| − | + | | align="right" | y : | |
| − | + | | 1 0 1 0 | |
| − | | align="right" |  | ||
| − | |  | ||
| |   | |   | ||
| |   | |   | ||
| |   | |   | ||
| |- | |- | ||
| − | | < | + | | f<sub>0</sub> || f<sub>0000</sub> || 0 0 0 0 || ( ) || false || 0 | 
| − | | < | + | |- | 
| − | |  | + | | f<sub>1</sub> || f<sub>0001</sub> || 0 0 0 1 || (x)(y) || neither x nor y || ¬x ∧ ¬y | 
| − | |  | ||
| − | | < | ||
| − | | < | ||
| |- | |- | ||
| − | | < | + | | f<sub>2</sub> || f<sub>0010</sub> || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>3</sub> || f<sub>0011</sub> || 0 0 1 1 || (x) || not x || ¬x | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>4</sub> || f<sub>0100</sub> || 0 1 0 0 || x (y) || x and not y || x ∧ ¬y | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>5</sub> || f<sub>0101</sub> || 0 1 0 1 || (y) || not y || ¬y | 
| − | | < | + | |- | 
| − | |  | + | | f<sub>6</sub> || f<sub>0110</sub> || 0 1 1 0 || (x, y) || x not equal to y || x ≠ y | 
| − | |  | ||
| − | | < | ||
| − | | < | ||
| |- | |- | ||
| − | | < | + | | f<sub>7</sub> || f<sub>0111</sub> || 0 1 1 1 || (x y) || not both x and y || ¬x ∨ ¬y | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>8</sub> || f<sub>1000</sub> || 1 0 0 0 || x y || x and y || x ∧ y | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>9</sub> || f<sub>1001</sub> || 1 0 0 1 || ((x, y)) || x equal to y || x = y | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>10</sub> || f<sub>1010</sub> || 1 0 1 0 || y || y || y | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>11</sub> || f<sub>1011</sub> || 1 0 1 1 || (x (y)) || not x without y || x → y | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>12</sub> || f<sub>1100</sub> || 1 1 0 0 || x || x || x | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>13</sub> || f<sub>1101</sub> || 1 1 0 1 || ((x) y) || not y without x || x ← y | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>14</sub> || f<sub>1110</sub> || 1 1 1 0 || ((x)(y)) || x or y  || x ∨ y | 
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| |- | |- | ||
| − | | < | + | | f<sub>15</sub> || f<sub>1111</sub> || 1 1 1 1 || (( )) || true || 1 | 
| − | |  | ||
| − | | < | ||
| − | |  | ||
| − | |  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |  | ||
| − | |  | ||
| − | |  | ||
| − | | | ||
| − | |  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |} | |} | ||
| <br> | <br> | ||
| − | {| align="center" border="1" cellpadding=" | + | ====Differential Propositions==== | 
| − | |+  | + | |
| − | |- style="background: | + | <br> | 
| − | |  | + | |
| − | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" | |
| − | + | |+ '''Table 14.  Differential Propositions''' | |
| − | |  | + | |- style="background:ghostwhite" | 
| − | + | |   | |
| − | + | | align="right" | A : | |
| − | |  | + | | 1 1 0 0  | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |   | |   | ||
| − | |||
| − | |||
| |   | |   | ||
| |   | |   | ||
| + | |- style="background:ghostwhite" | ||
| |   | |   | ||
| − | + | | align="right" | dA : | |
| − | + | | 1 0 1 0 | |
| − | | align="right" |  | ||
| − | |  | ||
| |   | |   | ||
| |   | |   | ||
| |   | |   | ||
| + | |- | ||
| + | | f<sub>0</sub> | ||
| + | | g<sub>0</sub> | ||
| + | | 0 0 0 0 | ||
| + | | ( ) | ||
| + | | False | ||
| + | | 0 | ||
| |- | |- | ||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + |  <br> | 
| − | + |  <br> | |
| − | + |  <br> | |
| − | + |   | |
| − | + | |} | |
| − | + | | | |
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | g<sub>1</sub><br> | 
| − | + | g<sub>2</sub><br> | |
| − | + | g<sub>4</sub><br> | |
| − | + | g<sub>8</sub> | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | + | | | |
| − | + | 0 0 0 1<br> | |
| − | + | 0 0 1 0<br> | |
| − | + | 0 1 0 0<br> | |
| − | + | 1 0 0 0 | |
| − | + | |} | |
| − | + | | | |
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | (A)(dA)<br> | 
| − | + | (A) dA <br> | |
| − | + | A (dA)<br> | |
| − | + | A dA | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | + | | | |
| − | + | Neither A nor dA<br> | |
| − | + | Not A but dA<br> | |
| − | + | A but not dA<br> | |
| − | + | A and dA | |
| − | + | |} | |
| − | + | | | |
| − | + | {| | |
| − | + | | | |
| − | + | ¬A ∧ ¬dA<br> | |
| − | + | ¬A ∧ dA<br> | |
| − | + | A ∧ ¬dA<br> | |
| − | + | A ∧ dA | |
| − | + | |} | |
| − | |||
| − | |||
| |- | |- | ||
| | | | | ||
| − | + | {| | |
| − | + | | | |
| − | + | f<sub>1</sub><br> | |
| − | + | f<sub>2</sub> | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | + | | | |
| − | + | g<sub>3</sub><br> | |
| − | + | g<sub>12</sub> | |
| − | + | |} | |
| − | + | | | |
| − | + | {| | |
| − | + | | | |
| − | + | 0 0 1 1<br> | |
| − | + | 1 1 0 0 | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | (A)<br> | 
| − | + | A | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | Not A<br> | 
| − | + | A | |
| − | + | |} | |
| − | + | | | |
| − | + | {| | |
| − | + | | | |
| − | + | ¬A<br> | |
| − | + | A | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |} | |} | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| | | | | ||
| − | + | {| | |
| − | + | | | |
| − | + |  <br> | |
| − | + |   | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | g<sub>6</sub><br> | 
| − | + | g<sub>9</sub> | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | 0 1 1 0<br> | 
| − | + | 1 0 0 1 | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| | | | | ||
| − | < | + | (A, dA)<br> | 
| − | + | ((A, dA)) | |
| − | + | |} | |
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | A not equal to dA<br> | 
| − | + | A equal to dA | |
| − | + | |} | |
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | A ≠ dA<br> | 
| − | + | A = dA | |
| − | + | |} | |
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + |  <br> | 
| − | + |   | |
| − | + | |} | |
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | g<sub>5</sub><br> | 
| − | + | g<sub>10</sub> | |
| − | + | |} | |
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | 0 1 0 1<br> | 
| − | + | 1 0 1 0 | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | (dA)<br> | 
| − | + | dA | |
| − | + | |} | |
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | Not dA<br> | 
| − | + | dA | |
| − | + | |} | |
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | ¬dA<br> | 
| − | + | dA | |
| − | + | |} | |
| − | |||
| − | |||
| |- | |- | ||
| | | | | ||
| − | + | {| | |
| − | + | | | |
| − | + |  <br> | |
| − | + |  <br> | |
| − | + |  <br> | |
| − | + |   | |
| − | + | |} | |
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | g<sub>7</sub><br> | 
| − | + | g<sub>11</sub><br> | |
| − | + | g<sub>13</sub><br> | |
| − | + | g<sub>14</sub> | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | {| | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | < | + | 0 1 1 1<br> | 
| − | + | 1 0 1 1<br> | |
| − | + | 1 1 0 1<br> | |
| − | + | 1 1 1 0 | |
| − | + | |} | |
| − | + | | | |
| − | + | {| | |
| − | + | | | |
| − | + | (A dA)<br> | |
| + | (A (dA))<br> | ||
| + | ((A) dA)<br> | ||
| + | ((A)(dA)) | ||
| + | |} | ||
| + | | | ||
| + | {| | ||
| | | | | ||
| − | < | + | Not both A and dA<br> | 
| − | + | Not A without dA<br> | |
| − | + | Not dA without A<br> | |
| − | + | A or dA | |
| − | + | |} | |
| − | + | | | |
| − | + | {| | |
| − | + | | | |
| − | + | ¬A ∨ ¬dA<br> | |
| − | + | A → dA<br> | |
| − | |  | + | A ← dA<br> | 
| − | |  | + | A ∨ dA | 
| − | | < | ||
| − | |||
| − | |||
| − | |||
| |} | |} | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| − | | <math> | + | | f<sub>3</sub> | 
| − | | <math> | + | | g<sub>15</sub> | 
| − | | <math> | + | | 1 1 1 1 | 
| − | | <math> | + | | (( )) | 
| − | | <math> | + | | True | 
| − | + | | 1 | |
| − | | | + | |} | 
| − | + | ||
| − | <math>\ | + | <br> | 
| − | + | ||
| − | \\ | + | ===Wiki TeX Tables : PQ=== | 
| − | + | ||
| − | \\ | + | <br> | 
| − | + | ||
| − | \\ | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | 
| − | + | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> | |
| − | \ | + | |- style="background:#f0f0ff" | 
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_1</math></p> | ||
| + | <p><math>\text{Decimal}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_2</math></p> | ||
| + | <p><math>\text{Binary}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_3</math></p> | ||
| + | <p><math>\text{Vector}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_4</math></p> | ||
| + | <p><math>\text{Cactus}</math></p> | ||
| + | | width="25%" | | ||
| + | <p><math>\mathcal{L}_5</math></p> | ||
| + | <p><math>\text{English}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_6</math></p> | ||
| + | <p><math>\text{Ordinary}</math></p> | ||
| + | |- style="background:#f0f0ff" | ||
| + | |   | ||
| + | | align="right" | <math>p\colon\!</math> | ||
| + | | <math>1~1~0~0\!</math> | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- style="background:#f0f0ff" | ||
| + | |   | ||
| + | | align="right" | <math>q\colon\!</math> | ||
| + | | <math>1~0~1~0\!</math> | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_0 | |
| + | \\[4pt] | ||
| + | f_1 | ||
| \\[4pt] | \\[4pt] | ||
| − | + | f_2 | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_3 | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_4 | |
| − | |||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | f_5 | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_6 | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_7 | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_{0000} | |
| + | \\[4pt] | ||
| + | f_{0001} | ||
| + | \\[4pt] | ||
| + | f_{0010} | ||
| + | \\[4pt] | ||
| + | f_{0011} | ||
| + | \\[4pt] | ||
| + | f_{0100} | ||
| \\[4pt] | \\[4pt] | ||
| − | + | f_{0101} | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_{0110} | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_{0111} | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | 0~0~0~0 | |
| + | \\[4pt] | ||
| + | 0~0~0~1 | ||
| + | \\[4pt] | ||
| + | 0~0~1~0 | ||
| + | \\[4pt] | ||
| + | 0~0~1~1 | ||
| + | \\[4pt] | ||
| + | 0~1~0~0 | ||
| \\[4pt] | \\[4pt] | ||
| − | + | 0~1~0~1 | |
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | 0~1~1~0 | 
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | 0~1~1~1 | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ( | + | (~) | 
| + | \\[4pt] | ||
| + | (p)(q) | ||
| + | \\[4pt] | ||
| + | (p)~q~ | ||
| + | \\[4pt] | ||
| + | (p)~~~ | ||
| + | \\[4pt] | ||
| + | ~p~(q) | ||
| \\[4pt] | \\[4pt] | ||
| − | ( | + | ~~~(q) | 
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | (p,~q) | 
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | (p~~q) | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| − | |||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | \text{false} | |
| \\[4pt] | \\[4pt] | ||
| − | + | \text{neither}~ p ~\text{nor}~ q | |
| − | \ | ||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | q ~\text{without}~ p | 
| + | \\[4pt] | ||
| + | \text{not}~ p | ||
| + | \\[4pt] | ||
| + | p ~\text{without}~ q | ||
| + | \\[4pt] | ||
| + | \text{not}~ q | ||
| + | \\[4pt] | ||
| + | p ~\text{not equal to}~ q | ||
| + | \\[4pt] | ||
| + | \text{not both}~ p ~\text{and}~ q | ||
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | 0 | |
| + | \\[4pt] | ||
| + | \lnot p \land \lnot q | ||
| + | \\[4pt] | ||
| + | \lnot p \land q | ||
| + | \\[4pt] | ||
| + | \lnot p | ||
| \\[4pt] | \\[4pt] | ||
| − | + | p \land \lnot q | |
| − | \ | ||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | \lnot q | |
| − | \ | ||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | p \ne q | |
| − | \ | ||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | \lnot p \lor \lnot q | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| |- | |- | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_8 | |
| \\[4pt] | \\[4pt] | ||
| f_9 | f_9 | ||
| − | |||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | f_{10} | |
| − | \ | + | \\[4pt] | 
| − | + | f_{11} | |
| − | + | \\[4pt] | |
| − | + | f_{12} | |
| + | \\[4pt] | ||
| + | f_{13} | ||
| + | \\[4pt] | ||
| + | f_{14} | ||
| \\[4pt] | \\[4pt] | ||
| − | + | f_{15} | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_{1000} | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_{1001} | |
| + | \\[4pt] | ||
| + | f_{1010} | ||
| + | \\[4pt] | ||
| + | f_{1011} | ||
| + | \\[4pt] | ||
| + | f_{1100} | ||
| + | \\[4pt] | ||
| + | f_{1101} | ||
| + | \\[4pt] | ||
| + | f_{1110} | ||
| + | \\[4pt] | ||
| + | f_{1111} | ||
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | 1~0~0~0 | |
| + | \\[4pt] | ||
| + | 1~0~0~1 | ||
| + | \\[4pt] | ||
| + | 1~0~1~0 | ||
| + | \\[4pt] | ||
| + | 1~0~1~1 | ||
| + | \\[4pt] | ||
| + | 1~1~0~0 | ||
| + | \\[4pt] | ||
| + | 1~1~0~1 | ||
| + | \\[4pt] | ||
| + | 1~1~1~0 | ||
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | 1~1~1~1 | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ~( | + | ~~p~~q~~ | 
| + | \\[4pt] | ||
| + | ((p,~q)) | ||
| + | \\[4pt] | ||
| + | ~~~~~q~~ | ||
| + | \\[4pt] | ||
| + | ~(p~(q)) | ||
| + | \\[4pt] | ||
| + | ~~p~~~~~ | ||
| + | \\[4pt] | ||
| + | ((p)~q)~ | ||
| + | \\[4pt] | ||
| + | ((p)(q)) | ||
| \\[4pt] | \\[4pt] | ||
| − | (( | + | ((~)) | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| − | |||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | p ~\text{and}~ q | |
| + | \\[4pt] | ||
| + | p ~\text{equal to}~ q | ||
| + | \\[4pt] | ||
| + | q | ||
| + | \\[4pt] | ||
| + | \text{not}~ p ~\text{without}~ q | ||
| + | \\[4pt] | ||
| + | p | ||
| + | \\[4pt] | ||
| + | \text{not}~ q ~\text{without}~ p | ||
| + | \\[4pt] | ||
| + | p ~\text{or}~ q | ||
| \\[4pt] | \\[4pt] | ||
| − | + | \text{true} | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | p \land q | |
| \\[4pt] | \\[4pt] | ||
| − | + | p = q | |
| − | |||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | q | |
| − | |||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | p \Rightarrow q | |
| − | \ | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | p | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | p \Leftarrow q | |
| \\[4pt] | \\[4pt] | ||
| − | + | p \lor q | |
| \\[4pt] | \\[4pt] | ||
| − | + | 1 | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| \end{matrix}</math> | \end{matrix}</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
| + | |+ <math>\text{Table A2.}~~\text{Propositional Forms on Two Variables}</math> | ||
| + | |- style="background:#f0f0ff" | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_1</math></p> | ||
| + | <p><math>\text{Decimal}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_2</math></p> | ||
| + | <p><math>\text{Binary}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_3</math></p> | ||
| + | <p><math>\text{Vector}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_4</math></p> | ||
| + | <p><math>\text{Cactus}</math></p> | ||
| + | | width="25%" | | ||
| + | <p><math>\mathcal{L}_5</math></p> | ||
| + | <p><math>\text{English}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_6</math></p> | ||
| + | <p><math>\text{Ordinary}</math></p> | ||
| + | |- style="background:#f0f0ff" | ||
| + | |   | ||
| + | | align="right" | <math>p\colon\!</math> | ||
| + | | <math>1~1~0~0\!</math> | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- style="background:#f0f0ff" | ||
| + | |   | ||
| + | | align="right" | <math>q\colon\!</math> | ||
| + | | <math>1~0~1~0\!</math> | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- | ||
| + | | <math>f_0\!</math> | ||
| + | | <math>f_{0000}\!</math> | ||
| + | | <math>0~0~0~0</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>\text{false}\!</math> | ||
| + | | <math>0\!</math> | ||
| + | |- | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_1 | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_2 | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_4 | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_8 | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_{0001} | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_{0010} | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_{0100} | |
| \\[4pt] | \\[4pt] | ||
| − | ~( | + | f_{1000} | 
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0~0~0~1 | ||
| + | \\[4pt] | ||
| + | 0~0~1~0 | ||
| + | \\[4pt] | ||
| + | 0~1~0~0 | ||
| + | \\[4pt] | ||
| + | 1~0~0~0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (p)(q) | ||
| + | \\[4pt] | ||
| + | (p)~q~ | ||
| + | \\[4pt] | ||
| + | ~p~(q) | ||
| + | \\[4pt] | ||
| + | ~p~~q~ | ||
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ~ | + | \text{neither}~ p ~\text{nor}~ q | 
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | q ~\text{without}~ p | 
| \\[4pt] | \\[4pt] | ||
| − | + | p ~\text{without}~ q | |
| \\[4pt] | \\[4pt] | ||
| − | + | p ~\text{and}~ q | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | \lnot p \land \lnot q | |
| \\[4pt] | \\[4pt] | ||
| − | + | \lnot p \land q | |
| \\[4pt] | \\[4pt] | ||
| − | + | p \land \lnot q | |
| \\[4pt] | \\[4pt] | ||
| − | + | p \land q | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| |- | |- | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_3 | |
| + | \\[4pt] | ||
| + | f_{12} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{0011} | ||
| + | \\[4pt] | ||
| + | f_{1100} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0~0~1~1 | ||
| + | \\[4pt] | ||
| + | 1~1~0~0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (p) | ||
| \\[4pt] | \\[4pt] | ||
| − | + | ~p~ | |
| − | |||
| − | |||
| − | |||
| − | |||
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | \text{not}~ p | |
| − | \ | ||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | p | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | \lnot p | |
| \\[4pt] | \\[4pt] | ||
| − | + | p | |
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_6 | ||
| \\[4pt] | \\[4pt] | ||
| − | + | f_9 | |
| − | |||
| − | |||
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_{0110} | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_{1001} | |
| − | |||
| − | |||
| − | |||
| − | |||
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | 0~1~1~0 | |
| \\[4pt] | \\[4pt] | ||
| − | + | 1~0~0~1 | |
| − | |||
| − | ~ | ||
| − | |||
| − | |||
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ( | + | ~(p,~q)~ | 
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | ((p,~q)) | 
| − | |||
| − | |||
| \end{matrix}</math> | \end{matrix}</math> | ||
| − | |||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | p ~\text{not equal to}~ q | |
| \\[4pt] | \\[4pt] | ||
| − | + | p ~\text{equal to}~ q | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | p \ne q | |
| \\[4pt] | \\[4pt] | ||
| − | + | p = q | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| + | |- | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_5 | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_{10} | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_{0101} | |
| \\[4pt] | \\[4pt] | ||
| − | + | f_{1010} | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | 0~1~0~1 | |
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | 1~0~1~0 | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ( | + | (q) | 
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | ~q~ | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| − | |||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | \text{not}~ q | |
| \\[4pt] | \\[4pt] | ||
| − | + | q | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | \lnot q | |
| \\[4pt] | \\[4pt] | ||
| − | + | q | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| + | |- | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_7 | |
| + | \\[4pt] | ||
| + | f_{11} | ||
| + | \\[4pt] | ||
| + | f_{13} | ||
| \\[4pt] | \\[4pt] | ||
| − | + | f_{14} | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_{0111} | |
| + | \\[4pt] | ||
| + | f_{1011} | ||
| + | \\[4pt] | ||
| + | f_{1101} | ||
| \\[4pt] | \\[4pt] | ||
| − | + | f_{1110} | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | 0~1~1~1 | |
| + | \\[4pt] | ||
| + | 1~0~1~1 | ||
| + | \\[4pt] | ||
| + | 1~1~0~1 | ||
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | 1~1~1~0 | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ~( | + | ~(p~~q)~ | 
| + | \\[4pt] | ||
| + | ~(p~(q)) | ||
| + | \\[4pt] | ||
| + | ((p)~q)~ | ||
| \\[4pt] | \\[4pt] | ||
| − | (( | + | ((p)(q)) | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| − | |||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | \text{not both}~ p ~\text{and}~ q | |
| + | \\[4pt] | ||
| + | \text{not}~ p ~\text{without}~ q | ||
| + | \\[4pt] | ||
| + | \text{not}~ q ~\text{without}~ p | ||
| \\[4pt] | \\[4pt] | ||
| − | + | p ~\text{or}~ q | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | \lnot p \lor \lnot q | |
| + | \\[4pt] | ||
| + | p \Rightarrow q | ||
| \\[4pt] | \\[4pt] | ||
| − | + | p \Leftarrow q | |
| − | \ | ||
| − | |||
| − | |||
| − | |||
| \\[4pt] | \\[4pt] | ||
| − | + | p \lor q | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| − | | | + | |- | 
| − | <math>\begin{matrix} | + | | <math>f_{15}\!</math> | 
| − | + | | <math>f_{1111}\!</math> | |
| + | | <math>1~1~1~1</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>\text{true}\!</math> | ||
| + | | <math>1\!</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
| + | |+ <math>\text{Table A3.}~~\operatorname{E}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}p, \operatorname{d}q \}</math> | ||
| + | |- style="background:#f0f0ff" | ||
| + | | width="10%" |   | ||
| + | | width="18%" | <math>f\!</math> | ||
| + | | width="18%" |  | ||
| + | <p><math>\operatorname{T}_{11} f</math></p> | ||
| + | <p><math>\operatorname{E}f|_{\operatorname{d}p~\operatorname{d}q}</math></p> | ||
| + | | width="18%" | | ||
| + | <p><math>\operatorname{T}_{10} f</math></p> | ||
| + | <p><math>\operatorname{E}f|_{\operatorname{d}p(\operatorname{d}q)}</math></p> | ||
| + | | width="18%" | | ||
| + | <p><math>\operatorname{T}_{01} f</math></p> | ||
| + | <p><math>\operatorname{E}f|_{(\operatorname{d}p)\operatorname{d}q}</math></p> | ||
| + | | width="18%" | | ||
| + | <p><math>\operatorname{T}_{00} f</math></p> | ||
| + | <p><math>\operatorname{E}f|_{(\operatorname{d}p)(\operatorname{d}q)}</math></p> | ||
| + | |- | ||
| + | | <math>f_0\!</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_1 | ||
| + | \\[4pt] | ||
| + | f_2 | ||
| + | \\[4pt] | ||
| + | f_4 | ||
| \\[4pt] | \\[4pt] | ||
| − | + | f_8 | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ~ | + | (p)(q) | 
| + | \\[4pt] | ||
| + | (p)~q~ | ||
| + | \\[4pt] | ||
| + | ~p~(q) | ||
| \\[4pt] | \\[4pt] | ||
| − | + | ~p~~q~ | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ( | + | ~p~~q~ | 
| + | \\[4pt] | ||
| + | ~p~(q) | ||
| + | \\[4pt] | ||
| + | (p)~q~ | ||
| \\[4pt] | \\[4pt] | ||
| − | + | (p)(q) | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| − | |||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | ~p~(q) | |
| \\[4pt] | \\[4pt] | ||
| − | + | ~p~~q~ | |
| \\[4pt] | \\[4pt] | ||
| − | + | (p)(q) | |
| \\[4pt] | \\[4pt] | ||
| − | + | (p)~q~ | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | (p)~q~ | |
| \\[4pt] | \\[4pt] | ||
| − | + | (p)(q) | |
| \\[4pt] | \\[4pt] | ||
| − | + | ~p~~q~ | |
| \\[4pt] | \\[4pt] | ||
| − | ( | + | ~p~(q) | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ( | + | (p)(q) | 
| \\[4pt] | \\[4pt] | ||
| − | ( | + | (p)~q~ | 
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | ~p~(q) | 
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | ~p~~q~ | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| + | |- | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_3 | |
| \\[4pt] | \\[4pt] | ||
| − | ( | + | f_{12} | 
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (p) | ||
| \\[4pt] | \\[4pt] | ||
| − | ~ | + | ~p~ | 
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~p~ | ||
| \\[4pt] | \\[4pt] | ||
| − | + | (p) | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | ~ | + | ~p~ | 
| \\[4pt] | \\[4pt] | ||
| − | + | (p) | |
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (p) | ||
| \\[4pt] | \\[4pt] | ||
| − | ( | + | ~p~ | 
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (p) | ||
| \\[4pt] | \\[4pt] | ||
| − | + | ~p~ | |
| \end{matrix}</math> | \end{matrix}</math> | ||
| + | |- | ||
| | | | | ||
| <math>\begin{matrix} | <math>\begin{matrix} | ||
| − | + | f_6 | |
| \\[4pt] | \\[4pt] | ||
| − | ~( | + | f_9 | 
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~(p,~q)~ | ||
| \\[4pt] | \\[4pt] | ||
| − | (( | + | ((p,~q)) | 
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~(p,~q)~ | ||
| \\[4pt] | \\[4pt] | ||
| − | (( | + | ((p,~q)) | 
| \end{matrix}</math> | \end{matrix}</math> | ||
| − | | | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | ((p,~q)) | |
| − | | <math>((~))</math> | + | \\[4pt] | 
| − | | <math>((~))</math> | + | ~(p,~q)~ | 
| − | | <math> | + | \end{matrix}</math> | 
| − | | <math>( | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | ((p,~q)) | |
| − | | <math> | + | \\[4pt] | 
| − | | <math> | + | ~(p,~q)~ | 
| − | | <math> | + | \end{matrix}</math> | 
| − | | <math> | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | ~(p,~q)~ | |
| − | + | \\[4pt] | |
| − | + | ((p,~q)) | |
| − | < | + | \end{matrix}</math> | 
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_5 | |
| − | + | \\[4pt] | |
| − | + | f_{10} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (q) | |
| − | + | \\[4pt] | |
| − | + | ~q~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~q~ | |
| − | + | \\[4pt] | |
| − | + | (q) | |
| − | |  | + | \end{matrix}</math> | 
| − | + | | | |
| − | |  | + | <math>\begin{matrix} | 
| − | |  | + | (q) | 
| − | + | \\[4pt] | |
| − | |  | + | ~q~ | 
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | |  | + | <math>\begin{matrix} | 
| − | + | ~q~ | |
| − | |  | + | \\[4pt] | 
| − | |  | + | (q) | 
| − | |  | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (q) | |
| − | + | \\[4pt] | |
| − | |  | + | ~q~ | 
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_7 | |
| − | |  | + | \\[4pt] | 
| − | + | f_{11} | |
| − | + | \\[4pt] | |
| − | |  | + | f_{13} | 
| − | + | \\[4pt] | |
| − | |  | + | f_{14} | 
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | |  | + | (~p~~q~) | 
| − | + | \\[4pt] | |
| − | + | (~p~(q)) | |
| − | + | \\[4pt] | |
| − | < | + | ((p)~q~) | 
| − | + | \\[4pt] | |
| − | < | + | ((p)(q)) | 
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | |  | + | <math>\begin{matrix} | 
| − | + | ((p)(q)) | |
| − | |  | + | \\[4pt] | 
| − | + | ((p)~q~) | |
| − | + | \\[4pt] | |
| − | + | (~p~(q)) | |
| − | + | \\[4pt] | |
| − | + | (~p~~q~) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | |  | + | <math>\begin{matrix} | 
| − | + | ((p)~q~) | |
| − | + | \\[4pt] | |
| − | + | ((p)(q)) | |
| − | |  | + | \\[4pt] | 
| − | + | (~p~~q~) | |
| − | + | \\[4pt] | |
| − | + | (~p~(q)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (~p~(q)) | |
| − | |  | + | \\[4pt] | 
| − | + | (~p~~q~) | |
| − | + | \\[4pt] | |
| − | + | ((p)(q)) | |
| − | + | \\[4pt] | |
| − | + | ((p)~q~) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (~p~~q~) | |
| − | + | \\[4pt] | |
| − | + | (~p~(q)) | |
| − | + | \\[4pt] | |
| − | + | ((p)~q~) | |
| − | + | \\[4pt] | |
| − | + | ((p)(q)) | |
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | + | | <math>f_{15}\!</math> | |
| − | + | | <math>((~))</math> | |
| − | + | | <math>((~))</math> | |
| − | + | | <math>((~))</math> | |
| − | + | | <math>((~))</math> | |
| − | + | | <math>((~))</math> | |
| − | + | |- style="background:#f0f0ff" | |
| − | + | | colspan="2" | <math>\text{Fixed Point Total}\!</math> | |
| − | + | | <math>4\!</math> | |
| − | + | | <math>4\!</math> | |
| − | + | | <math>4\!</math> | |
| − | + | | <math>16\!</math> | |
| − | + | |} | |
| − | + | ||
| − | + | <br> | |
| − | + | ||
| − | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
| − | + | |+ <math>\text{Table A4.}~~\operatorname{D}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}p, \operatorname{d}q \}</math> | |
| − | + | |- style="background:#f0f0ff" | |
| − | + | | width="10%" |   | |
| − | + | | width="18%" | <math>f\!</math> | |
| − | + | | width="18%" | | |
| − | + | <math>\operatorname{D}f|_{\operatorname{d}p~\operatorname{d}q}</math> | |
| − | + | | width="18%" | | |
| − | + | <math>\operatorname{D}f|_{\operatorname{d}p(\operatorname{d}q)}</math> | |
| − | + | | width="18%" | | |
| − | + | <math>\operatorname{D}f|_{(\operatorname{d}p)\operatorname{d}q}</math> | |
| − | + | | width="18%" | | |
| − | + | <math>\operatorname{D}f|_{(\operatorname{d}p)(\operatorname{d}q)}</math> | |
| − | + | |- | |
| − | + | | <math>f_0\!</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_1 | |
| − | + | \\[4pt] | |
| − | + | f_2 | |
| − | + | \\[4pt] | |
| − | + | f_4 | |
| − | + | \\[4pt] | |
| − | + | f_8 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (p)(q) | |
| − | + | \\[4pt] | |
| − | + | (p)~q~ | |
| − | + | \\[4pt] | |
| − | + | ~p~(q) | |
| − | + | \\[4pt] | |
| − | + | ~p~~q~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ((p,~q)) | |
| − | + | \\[4pt] | |
| − | + | ~(p,~q)~ | |
| − | + | \\[4pt] | |
| − | + | ~(p,~q)~ | |
| − | + | \\[4pt] | |
| − | + | ((p,~q)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (q) | |
| − | + | \\[4pt] | |
| − | + | ~q~ | |
| − | + | \\[4pt] | |
| − | + | (q) | |
| − | + | \\[4pt] | |
| − | + | ~q~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (p) | |
| − | + | \\[4pt] | |
| − | + | (p) | |
| − | + | \\[4pt] | |
| − | + | ~p~ | |
| − | + | \\[4pt] | |
| − | + | ~p~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (~) | |
| − | + | \\[4pt] | |
| − | + | (~) | |
| − | + | \\[4pt] | |
| − | + | (~) | |
| − | + | \\[4pt] | |
| − | + | (~) | |
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_3 | |
| − | + | \\[4pt] | |
| − | + | f_{12} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (p) | |
| − | + | \\[4pt] | |
| − | + | ~p~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ((~)) | |
| − | + | \\[4pt] | |
| − | + | ((~)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ((~)) | |
| − | + | \\[4pt] | |
| − | + | ((~)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (~) | |
| − | + | \\[4pt] | |
| − | + | (~) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (~) | |
| − | + | \\[4pt] | |
| − | + | (~) | |
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_6 | |
| − | + | \\[4pt] | |
| − | + | f_9 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~(p,~q)~ | |
| − | + | \\[4pt] | |
| − | + | ((p,~q)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (~) | |
| − | + | \\[4pt] | |
| − | + | (~) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ((~)) | |
| − | + | \\[4pt] | |
| − | + | ((~)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ((~)) | |
| − | + | \\[4pt] | |
| − | + | ((~)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (~) | |
| − | + | \\[4pt] | |
| − | + | (~) | |
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_5 | |
| − | + | \\[4pt] | |
| − | + | f_{10} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (q) | |
| − | + | \\[4pt] | |
| − | + | ~q~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ((~)) | |
| − | + | \\[4pt] | |
| − | + | ((~)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((~)) | ||
| + | \\[4pt] | ||
| + | ((~)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_7 | ||
| + | \\[4pt] | ||
| + | f_{11} | ||
| + | \\[4pt] | ||
| + | f_{13} | ||
| + | \\[4pt] | ||
| + | f_{14} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~(p~~q)~ | ||
| + | \\[4pt] | ||
| + | ~(p~(q)) | ||
| + | \\[4pt] | ||
| + | ((p)~q)~ | ||
| + | \\[4pt] | ||
| + | ((p)(q)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((p,~q)) | ||
| + | \\[4pt] | ||
| + | ~(p,~q)~ | ||
| + | \\[4pt] | ||
| + | ~(p,~q)~ | ||
| + | \\[4pt] | ||
| + | ((p,~q)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~q~ | ||
| + | \\[4pt] | ||
| + | (q) | ||
| + | \\[4pt] | ||
| + | ~q~ | ||
| + | \\[4pt] | ||
| + | (q) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~p~ | ||
| + | \\[4pt] | ||
| + | ~p~ | ||
| + | \\[4pt] | ||
| + | (p) | ||
| + | \\[4pt] | ||
| + | (p) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>f_{15}\!</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
| − | + | |+ <math>\text{Table A5.}~~\operatorname{E}f ~\text{Expanded Over Ordinary Features}~ \{ p, q \}</math> | |
| − | \ | + | |- style="background:#f0f0ff" | 
| − | \ | + | | width="10%" |   | 
| − | + | | width="18%" | <math>f\!</math> | |
| − | + | | width="18%" | <math>\operatorname{E}f|_{xy}</math> | |
| − | + | | width="18%" | <math>\operatorname{E}f|_{p(q)}</math> | |
| − | + | | width="18%" | <math>\operatorname{E}f|_{(p)q}</math> | |
| − | + | | width="18%" | <math>\operatorname{E}f|_{(p)(q)}</math> | |
| − | + | |- | |
| − | + | | <math>f_0\!</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_1 | |
| − | + | \\[4pt] | |
| − | + | f_2 | |
| − | + | \\[4pt] | |
| − | + | f_4 | |
| − | + | \\[4pt] | |
| − | + | f_8 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (p)(q) | |
| − | + | \\[4pt] | |
| − | + | (p)~q~ | |
| − | + | \\[4pt] | |
| − | + | ~p~(q) | |
| − | + | \\[4pt] | |
| − | + | ~p~~q~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~\operatorname{d}p~~\operatorname{d}q~ | |
| − | + | \\[4pt] | |
| − | + | ~\operatorname{d}p~(\operatorname{d}q) | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p)~\operatorname{d}q~ | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p)(\operatorname{d}q) | |
| − | \ | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~\operatorname{d}p~(\operatorname{d}q) | |
| − | + | \\[4pt] | |
| − | + | ~\operatorname{d}p~~\operatorname{d}q~ | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p)(\operatorname{d}q) | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p)~\operatorname{d}q~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | \ | + | (\operatorname{d}p)~\operatorname{d}q~ | 
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p)(\operatorname{d}q) | |
| − | + | \\[4pt] | |
| − | + | ~\operatorname{d}p~~\operatorname{d}q~ | |
| − | + | \\[4pt] | |
| − | + | ~\operatorname{d}p~(\operatorname{d}q) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (\operatorname{d}p)(\operatorname{d}q) | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p)~\operatorname{d}q~ | |
| − | \ | + | \\[4pt] | 
| − | + | ~\operatorname{d}p~(\operatorname{d}q) | |
| − | + | \\[4pt] | |
| − | + | ~\operatorname{d}p~~\operatorname{d}q~ | |
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_3 | |
| − | + | \\[4pt] | |
| − | + | f_{12} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | \ | + | <math>\begin{matrix} | 
| − | + | (p) | |
| − | + | \\[4pt] | |
| − | + | ~p~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~\operatorname{d}p~ | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~\operatorname{d}p~ | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (\operatorname{d}p) | |
| − | + | \\[4pt] | |
| − | + | ~\operatorname{d}p~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | \ | + | (\operatorname{d}p) | 
| − | + | \\[4pt] | |
| − | + | ~\operatorname{d}p~ | |
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | \ | + | f_6 | 
| − | + | \\[4pt] | |
| − | + | f_9 | |
| − | \ | + | \end{matrix}</math> | 
| − | + | | | |
| − | \begin{ | + | <math>\begin{matrix} | 
| − | \ | + | ~(p,~q)~ | 
| − | + | \\[4pt] | |
| − | + | ((p,~q)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~(\operatorname{d}p,~\operatorname{d}q)~ | |
| − | + | \\[4pt] | |
| − | + | ((\operatorname{d}p,~\operatorname{d}q)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | \ | + | ((\operatorname{d}p,~\operatorname{d}q)) | 
| − | + | \\[4pt] | |
| − | \ | + | ~(\operatorname{d}p,~\operatorname{d}q)~ | 
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ((\operatorname{d}p,~\operatorname{d}q)) | |
| − | \ | + | \\[4pt] | 
| − | + | ~(\operatorname{d}p,~\operatorname{d}q)~ | |
| − | + | \end{matrix}</math> | |
| − | \ | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | ~(\operatorname{d}p,~\operatorname{d}q)~ | |
| − | \ | + | \\[4pt] | 
| − | + | ((\operatorname{d}p,~\operatorname{d}q)) | |
| − | + | \end{matrix}</math> | |
| − | \ | + | |- | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_5 | |
| − | + | \\[4pt] | |
| − | \ | + | f_{10} | 
| − | + | \end{matrix}</math> | |
| − | \ | + | | | 
| − | + | <math>\begin{matrix} | |
| − | \ | + | (q) | 
| − | + | \\[4pt] | |
| − | + | ~q~ | |
| − | \ | + | \end{matrix}</math> | 
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~\operatorname{d}q~ | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}q) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}q) | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}q~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~\operatorname{d}q~ | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}q) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}q) | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}q~ | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_7 | ||
| + | \\[4pt] | ||
| + | f_{11} | ||
| + | \\[4pt] | ||
| + | f_{13} | ||
| + | \\[4pt] | ||
| + | f_{14} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~p~~q~) | ||
| + | \\[4pt] | ||
| + | (~p~(q)) | ||
| + | \\[4pt] | ||
| + | ((p)~q~) | ||
| + | \\[4pt] | ||
| + | ((p)(q)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((\operatorname{d}p)(\operatorname{d}q)) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}p)~\operatorname{d}q~) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}p~(\operatorname{d}q)) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}p~~\operatorname{d}q~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((\operatorname{d}p)~\operatorname{d}q~) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}p)(\operatorname{d}q)) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}p~~\operatorname{d}q~) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}p~(\operatorname{d}q)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~\operatorname{d}p~(\operatorname{d}q)) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}p~~\operatorname{d}q~) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}p)(\operatorname{d}q)) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}p)~\operatorname{d}q~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~\operatorname{d}p~~\operatorname{d}q~) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}p~(\operatorname{d}q)) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}p)~\operatorname{d}q~) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}p)(\operatorname{d}q)) | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>f_{15}\!</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>((~))</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| − | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
| − | \ | + | |+ <math>\text{Table A6.}~~\operatorname{D}f ~\text{Expanded Over Ordinary Features}~ \{ p, q \}</math> | 
| − | + | |- style="background:#f0f0ff" | |
| − | &  | + | | width="10%" |   | 
| − | + | | width="18%" | <math>f\!</math> | |
| − | + | | width="18%" | <math>\operatorname{D}f|_{xy}</math> | |
| − | + | | width="18%" | <math>\operatorname{D}f|_{p(q)}</math> | |
| − | + | | width="18%" | <math>\operatorname{D}f|_{(p)q}</math> | |
| − | \ | + | | width="18%" | <math>\operatorname{D}f|_{(p)(q)}</math> | 
| − | + | |- | |
| − | \ | + | | <math>f_0\!</math> | 
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | \ | + | | <math>(~)</math> | 
| − | + | |- | |
| − | + | | | |
| − | \ | + | <math>\begin{matrix} | 
| − | + | f_1 | |
| − | + | \\[4pt] | |
| − | \ | + | f_2 | 
| − | + | \\[4pt] | |
| − | + | f_4 | |
| − | \ | + | \\[4pt] | 
| − | + | f_8 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | \ | + | (p)(q) | 
| − | + | \\[4pt] | |
| − | \ | + | (p)~q~ | 
| − | \ | + | \\[4pt] | 
| − | + | ~p~(q) | |
| − | \ | + | \\[4pt] | 
| − | + | ~p~~q~ | |
| − | \begin{ | + | \end{matrix}</math> | 
| − | \ | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | |
| − | + | \\[4pt] | |
| − | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
| − | + | \\[4pt] | |
| − | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
| − | \ | + | \\[4pt] | 
| − | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
| − | + | \\[4pt] | |
| − | \ | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | 
| − | + | \\[4pt] | |
| − | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
| − | + | \\[4pt] | |
| − | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
| − | + | \\[4pt] | |
| − | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
| − | + | \\[4pt] | |
| − | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | |
| − | + | \\[4pt] | |
| − | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
| − | + | \\[4pt] | |
| − | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
| − | + | \\[4pt] | |
| − | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
| − | + | \\[4pt] | |
| − | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | |
| − | \ | + | \end{matrix}</math> | 
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | f_3 | |
| − | + | \\[4pt] | |
| − | + | f_{12} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (p) | |
| − | + | \\[4pt] | |
| − | + | ~p~ | |
| − | \ | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \operatorname{d}p | |
| − | + | \\[4pt] | |
| − | + | \operatorname{d}p | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \operatorname{d}p | |
| − | + | \\[4pt] | |
| − | + | \operatorname{d}p | |
| − | + | \end{matrix}</math> | |
| − | \ | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | \operatorname{d}p | |
| − | + | \\[4pt] | |
| − | + | \operatorname{d}p | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \operatorname{d}p | |
| − | + | \\[4pt] | |
| − | + | \operatorname{d}p | |
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | \ | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | f_6 | |
| − | + | \\[4pt] | |
| − | + | f_9 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~(p,~q)~ | |
| − | + | \\[4pt] | |
| − | + | ((p,~q)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (\operatorname{d}p,~\operatorname{d}q) | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p,~\operatorname{d}q) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (\operatorname{d}p,~\operatorname{d}q) | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p,~\operatorname{d}q) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (\operatorname{d}p,~\operatorname{d}q) | |
| − | + | \\[4pt] | |
| − | + | (\operatorname{d}p,~\operatorname{d}q) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (\operatorname{d}p,~\operatorname{d}q) | |
| − | + | \\[4pt] | |
| + | (\operatorname{d}p,~\operatorname{d}q) | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_5 | ||
| + | \\[4pt] | ||
| + | f_{10} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (q) | ||
| + | \\[4pt] | ||
| + | ~q~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}q | ||
| + | \\[4pt] | ||
| + | \operatorname{d}q | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}q | ||
| + | \\[4pt] | ||
| + | \operatorname{d}q | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}q | ||
| + | \\[4pt] | ||
| + | \operatorname{d}q | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}q | ||
| + | \\[4pt] | ||
| + | \operatorname{d}q | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_7 | ||
| + | \\[4pt] | ||
| + | f_{11} | ||
| + | \\[4pt] | ||
| + | f_{13} | ||
| + | \\[4pt] | ||
| + | f_{14} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~p~~q~) | ||
| + | \\[4pt] | ||
| + | (~p~(q)) | ||
| + | \\[4pt] | ||
| + | ((p)~q~) | ||
| + | \\[4pt] | ||
| + | ((p)(q)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((\operatorname{d}p)(\operatorname{d}q)) | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}p)(\operatorname{d}q)) | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}p)(\operatorname{d}q)) | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}p)(\operatorname{d}q)) | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>f_{15}\!</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>((~))</math> | ||
| + | | <math>((~))</math> | ||
| + | |} | ||
| − | + | <br> | |
| + | |||
| + | ===Wiki TeX Tables : XY=== | ||
| + | |||
| + | <br> | ||
| − | \ | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | 
| − | \ | + | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> | 
| − | \ | + | |- style="background:#f0f0ff" | 
| − | + | | width="15%" | | |
| − | + | <p><math>\mathcal{L}_1</math></p> | |
| − | + | <p><math>\text{Decimal}</math></p> | |
| − | + | | width="15%" | | |
| − | + | <p><math>\mathcal{L}_2</math></p> | |
| − | \ | + | <p><math>\text{Binary}</math></p> | 
| − | + | | width="15%" | | |
| − | + | <p><math>\mathcal{L}_3</math></p> | |
| − | + | <p><math>\text{Vector}</math></p> | |
| − | + | | width="15%" | | |
| − | + | <p><math>\mathcal{L}_4</math></p> | |
| − | + | <p><math>\text{Cactus}</math></p> | |
| − | \ | + | | width="25%" | | 
| − | + | <p><math>\mathcal{L}_5</math></p> | |
| − | + | <p><math>\text{English}</math></p> | |
| − | + | | width="15%" | | |
| − | + | <p><math>\mathcal{L}_6</math></p> | |
| − | + | <p><math>\text{Ordinary}</math></p> | |
| − | + | |- style="background:#f0f0ff" | |
| − | + | |   | |
| − | + | | align="right" | <math>x\colon\!</math> | |
| − | + | | <math>1~1~0~0\!</math> | |
| − | + | |   | |
| − | + | |   | |
| − | + | |   | |
| − | + | |- style="background:#f0f0ff" | |
| − | + | |   | |
| − | + | | align="right" | <math>y\colon\!</math> | |
| − | + | | <math>1~0~1~0\!</math> | |
| − | + | |   | |
| − | + | |   | |
| − | + | |   | |
| − | + | |- | |
| − | + | | <math>f_{0}\!</math> | |
| − | + | | <math>f_{0000}\!</math> | |
| − | + | | <math>0~0~0~0\!</math> | |
| − | + | | <math>(~)\!</math> | |
| − | + | | <math>\text{false}\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | |- | |
| − | + | | <math>f_{1}\!</math> | |
| − | + | | <math>f_{0001}\!</math> | |
| − | + | | <math>0~0~0~1\!</math> | |
| − | + | | <math>(x)(y)\!</math> | |
| − | + | | <math>\text{neither}~ x ~\text{nor}~ y\!</math> | |
| − | + | | <math>\lnot x \land \lnot y\!</math> | |
| − | + | |- | |
| − | + | | <math>f_{2}\!</math> | |
| − | + | | <math>f_{0010}\!</math> | |
| − | + | | <math>0~0~1~0\!</math> | |
| − | + | | <math>(x)~y\!</math> | |
| − | + | | <math>y ~\text{without}~ x\!</math> | |
| − | + | | <math>\lnot x \land y\!</math> | |
| − | + | |- | |
| − | + | | <math>f_{3}\!</math> | |
| − | + | | <math>f_{0011}\!</math> | |
| − | + | | <math>0~0~1~1\!</math> | |
| − | + | | <math>(x)\!</math> | |
| − | + | | <math>\text{not}~ x\!</math> | |
| − | + | | <math>\lnot x\!</math> | |
| − | + | |- | |
| − | + | | <math>f_{4}\!</math> | |
| − | + | | <math>f_{0100}\!</math> | |
| − | + | | <math>0~1~0~0\!</math> | |
| − | + | | <math>x~(y)\!</math> | |
| − | + | | <math>x ~\text{without}~ y\!</math> | |
| − | + | | <math>x \land \lnot y\!</math> | |
| − | + | |- | |
| − | + | | <math>f_{5}\!</math> | |
| − | + | | <math>f_{0101}\!</math> | |
| − | + | | <math>0~1~0~1\!</math> | |
| − | + | | <math>(y)\!</math> | |
| − | + | | <math>\text{not}~ y\!</math> | |
| − | + | | <math>\lnot y\!</math> | |
| − | + | |- | |
| − | + | | <math>f_{6}\!</math> | |
| − | + | | <math>f_{0110}\!</math> | |
| − | + | | <math>0~1~1~0\!</math> | |
| − | + | | <math>(x,~y)\!</math> | |
| − | + | | <math>x ~\text{not equal to}~ y\!</math> | |
| − | + | | <math>x \ne y\!</math> | |
| − | + | |- | |
| − | + | | <math>f_{7}\!</math> | |
| − | + | | <math>f_{0111}\!</math> | |
| − | + | | <math>0~1~1~1\!</math> | |
| − | + | | <math>(x~y)\!</math> | |
| − | + | | <math>\text{not both}~ x ~\text{and}~ y\!</math> | |
| − | + | | <math>\lnot x \lor \lnot y\!</math> | |
| − | + | |- | |
| − | + | | <math>f_{8}\!</math> | |
| − | + | | <math>f_{1000}\!</math> | |
| − | + | | <math>1~0~0~0\!</math> | |
| − | + | | <math>x~y\!</math> | |
| − | + | | <math>x ~\text{and}~ y\!</math> | |
| − | + | | <math>x \land y\!</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | < | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| − | |  | + | | <math>f_{9}\!</math> | 
| + | | <math>f_{1001}\!</math> | ||
| + | | <math>1~0~0~1\!</math> | ||
| + | | <math>((x,~y))\!</math> | ||
| + | | <math>x ~\text{equal to}~ y\!</math> | ||
| + | | <math>x = y\!</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{10}\!</math> | 
| + | | <math>f_{1010}\!</math> | ||
| + | | <math>1~0~1~0\!</math> | ||
| + | | <math>y\!</math> | ||
| + | | <math>y\!</math> | ||
| + | | <math>y\!</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{11}\!</math> | 
| + | | <math>f_{1011}\!</math> | ||
| + | | <math>1~0~1~1\!</math> | ||
| + | | <math>(x~(y))\!</math> | ||
| + | | <math>\text{not}~ x ~\text{without}~ y\!</math> | ||
| + | | <math>x \Rightarrow y\!</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{12}\!</math> | 
| + | | <math>f_{1100}\!</math> | ||
| + | | <math>1~1~0~0\!</math> | ||
| + | | <math>x\!</math> | ||
| + | | <math>x\!</math> | ||
| + | | <math>x\!</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{13}\!</math> | 
| + | | <math>f_{1101}\!</math> | ||
| + | | <math>1~1~0~1\!</math> | ||
| + | | <math>((x)~y)\!</math> | ||
| + | | <math>\text{not}~ y ~\text{without}~ x\!</math> | ||
| + | | <math>x \Leftarrow y\!</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{14}\!</math> | 
| + | | <math>f_{1110}\!</math> | ||
| + | | <math>1~1~1~0\!</math> | ||
| + | | <math>((x)(y))\!</math> | ||
| + | | <math>x ~\text{or}~ y\!</math> | ||
| + | | <math>x \lor y\!</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{15}\!</math> | 
| − | | | + | | <math>f_{1111}\!</math> | 
| − | |  | + | | <math>1~1~1~1\!</math> | 
| + | | <math>((~))\!</math> | ||
| + | | <math>\text{true}\!</math> | ||
| + | | <math>1\!</math> | ||
| |} | |} | ||
| + | |||
| <br> | <br> | ||
| − | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
| − | + | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> | |
| − | + | |- style="background:#f0f0ff" | |
| − | + | | width="15%" | | |
| − | + | <p><math>\mathcal{L}_1</math></p> | |
| − | + | <p><math>\text{Decimal}</math></p> | |
| − | + | | width="15%" | | |
| − | + | <p><math>\mathcal{L}_2</math></p> | |
| − | + | <p><math>\text{Binary}</math></p> | |
| − | + | | width="15%" | | |
| − | + | <p><math>\mathcal{L}_3</math></p> | |
| − | + | <p><math>\text{Vector}</math></p> | |
| − | + | | width="15%" | | |
| − | + | <p><math>\mathcal{L}_4</math></p> | |
| − | + | <p><math>\text{Cactus}</math></p> | |
| − | + | | width="25%" | | |
| − | + | <p><math>\mathcal{L}_5</math></p> | |
| − | + | <p><math>\text{English}</math></p> | |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | | width="15%" | | 
| − | |+ Table  | + | <p><math>\mathcal{L}_6</math></p> | 
| − | |- style="background: | + | <p><math>\text{Ordinary}</math></p> | 
| − | + | |- style="background:#f0f0ff" | |
| − | + | |   | |
| − | + | | align="right" | <math>x\colon\!</math> | |
| − | + | | <math>1~1~0~0\!</math> | |
| − | + | |   | |
| − | | | + | |   | 
| − | + | |   | |
| − | + | |- style="background:#f0f0ff" | |
| − | + | |   | |
| − | | | + | | align="right" | <math>y\colon\!</math> | 
| − | + | | <math>1~0~1~0\!</math> | |
| − | + | |   | |
| − | + | |   | |
| − | | | + | |   | 
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | < | ||
| − | |||
| − | |||
| − | |||
| − | < | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |  | ||
| − | |||
| − | </ | ||
| − | |||
| − | |||
| − | | | ||
| − | | | ||
| − | |||
| − | |  | ||
| − | |  | ||
| − | | | ||
| |- | |- | ||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | f_0 | |
| − | + | \\[4pt] | |
| − | + | f_1 | |
| − | + | \\[4pt] | |
| − | + | f_2 | |
| − | + | \\[4pt] | |
| − | + | f_3 | |
| − | + | \\[4pt] | |
| − | + | f_4 | |
| − | + | \\[4pt] | |
| − | + | f_5 | |
| − | + | \\[4pt] | |
| − | + | f_6 | |
| − | + | \\[4pt] | |
| − | + | f_7 | |
| − | </ | + | \end{matrix}</math> | 
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | f_{0000} | |
| − | + | \\[4pt] | |
| − | + | f_{0001} | |
| − | + | \\[4pt] | |
| + | f_{0010} | ||
| + | \\[4pt] | ||
| + | f_{0011} | ||
| + | \\[4pt] | ||
| + | f_{0100} | ||
| + | \\[4pt] | ||
| + | f_{0101} | ||
| + | \\[4pt] | ||
| + | f_{0110} | ||
| + | \\[4pt] | ||
| + | f_{0111} | ||
| + | \end{matrix}</math> | ||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | 0~0~0~0 | |
| − | + | \\[4pt] | |
| − | + | 0~0~0~1 | |
| − | + | \\[4pt] | |
| − | + | 0~0~1~0 | |
| − | + | \\[4pt] | |
| − | + | 0~0~1~1 | |
| − | + | \\[4pt] | |
| − | + | 0~1~0~0 | |
| − | + | \\[4pt] | |
| − | + | 0~1~0~1 | |
| − | + | \\[4pt] | |
| − | + | 0~1~1~0 | |
| − | + | \\[4pt] | |
| − | + | 0~1~1~1 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (~) | |
| − | </ | + | \\[4pt] | 
| − | + | (x)(y) | |
| − | + | \\[4pt] | |
| − | + | (x)~y~ | |
| − | + | \\[4pt] | |
| − | + | (x)~~~ | |
| − | + | \\[4pt] | |
| − | + | ~x~(y) | |
| − | + | \\[4pt] | |
| − | + | ~~~(y) | |
| − | + | \\[4pt] | |
| − | + | (x,~y) | |
| − | + | \\[4pt] | |
| − | + | (x~~y) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \text{false} | |
| − | + | \\[4pt] | |
| − | < | + | \text{neither}~ x ~\text{nor}~ y | 
| − | + | \\[4pt] | |
| − | + | y ~\text{without}~ x | |
| − | + | \\[4pt] | |
| − | + | \text{not}~ x | |
| − | + | \\[4pt] | |
| − | + | x ~\text{without}~ y | |
| − | + | \\[4pt] | |
| − | + | \text{not}~ y | |
| − | + | \\[4pt] | |
| − | + | x ~\text{not equal to}~ y | |
| − | + | \\[4pt] | |
| − | + | \text{not both}~ x ~\text{and}~ y | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | |||
| − | |||
| − | |||
| − | < | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | 0 | |
| − | + | \\[4pt] | |
| − | + | \lnot x \land \lnot y | |
| − | + | \\[4pt] | |
| − | + | \lnot x \land y | |
| − | { | + | \\[4pt] | 
| − | + | \lnot x | |
| + | \\[4pt] | ||
| + | x \land \lnot y | ||
| + | \\[4pt] | ||
| + | \lnot y | ||
| + | \\[4pt] | ||
| + | x \ne y | ||
| + | \\[4pt] | ||
| + | \lnot x \lor \lnot y | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | f_8 | |
| − | + | \\[4pt] | |
| − | + | f_9 | |
| − | + | \\[4pt] | |
| + | f_{10} | ||
| + | \\[4pt] | ||
| + | f_{11} | ||
| + | \\[4pt] | ||
| + | f_{12} | ||
| + | \\[4pt] | ||
| + | f_{13} | ||
| + | \\[4pt] | ||
| + | f_{14} | ||
| + | \\[4pt] | ||
| + | f_{15} | ||
| + | \end{matrix}</math> | ||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | f_{1000} | |
| − | + | \\[4pt] | |
| − | + | f_{1001} | |
| − | + | \\[4pt] | |
| + | f_{1010} | ||
| + | \\[4pt] | ||
| + | f_{1011} | ||
| + | \\[4pt] | ||
| + | f_{1100} | ||
| + | \\[4pt] | ||
| + | f_{1101} | ||
| + | \\[4pt] | ||
| + | f_{1110} | ||
| + | \\[4pt] | ||
| + | f_{1111} | ||
| + | \end{matrix}</math> | ||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | 1~0~0~0 | |
| − | + | \\[4pt] | |
| − | + | 1~0~0~1 | |
| − | + | \\[4pt] | |
| − | + | 1~0~1~0 | |
| + | \\[4pt] | ||
| + | 1~0~1~1 | ||
| + | \\[4pt] | ||
| + | 1~1~0~0 | ||
| + | \\[4pt] | ||
| + | 1~1~0~1 | ||
| + | \\[4pt] | ||
| + | 1~1~1~0 | ||
| + | \\[4pt] | ||
| + | 1~1~1~1 | ||
| + | \end{matrix}</math> | ||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | ~~x~~y~~ | |
| − | + | \\[4pt] | |
| − | + | ((x,~y)) | |
| − | + | \\[4pt] | |
| − | + | ~~~~~y~~ | |
| − | + | \\[4pt] | |
| − | + | ~(x~(y)) | |
| − | + | \\[4pt] | |
| − | + | ~~x~~~~~ | |
| − | + | \\[4pt] | |
| − | + | ((x)~y)~ | |
| − | + | \\[4pt] | |
| − | + | ((x)(y)) | |
| − | + | \\[4pt] | |
| − | + | ((~)) | |
| − | + | \end{matrix}</math> | |
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | x ~\text{and}~ y | |
| − | + | \\[4pt] | |
| − | + | x ~\text{equal to}~ y | |
| − | + | \\[4pt] | |
| − | + | y | |
| − | + | \\[4pt] | |
| − | + | \text{not}~ x ~\text{without}~ y | |
| − | + | \\[4pt] | |
| − | + | x | |
| − | + | \\[4pt] | |
| − | + | \text{not}~ y ~\text{without}~ x | |
| − | + | \\[4pt] | |
| − | + | x ~\text{or}~ y | |
| − | + | \\[4pt] | |
| − | + | \text{true} | |
| − | + | \end{matrix}</math> | |
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | x \land y | |
| − | + | \\[4pt] | |
| − | + | x = y | |
| − | + | \\[4pt] | |
| − | + | y | |
| − | + | \\[4pt] | |
| − | + | x \Rightarrow y | |
| − | + | \\[4pt] | |
| − | + | x | |
| − | + | \\[4pt] | |
| − | + | x \Leftarrow y | |
| − | + | \\[4pt] | |
| − | + | x \lor y | |
| − | + | \\[4pt] | |
| − | + | 1 | |
| + | \end{matrix}</math> | ||
| |} | |} | ||
| − | + | ||
| − | {| cellpadding=" | + | <br> | 
| − | |  | + | |
| − | |- | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | 
| − | |  | + | |+ <math>\text{Table A2.}~~\text{Propositional Forms on Two Variables}</math> | 
| − | |- | + | |- style="background:#f0f0ff" | 
| − | |  | + | | width="15%" | | 
| + | <p><math>\mathcal{L}_1</math></p> | ||
| + | <p><math>\text{Decimal}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_2</math></p> | ||
| + | <p><math>\text{Binary}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_3</math></p> | ||
| + | <p><math>\text{Vector}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_4</math></p> | ||
| + | <p><math>\text{Cactus}</math></p> | ||
| + | | width="25%" | | ||
| + | <p><math>\mathcal{L}_5</math></p> | ||
| + | <p><math>\text{English}</math></p> | ||
| + | | width="15%" | | ||
| + | <p><math>\mathcal{L}_6</math></p> | ||
| + | <p><math>\text{Ordinary}</math></p> | ||
| + | |- style="background:#f0f0ff" | ||
| + | |   | ||
| + | | align="right" | <math>x\colon\!</math> | ||
| + | | <math>1~1~0~0\!</math> | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- style="background:#f0f0ff" | ||
| + | |   | ||
| + | | align="right" | <math>y\colon\!</math> | ||
| + | | <math>1~0~1~0\!</math> | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| |- | |- | ||
| − | |  | + | | <math>f_0\!</math> | 
| + | | <math>f_{0000}\!</math> | ||
| + | | <math>0~0~0~0</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>\text{false}\!</math> | ||
| + | | <math>0\!</math> | ||
| |- | |- | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | <math>\begin{matrix} | |
| − | + | f_1 | |
| − | + | \\[4pt] | |
| − | + | f_2 | |
| − | + | \\[4pt] | |
| − | + | f_4 | |
| − | + | \\[4pt] | |
| − | + | f_8 | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | <math>\begin{matrix} | |
| − | + | f_{0001} | |
| − | + | \\[4pt] | |
| − | + | f_{0010} | |
| − | + | \\[4pt] | |
| − | + | f_{0100} | |
| − | + | \\[4pt] | |
| − | + | f_{1000} | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | 0~0~0~1 | |
| − | + | \\[4pt] | |
| − | + | 0~0~1~0 | |
| − | + | \\[4pt] | |
| − | + | 0~1~0~0 | |
| − | + | \\[4pt] | |
| − | + | 1~0~0~0 | |
| − | | | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (x)(y) | |
| − | + | \\[4pt] | |
| − | + | (x)~y~ | |
| − | + | \\[4pt] | |
| − | + | ~x~(y) | |
| − | + | \\[4pt] | |
| + | ~x~~y~ | ||
| + | \end{matrix}</math> | ||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | \text{neither}~ x ~\text{nor}~ y | |
| − | | | + | \\[4pt] | 
| − | + | y ~\text{without}~ x | |
| − | + | \\[4pt] | |
| − | + | x ~\text{without}~ y | |
| − | + | \\[4pt] | |
| − | + | x ~\text{and}~ y | |
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \lnot x \land \lnot y | ||
| + | \\[4pt] | ||
| + | \lnot x \land y | ||
| + | \\[4pt] | ||
| + | x \land \lnot y | ||
| + | \\[4pt] | ||
| + | x \land y | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | <math>\begin{matrix} | |
| − | + | f_3 | |
| − | + | \\[4pt] | |
| − | + | f_{12} | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | <math>\begin{matrix} | |
| − | + | f_{0011} | |
| − | + | \\[4pt] | |
| − | + | f_{1100} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | | | + | <math>\begin{matrix} | 
| − | + | 0~0~1~1 | |
| − | + | \\[4pt] | |
| − | + | 1~1~0~0 | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | (x) | |
| − | + | \\[4pt] | |
| − | + | ~x~ | |
| − | + | \end{matrix}</math> | |
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | \text{not}~ x | |
| − | + | \\[4pt] | |
| − | + | x | |
| − | + | \end{matrix}</math> | |
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | \lnot x | |
| + | \\[4pt] | ||
| + | x | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | f_6 | |
| − | + | \\[4pt] | |
| − | + | f_9 | |
| − | + | \end{matrix}</math> | |
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | f_{0110} | |
| − | + | \\[4pt] | |
| − | + | f_{1001} | |
| − | + | \end{matrix}</math> | |
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | 0~1~1~0 | |
| − | + | \\[4pt] | |
| − | + | 1~0~0~1 | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | ~(x,~y)~ | |
| − | + | \\[4pt] | |
| − | + | ((x,~y)) | |
| − | + | \end{matrix}</math> | |
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | x ~\text{not equal to}~ y | |
| − | + | \\[4pt] | |
| − | + | x ~\text{equal to}~ y | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | x \ne y | |
| − | + | \\[4pt] | |
| − | + | x = y | |
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | <math>\begin{matrix} | |
| − | + | f_5 | |
| − | + | \\[4pt] | |
| − | + | f_{10} | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | <math>\begin{matrix} | |
| − | + | f_{0101} | |
| − | + | \\[4pt] | |
| − | + | f_{1010} | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | 0~1~0~1 | |
| − | + | \\[4pt] | |
| − | + | 1~0~1~0 | |
| − | | | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (y) | |
| − | + | \\[4pt] | |
| − | + | ~y~ | |
| − | | | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \text{not}~ y | |
| − | + | \\[4pt] | |
| − | + | y | |
| − | + | \end{matrix}</math> | |
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | \lnot y | |
| − | + | \\[4pt] | |
| − | + | y | |
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | { | + | <math>\begin{matrix} | 
| − | + | f_7 | |
| − | + | \\[4pt] | |
| − | + | f_{11} | |
| − | + | \\[4pt] | |
| − | + | f_{13} | |
| − | + | \\[4pt] | |
| − | + | f_{14} | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | + | <math>\begin{matrix} | |
| − | + | f_{0111} | |
| − | + | \\[4pt] | |
| − | + | f_{1011} | |
| − | + | \\[4pt] | |
| − | + | f_{1101} | |
| − | + | \\[4pt] | |
| − | + | f_{1110} | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| | | | | ||
| − | {|  | + | <math>\begin{matrix} | 
| − | |  | + | 0~1~1~1 | 
| + | \\[4pt] | ||
| + | 1~0~1~1 | ||
| + | \\[4pt] | ||
| + | 1~1~0~1 | ||
| + | \\[4pt] | ||
| + | 1~1~1~0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~(x~~y)~ | ||
| + | \\[4pt] | ||
| + | ~(x~(y)) | ||
| + | \\[4pt] | ||
| + | ((x)~y)~ | ||
| + | \\[4pt] | ||
| + | ((x)(y)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{not both}~ x ~\text{and}~ y | ||
| + | \\[4pt] | ||
| + | \text{not}~ x ~\text{without}~ y | ||
| + | \\[4pt] | ||
| + | \text{not}~ y ~\text{without}~ x | ||
| + | \\[4pt] | ||
| + | x ~\text{or}~ y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \lnot x \lor \lnot y | ||
| + | \\[4pt] | ||
| + | x \Rightarrow y | ||
| + | \\[4pt] | ||
| + | x \Leftarrow y | ||
| + | \\[4pt] | ||
| + | x \lor y | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{15}\!</math> | 
| − | | | + | | <math>f_{1111}\!</math> | 
| − | + | | <math>1~1~1~1</math> | |
| − | | | + | | <math>((~))</math> | 
| − | + | | <math>\text{true}\!</math> | |
| − | | | + | | <math>1\!</math> | 
| − | |||
| − | | | ||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| |} | |} | ||
| − | |||
| − | + | <br> | |
| − | {| align="center" border="1" cellpadding=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | 
| − | |+  | + | |+ <math>\text{Table A3.}~~\operatorname{E}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}x, \operatorname{d}y \}</math> | 
| − | |- style="background: | + | |- style="background:#f0f0ff" | 
| − | |  | + | | width="10%" |   | 
| − | | | + | | width="18%" | <math>f\!</math> | 
| − | | | + | | width="18%" |   | 
| − | | | + | <p><math>\operatorname{T}_{11} f</math></p> | 
| − | |  | + | <p><math>\operatorname{E}f|_{\operatorname{d}x~\operatorname{d}y}</math></p> | 
| − | + | | width="18%" | | |
| + | <p><math>\operatorname{T}_{10} f</math></p> | ||
| + | <p><math>\operatorname{E}f|_{\operatorname{d}x(\operatorname{d}y)}</math></p> | ||
| + | | width="18%" | | ||
| + | <p><math>\operatorname{T}_{01} f</math></p> | ||
| + | <p><math>\operatorname{E}f|_{(\operatorname{d}x)\operatorname{d}y}</math></p> | ||
| + | | width="18%" | | ||
| + | <p><math>\operatorname{T}_{00} f</math></p> | ||
| + | <p><math>\operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)}</math></p> | ||
| |- | |- | ||
| − | |  | + | | <math>f_0\!</math> | 
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | f_1 | |
| − | + | \\[4pt] | |
| − | + | f_2 | |
| − | | | + | \\[4pt] | 
| − | < | + | f_4 | 
| − | + | \\[4pt] | |
| − | + | f_8 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (x)(y) | |
| − | + | \\[4pt] | |
| − | | | + | (x)~y~ | 
| − | + | \\[4pt] | |
| − | | | + | ~x~(y) | 
| − | + | \\[4pt] | |
| − | + | ~x~~y~ | |
| − | + | \end{matrix}</math> | |
| − | | | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | ~x~~y~ | |
| − | + | \\[4pt] | |
| − | + | ~x~(y) | |
| − | + | \\[4pt] | |
| − | + | (x)~y~ | |
| − | + | \\[4pt] | |
| + | (x)(y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~x~(y) | ||
| + | \\[4pt] | ||
| + | ~x~~y~ | ||
| + | \\[4pt] | ||
| + | (x)(y) | ||
| + | \\[4pt] | ||
| + | (x)~y~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (x)~y~ | ||
| + | \\[4pt] | ||
| + | (x)(y) | ||
| + | \\[4pt] | ||
| + | ~x~~y~ | ||
| + | \\[4pt] | ||
| + | ~x~(y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (x)(y) | ||
| + | \\[4pt] | ||
| + | (x)~y~ | ||
| + | \\[4pt] | ||
| + | ~x~(y) | ||
| + | \\[4pt] | ||
| + | ~x~~y~ | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | | | + | | | 
| − | | | + | <math>\begin{matrix} | 
| − | + | f_3 | |
| − | | | + | \\[4pt] | 
| − | + | f_{12} | |
| − | | | + | \end{matrix}</math> | 
| − | + | | | |
| − | | | + | <math>\begin{matrix} | 
| − | + | (x) | |
| + | \\[4pt] | ||
| + | ~x~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~x~ | ||
| + | \\[4pt] | ||
| + | (x) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~x~ | ||
| + | \\[4pt] | ||
| + | (x) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (x) | ||
| + | \\[4pt] | ||
| + | ~x~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (x) | ||
| + | \\[4pt] | ||
| + | ~x~ | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | | | + | | | 
| − | | | + | <math>\begin{matrix} | 
| − | + | f_6 | |
| − | | | + | \\[4pt] | 
| − | + | f_9 | |
| − | + | \end{matrix}</math> | |
| − | < | + | | | 
| − | + | <math>\begin{matrix} | |
| − | { | + | ~(x,~y)~ | 
| − | + | \\[4pt] | |
| − | + | ((x,~y)) | |
| − | + | \end{matrix}</math> | |
| − | | | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | ~(x,~y)~ | |
| − | + | \\[4pt] | |
| − | + | ((x,~y)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| + | <math>\begin{matrix} | ||
| + | ((x,~y)) | ||
| + | \\[4pt] | ||
| + | ~(x,~y)~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((x,~y)) | ||
| + | \\[4pt] | ||
| + | ~(x,~y)~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~(x,~y)~ | ||
| + | \\[4pt] | ||
| + | ((x,~y)) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | |  | + | <math>\begin{matrix} | 
| − | + | f_5 | |
| − | + | \\[4pt] | |
| − | | | + | f_{10} | 
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (y) | |
| + | \\[4pt] | ||
| + | ~y~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~y~ | ||
| + | \\[4pt] | ||
| + | (y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (y) | ||
| + | \\[4pt] | ||
| + | ~y~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~y~ | ||
| + | \\[4pt] | ||
| + | (y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (y) | ||
| + | \\[4pt] | ||
| + | ~y~ | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | f_7 | |
| − | + | \\[4pt] | |
| − | | | + | f_{11} | 
| − | + | \\[4pt] | |
| − | + | f_{13} | |
| − | + | \\[4pt] | |
| − | + | f_{14} | |
| − | | | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (~x~~y~) | |
| − | + | \\[4pt] | |
| + | (~x~(y)) | ||
| + | \\[4pt] | ||
| + | ((x)~y~) | ||
| + | \\[4pt] | ||
| + | ((x)(y)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((x)(y)) | ||
| + | \\[4pt] | ||
| + | ((x)~y~) | ||
| + | \\[4pt] | ||
| + | (~x~(y)) | ||
| + | \\[4pt] | ||
| + | (~x~~y~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((x)~y~) | ||
| + | \\[4pt] | ||
| + | ((x)(y)) | ||
| + | \\[4pt] | ||
| + | (~x~~y~) | ||
| + | \\[4pt] | ||
| + | (~x~(y)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~x~(y)) | ||
| + | \\[4pt] | ||
| + | (~x~~y~) | ||
| + | \\[4pt] | ||
| + | ((x)(y)) | ||
| + | \\[4pt] | ||
| + | ((x)~y~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~x~~y~) | ||
| + | \\[4pt] | ||
| + | (~x~(y)) | ||
| + | \\[4pt] | ||
| + | ((x)~y~) | ||
| + | \\[4pt] | ||
| + | ((x)(y)) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{15}\!</math> | 
| − | | | + | | <math>((~))</math> | 
| − | | | + | | <math>((~))</math> | 
| − | | | + | | <math>((~))</math> | 
| − | | | + | | <math>((~))</math> | 
| − | |  | + | | <math>((~))</math> | 
| − | | | + | |- style="background:#f0f0ff" | 
| − | | | + | | colspan="2" | <math>\text{Fixed Point Total}\!</math> | 
| − | | | + | | <math>4\!</math> | 
| + | | <math>4\!</math> | ||
| + | | <math>4\!</math> | ||
| + | | <math>16\!</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
| + | |+ <math>\text{Table A4.}~~\operatorname{D}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}x, \operatorname{d}y \}</math> | ||
| + | |- style="background:#f0f0ff" | ||
| + | | width="10%" |   | ||
| + | | width="18%" | <math>f\!</math> | ||
| + | | width="18%" | | ||
| + | <math>\operatorname{D}f|_{\operatorname{d}x~\operatorname{d}y}</math> | ||
| + | | width="18%" | | ||
| + | <math>\operatorname{D}f|_{\operatorname{d}x(\operatorname{d}y)}</math> | ||
| + | | width="18%" | | ||
| + | <math>\operatorname{D}f|_{(\operatorname{d}x)\operatorname{d}y}</math> | ||
| + | | width="18%" | | ||
| + | <math>\operatorname{D}f|_{(\operatorname{d}x)(\operatorname{d}y)}</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_0\!</math> | 
| − | | | + | | <math>(~)</math> | 
| − | | | + | | <math>(~)</math> | 
| − | | | + | | <math>(~)</math> | 
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | f_1 | |
| − | + | \\[4pt] | |
| − | + | f_2 | |
| − | + | \\[4pt] | |
| − | + | f_4 | |
| − | + | \\[4pt] | |
| − | + | f_8 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (x)(y) | |
| − | + | \\[4pt] | |
| − | | | + | (x)~y~ | 
| − | + | \\[4pt] | |
| − | + | ~x~(y) | |
| − | + | \\[4pt] | |
| − | + | ~x~~y~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | | | + | <math>\begin{matrix} | 
| − | + | ((x,~y)) | |
| − | + | \\[4pt] | |
| − | + | ~(x,~y)~ | |
| − | + | \\[4pt] | |
| − | + | ~(x,~y)~ | |
| − | + | \\[4pt] | |
| − | + | ((x,~y)) | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | (y) | |
| − | + | \\[4pt] | |
| − | | | + | ~y~ | 
| − | + | \\[4pt] | |
| − | + | (y) | |
| − | + | \\[4pt] | |
| − | + | ~y~ | |
| − | + | \end{matrix}</math> | |
| − | < | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | (x) | |
| − | + | \\[4pt] | |
| − | + | (x) | |
| − | + | \\[4pt] | |
| − | + | ~x~ | |
| − | + | \\[4pt] | |
| − | + | ~x~ | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | f_3 | |
| − | | | + | \\[4pt] | 
| − | + | f_{12} | |
| − | | | + | \end{matrix}</math> | 
| − | + | | | |
| + | <math>\begin{matrix} | ||
| + | (x) | ||
| + | \\[4pt] | ||
| + | ~x~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((~)) | ||
| + | \\[4pt] | ||
| + | ((~)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((~)) | ||
| + | \\[4pt] | ||
| + | ((~)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | f_6 | |
| − | | | + | \\[4pt] | 
| − | + | f_9 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | | | + | <math>\begin{matrix} | 
| − | + | ~(x,~y)~ | |
| − | + | \\[4pt] | |
| − | + | ((x,~y)) | |
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((~)) | ||
| + | \\[4pt] | ||
| + | ((~)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((~)) | ||
| + | \\[4pt] | ||
| + | ((~)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | f_5 | |
| − | | | + | \\[4pt] | 
| − | + | f_{10} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | | | + | <math>\begin{matrix} | 
| − | + | (y) | |
| − | + | \\[4pt] | |
| − | + | ~y~ | |
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((~)) | ||
| + | \\[4pt] | ||
| + | ((~)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((~)) | ||
| + | \\[4pt] | ||
| + | ((~)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | f_7 | |
| − | + | \\[4pt] | |
| − | + | f_{11} | |
| − | | | + | \\[4pt] | 
| − | + | f_{13} | |
| − | | | + | \\[4pt] | 
| − | + | f_{14} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| + | <math>\begin{matrix} | ||
| + | ~(x~~y)~ | ||
| + | \\[4pt] | ||
| + | ~(x~(y)) | ||
| + | \\[4pt] | ||
| + | ((x)~y)~ | ||
| + | \\[4pt] | ||
| + | ((x)(y)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((x,~y)) | ||
| + | \\[4pt] | ||
| + | ~(x,~y)~ | ||
| + | \\[4pt] | ||
| + | ~(x,~y)~ | ||
| + | \\[4pt] | ||
| + | ((x,~y)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~y~ | ||
| + | \\[4pt] | ||
| + | (y) | ||
| + | \\[4pt] | ||
| + | ~y~ | ||
| + | \\[4pt] | ||
| + | (y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~x~ | ||
| + | \\[4pt] | ||
| + | ~x~ | ||
| + | \\[4pt] | ||
| + | (x) | ||
| + | \\[4pt] | ||
| + | (x) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \\[4pt] | ||
| + | (~) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{15}\!</math> | 
| − | | | + | | <math>((~))</math> | 
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | + | | <math>(~)</math> | |
| − | | | + | | <math>(~)</math> | 
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |  | ||
| − | |||
| − | |||
| |} | |} | ||
| + | |||
| <br> | <br> | ||
| − | {| align="center" border="1" cellpadding=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | 
| − | |+  | + | |+ <math>\text{Table A5.}~~\operatorname{E}f ~\text{Expanded Over Ordinary Features}~ \{ x, y \}</math> | 
| − | |- style="background: | + | |- style="background:#f0f0ff" | 
| − | |  | + | | width="10%" |   | 
| − | | | + | | width="18%" | <math>f\!</math> | 
| − | | | + | | width="18%" | <math>\operatorname{E}f|_{xy}</math> | 
| − | | | + | | width="18%" | <math>\operatorname{E}f|_{x(y)}</math> | 
| − | |  | + | | width="18%" | <math>\operatorname{E}f|_{(x)y}</math> | 
| − | | | + | | width="18%" | <math>\operatorname{E}f|_{(x)(y)}</math> | 
| |- | |- | ||
| − | |  | + | | <math>f_0\!</math> | 
| − | |  | + | | <math>(~)</math> | 
| − | |  | + | | <math>(~)</math> | 
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| + | | <math>(~)</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | | | + | <math>\begin{matrix} | 
| − | + | f_1 | |
| + | \\[4pt] | ||
| + | f_2 | ||
| + | \\[4pt] | ||
| + | f_4 | ||
| + | \\[4pt] | ||
| + | f_8 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (x)(y) | ||
| + | \\[4pt] | ||
| + | (x)~y~ | ||
| + | \\[4pt] | ||
| + | ~x~(y) | ||
| + | \\[4pt] | ||
| + | ~x~~y~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~\operatorname{d}x~~\operatorname{d}y~ | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}x~(\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x)~\operatorname{d}y~ | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x)(\operatorname{d}y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~\operatorname{d}x~(\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}x~~\operatorname{d}y~ | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x)(\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x)~\operatorname{d}y~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}x)~\operatorname{d}y~ | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x)(\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}x~~\operatorname{d}y~ | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}x~(\operatorname{d}y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}x)(\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x)~\operatorname{d}y~ | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}x~(\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}x~~\operatorname{d}y~ | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | | | + | <math>\begin{matrix} | 
| − | + | f_3 | |
| + | \\[4pt] | ||
| + | f_{12} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (x) | ||
| + | \\[4pt] | ||
| + | ~x~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~\operatorname{d}x~ | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~\operatorname{d}x~ | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}x) | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}x~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}x) | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}x~ | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | f_6 | |
| − | | | + | \\[4pt] | 
| − | + | f_9 | |
| − | + | \end{matrix}</math> | |
| − | | | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | ~(x,~y)~ | |
| − | + | \\[4pt] | |
| − | + | ((x,~y)) | |
| − | | | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | ~(\operatorname{d}x,~\operatorname{d}y)~ | |
| + | \\[4pt] | ||
| + | ((\operatorname{d}x,~\operatorname{d}y)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((\operatorname{d}x,~\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}x,~\operatorname{d}y)~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((\operatorname{d}x,~\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}x,~\operatorname{d}y)~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~(\operatorname{d}x,~\operatorname{d}y)~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x,~\operatorname{d}y)) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | | | + | <math>\begin{matrix} | 
| − | + | f_5 | |
| + | \\[4pt] | ||
| + | f_{10} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (y) | ||
| + | \\[4pt] | ||
| + | ~y~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~\operatorname{d}y~ | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}y~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~\operatorname{d}y~ | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | ~\operatorname{d}y~ | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | | | + | <math>\begin{matrix} | 
| − | + | f_7 | |
| + | \\[4pt] | ||
| + | f_{11} | ||
| + | \\[4pt] | ||
| + | f_{13} | ||
| + | \\[4pt] | ||
| + | f_{14} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~x~~y~) | ||
| + | \\[4pt] | ||
| + | (~x~(y)) | ||
| + | \\[4pt] | ||
| + | ((x)~y~) | ||
| + | \\[4pt] | ||
| + | ((x)(y)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)~\operatorname{d}y~) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}x~(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}x~~\operatorname{d}y~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((\operatorname{d}x)~\operatorname{d}y~) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}x~~\operatorname{d}y~) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}x~(\operatorname{d}y)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~\operatorname{d}x~(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}x~~\operatorname{d}y~) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)~\operatorname{d}y~) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (~\operatorname{d}x~~\operatorname{d}y~) | ||
| + | \\[4pt] | ||
| + | (~\operatorname{d}x~(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)~\operatorname{d}y~) | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{15}\!</math> | 
| − | + | | <math>((~))</math> | |
| − | + | | <math>((~))</math> | |
| − | + | | <math>((~))</math> | |
| − | + | | <math>((~))</math> | |
| − | + | | <math>((~))</math> | |
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |} | |} | ||
| + | |||
| <br> | <br> | ||
| − | {| align="center" border="1" cellpadding=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | 
| − | |+  | + | |+ <math>\text{Table A6.}~~\operatorname{D}f ~\text{Expanded Over Ordinary Features}~ \{ x, y \}</math> | 
| − | |  | + | |- style="background:#f0f0ff" | 
| − | |  | + | | width="10%" |   | 
| − | |  | + | | width="18%" | <math>f\!</math> | 
| − | |  | + | | width="18%" | <math>\operatorname{D}f|_{xy}</math> | 
| − | |  | + | | width="18%" | <math>\operatorname{D}f|_{x(y)}</math> | 
| + | | width="18%" | <math>\operatorname{D}f|_{(x)y}</math> | ||
| + | | width="18%" | <math>\operatorname{D}f|_{(x)(y)}</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_0\!</math> | 
| − | |  | + | | <math>(~)</math> | 
| − | |  | + | | <math>(~)</math> | 
| − | |  | + | | <math>(~)</math> | 
| − | |  | + | | <math>(~)</math> | 
| + | | <math>(~)</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | |  | + | <math>\begin{matrix} | 
| − | |  | + | f_1 | 
| − | | x  | + | \\[4pt] | 
| − | + | f_2 | |
| + | \\[4pt] | ||
| + | f_4 | ||
| + | \\[4pt] | ||
| + | f_8 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (x)(y) | ||
| + | \\[4pt] | ||
| + | (x)~y~ | ||
| + | \\[4pt] | ||
| + | ~x~(y) | ||
| + | \\[4pt] | ||
| + | ~x~~y~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | |  | + | <math>\begin{matrix} | 
| − | + | f_3 | |
| − | + | \\[4pt] | |
| − | |  | + | f_{12} | 
| − | |} | + | \end{matrix}</math> | 
| − | < | + | | | 
| − | + | <math>\begin{matrix} | |
| − | { | + | (x) | 
| − | + | \\[4pt] | |
| − | + | ~x~ | |
| − | + | \end{matrix}</math> | |
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}x | ||
| + | \\[4pt] | ||
| + | \operatorname{d}x | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}x | ||
| + | \\[4pt] | ||
| + | \operatorname{d}x | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}x | ||
| + | \\[4pt] | ||
| + | \operatorname{d}x | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}x | ||
| + | \\[4pt] | ||
| + | \operatorname{d}x | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | |  | + | <math>\begin{matrix} | 
| − | + | f_6 | |
| − | |  | + | \\[4pt] | 
| − | + | f_9 | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | |  | + | ~(x,~y)~ | 
| − | + | \\[4pt] | |
| − | + | ((x,~y)) | |
| − | + | \end{matrix}</math> | |
| − | |  | + | | | 
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}x,~\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x,~\operatorname{d}y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}x,~\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x,~\operatorname{d}y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}x,~\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x,~\operatorname{d}y) | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\operatorname{d}x,~\operatorname{d}y) | ||
| + | \\[4pt] | ||
| + | (\operatorname{d}x,~\operatorname{d}y) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | |  | + | <math>\begin{matrix} | 
| − | + | f_5 | |
| − | + | \\[4pt] | |
| − | + | f_{10} | |
| − | |  | + | \end{matrix}</math> | 
| − | | | + | | | 
| − | + | <math>\begin{matrix} | |
| − | + | (y) | |
| − | + | \\[4pt] | |
| − | |  | + | ~y~ | 
| − | + | \end{matrix}</math> | |
| − | |  | + | | | 
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}y | ||
| + | \\[4pt] | ||
| + | \operatorname{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}y | ||
| + | \\[4pt] | ||
| + | \operatorname{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}y | ||
| + | \\[4pt] | ||
| + | \operatorname{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \operatorname{d}y | ||
| + | \\[4pt] | ||
| + | \operatorname{d}y | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | |  | + | <math>\begin{matrix} | 
| − | + | f_7 | |
| − | + | \\[4pt] | |
| − | + | f_{11} | |
| − | |  | + | \\[4pt] | 
| − | | | + | f_{13} | 
| − | + | \\[4pt] | |
| − | + | f_{14} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | |  | + | (~x~~y~) | 
| − | | | + | \\[4pt] | 
| − | + | (~x~(y)) | |
| − | + | \\[4pt] | |
| − | + | ((x)~y~) | |
| − | + | \\[4pt] | |
| − | + | ((x)(y)) | |
| − | + | \end{matrix}</math> | |
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
| + | \\[4pt] | ||
| + | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
| + | \\[4pt] | ||
| + | ((\operatorname{d}x)(\operatorname{d}y)) | ||
| + | \end{matrix}</math> | ||
| |- | |- | ||
| − | |  | + | | <math>f_{15}\!</math> | 
| − | |  | + | | <math>((~))</math> | 
| − | |  | + | | <math>((~))</math> | 
| − | |  | + | | <math>((~))</math> | 
| − | |  | + | | <math>((~))</math> | 
| − | |  | + | | <math>((~))</math> | 
| |} | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | ===Klein Four-Group V<sub>4</sub>=== | ||
| + | |||
| <br> | <br> | ||
| − | {| align="center | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | 
| − | | | + | |- style="height:50px" | 
| − | | | + | | width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> | 
| − | |  | + | | width="22%" style="border-bottom:1px solid black" | | 
| − | + | <math>\operatorname{T}_{00}</math> | |
| − | |  | + | | width="22%" style="border-bottom:1px solid black" | | 
| − | |  | + | <math>\operatorname{T}_{01}</math> | 
| − | |  | + | | width="22%" style="border-bottom:1px solid black" | | 
| − | |  | + | <math>\operatorname{T}_{10}</math> | 
| − | |  | + | | width="22%" style="border-bottom:1px solid black" | | 
| − | |  | + | <math>\operatorname{T}_{11}</math> | 
| − | |  | + | |- style="height:50px" | 
| − | |- style=" | + | | style="border-right:1px solid black" | <math>\operatorname{T}_{00}</math> | 
| − | |  | + | | <math>\operatorname{T}_{00}</math> | 
| − | |  | + | | <math>\operatorname{T}_{01}</math> | 
| − | |  | + | | <math>\operatorname{T}_{10}</math> | 
| − | |  | + | | <math>\operatorname{T}_{11}</math> | 
| − | |  | + | |- style="height:50px" | 
| − | |  | + | | style="border-right:1px solid black" | <math>\operatorname{T}_{01}</math> | 
| − | |  | + | | <math>\operatorname{T}_{01}</math> | 
| − | | align=left |  | + | | <math>\operatorname{T}_{00}</math> | 
| − | |  | + | | <math>\operatorname{T}_{11}</math> | 
| − | |- | + | | <math>\operatorname{T}_{10}</math> | 
| − | + | |- style="height:50px" | |
| − | |  | + | | style="border-right:1px solid black" | <math>\operatorname{T}_{10}</math> | 
| − | |- | + | | <math>\operatorname{T}_{10}</math> | 
| − | |  | + | | <math>\operatorname{T}_{11}</math> | 
| − | |  | + | | <math>\operatorname{T}_{00}</math> | 
| + | | <math>\operatorname{T}_{01}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{T}_{11}</math> | ||
| + | | <math>\operatorname{T}_{11}</math> | ||
| + | | <math>\operatorname{T}_{10}</math> | ||
| + | | <math>\operatorname{T}_{01}</math> | ||
| + | | <math>\operatorname{T}_{00}</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| + | |- style="height:50px" | ||
| + | | width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> | ||
| + | | width="22%" style="border-bottom:1px solid black" | | ||
| + | <math>\operatorname{e}</math> | ||
| + | | width="22%" style="border-bottom:1px solid black" | | ||
| + | <math>\operatorname{f}</math> | ||
| + | | width="22%" style="border-bottom:1px solid black" | | ||
| + | <math>\operatorname{g}</math> | ||
| + | | width="22%" style="border-bottom:1px solid black" | | ||
| + | <math>\operatorname{h}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
| + | | <math>\operatorname{e}</math> | ||
| + | | <math>\operatorname{f}</math> | ||
| + | | <math>\operatorname{g}</math> | ||
| + | | <math>\operatorname{h}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
| + | | <math>\operatorname{f}</math> | ||
| + | | <math>\operatorname{e}</math> | ||
| + | | <math>\operatorname{h}</math> | ||
| + | | <math>\operatorname{g}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
| + | | <math>\operatorname{g}</math> | ||
| + | | <math>\operatorname{h}</math> | ||
| + | | <math>\operatorname{e}</math> | ||
| + | | <math>\operatorname{f}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
| + | | <math>\operatorname{h}</math> | ||
| + | | <math>\operatorname{g}</math> | ||
| + | | <math>\operatorname{f}</math> | ||
| + | | <math>\operatorname{e}</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | ===Symmetric Group S<sub>3</sub>=== | ||
| + | |||
| + | <br> | ||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
| + | |+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}</math> | ||
| + | |- style="background:#f0f0ff" | ||
| + | | width="16%" | <math>\operatorname{e}</math> | ||
| + | | width="16%" | <math>\operatorname{f}</math> | ||
| + | | width="16%" | <math>\operatorname{g}</math> | ||
| + | | width="16%" | <math>\operatorname{h}</math> | ||
| + | | width="16%" | <math>\operatorname{i}</math> | ||
| + | | width="16%" | <math>\operatorname{j}</math> | ||
| |- | |- | ||
| − | |  | + | | | 
| − | + | <math>\begin{matrix} | |
| − | | | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | 
| − | + | \\[3pt] | |
| − | |  | + | \downarrow & \downarrow & \downarrow | 
| − | + | \\[6pt] | |
| − | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
| − | + | \\[3pt] | |
| − | + | \downarrow & \downarrow & \downarrow | |
| − | |  | + | \\[6pt] | 
| − | + | \mathrm{C} & \mathrm{A} & \mathrm{B} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
| − | + | \\[3pt] | |
| − | + | \downarrow & \downarrow & \downarrow | |
| − | + | \\[6pt] | |
| − | + | \mathrm{B} & \mathrm{C} & \mathrm{A} | |
| − | | | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
| − | + | \\[3pt] | |
| − | + | \downarrow & \downarrow & \downarrow | |
| − | + | \\[6pt] | |
| − | + | \mathrm{A} & \mathrm{C} & \mathrm{B} | |
| − | |  | + | \end{matrix}</math> | 
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
| − | + | \\[3pt] | |
| − | + | \downarrow & \downarrow & \downarrow | |
| − | + | \\[6pt] | |
| − | + | \mathrm{C} & \mathrm{B} & \mathrm{A} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| + | <math>\begin{matrix} | ||
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} | ||
| + | \\[3pt] | ||
| + | \downarrow & \downarrow & \downarrow | ||
| + | \\[6pt] | ||
| + | \mathrm{B} & \mathrm{A} & \mathrm{C} | ||
| + | \end{matrix}</math> | ||
| |} | |} | ||
| + | |||
| <br> | <br> | ||
| − | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
| − | + | |+ <math>\text{Matrix Representations of Permutations in}~ \operatorname{Sym}(3)</math> | |
| − | + | |- style="background:#f0f0ff" | |
| − | + | | width="16%" | <math>\operatorname{e}</math> | |
| − | + | | width="16%" | <math>\operatorname{f}</math> | |
| − | + | | width="16%" | <math>\operatorname{g}</math> | |
| − | + | | width="16%" | <math>\operatorname{h}</math> | |
| − | + | | width="16%" | <math>\operatorname{i}</math> | |
| − | + | | width="16%" | <math>\operatorname{j}</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | 1 & 0 & 0 | |
| − | + | \\ | |
| − | + | 0 & 1 & 0 | |
| + | \\ | ||
| + | 0 & 0 & 1 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0 & 0 & 1 | ||
| + | \\ | ||
| + | 1 & 0 & 0 | ||
| + | \\ | ||
| + | 0 & 1 & 0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0 & 1 & 0 | ||
| + | \\ | ||
| + | 0 & 0 & 1 | ||
| + | \\ | ||
| + | 1 & 0 & 0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 1 & 0 & 0 | ||
| + | \\ | ||
| + | 0 & 0 & 1 | ||
| + | \\ | ||
| + | 0 & 1 & 0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0 & 0 & 1 | ||
| + | \\ | ||
| + | 0 & 1 & 0 | ||
| + | \\ | ||
| + | 1 & 0 & 0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0 & 1 & 0 | ||
| + | \\ | ||
| + | 1 & 0 & 0 | ||
| + | \\ | ||
| + | 0 & 0 & 1 | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| + | |||
| <br> | <br> | ||
| − | + | <pre> | |
| − | + | Symmetric Group S_3 | |
| − | + | o-------------------------------------------------o | |
| − | + | |                                                 | | |
| − | + | |                        ^                        | | |
| − | + | |                     e / \ e                     | | |
| − | + | |                      /   \                      | | |
| − | + | |                     /  e  \                     | | |
| − | + | |                  f / \   / \ f                  | | |
| − | + | |                   /   \ /   \                   | | |
| − |   |  | + | |                  /  f  \  f  \                  | | 
| − | + | |               g / \   / \   / \ g               | | |
| − | + | |                /   \ /   \ /   \                | | |
| − | + | |               /  g  \  g  \  g  \               | | |
| − | + | |            h / \   / \   / \   / \ h            | | |
| − | + | |             /   \ /   \ /   \ /   \             | | |
| − | + | |            /  h  \  e  \  e  \  h  \            | | |
| − | + | |         i / \   / \   / \   / \   / \ i         | | |
| − | + | |          /   \ /   \ /   \ /   \ /   \          | | |
| − | + | |         /  i  \  i  \  f  \  j  \  i  \         | | |
| − | + | |      j / \   / \   / \   / \   / \   / \ j      | | |
| − | + | |       /   \ /   \ /   \ /   \ /   \ /   \       | | |
| − | + | |      (  j  \  j  \  j  \  i  \  h  \  j  )      | | |
| − | + | |       \   / \   / \   / \   / \   / \   /       | | |
| − | + | |        \ /   \ /   \ /   \ /   \ /   \ /        | | |
| − | + | |         \  h  \  h  \  e  \  j  \  i  /         | | |
| − | + | |          \   / \   / \   / \   / \   /          | | |
| − | + | |           \ /   \ /   \ /   \ /   \ /           | | |
| − | + | |            \  i  \  g  \  f  \  h  /            | | |
| − | + | |             \   / \   / \   / \   /             | | |
| − | + | |              \ /   \ /   \ /   \ /              | | |
| − | + | |               \  f  \  e  \  g  /               | | |
| − | + | |                \   / \   / \   /                | | |
| − | + | |                 \ /   \ /   \ /                 | | |
| − | + | |                  \  g  \  f  /                  | | |
| − | + | |                   \   / \   /                   | | |
| − | + | |                    \ /   \ /                    | | |
| − |   |  | + | |                     \  e  /                     | | 
| − | + | |                      \   /                      | | |
| − | + | |                       \ /                       | | |
| − | + | |                        v                        | | |
| − | + | |                                                 | | |
| − | + | o-------------------------------------------------o | |
| − | + | </pre> | |
| − | + | ||
| − | + | <br> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | <br> | ||
| − | + | ===TeX Tables=== | |
| − | + | ||
| − | + | <pre> | |
| − | + | \tableofcontents | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | \subsection{Table A1.  Propositional Forms on Two Variables} | |
| − | + | ||
| − | + | Table A1 lists equivalent expressions for the Boolean functions of two variables in a number of different notational systems. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | \begin{quote}\begin{tabular}{|c|c|c|c|c|c|c|} | |
| − | + | \multicolumn{7}{c}{\textbf{Table A1.  Propositional Forms on Two Variables}} \\ | |
| − | + | \hline | |
| − | + | $\mathcal{L}_1$ & | |
| − | + | $\mathcal{L}_2$ && | |
| − | + | $\mathcal{L}_3$ & | |
| − | + | $\mathcal{L}_4$ & | |
| − | + | $\mathcal{L}_5$ & | |
| − | + | $\mathcal{L}_6$ \\ | |
| − | + | \hline | |
| − | + | & & $x =$ & 1 1 0 0 & & & \\ | |
| − | + | & & $y =$ & 1 0 1 0 & & & \\ | |
| − | + | \hline | |
| − | + | $f_{0}$     & | |
| − | + | $f_{0000}$  && | |
| − | + | 0 0 0 0     & | |
| − | + | $(~)$       & | |
| − | + | $\operatorname{false}$ & | |
| − | + | $0$         \\ | |
| − | + | $f_{1}$     & | |
| − | + | $f_{0001}$  && | |
| − | + | 0 0 0 1     & | |
| − | + | $(x)(y)$    & | |
| − | + | $\operatorname{neither}\ x\ \operatorname{nor}\ y$ & | |
| − | + | $\lnot x \land \lnot y$ \\ | |
| − | + | $f_{2}$     & | |
| − | + | $f_{0010}$  && | |
| − | + | 0 0 1 0     & | |
| − | + | $(x)\ y$    & | |
| − | + | $y\ \operatorname{without}\ x$ & | |
| − | + | $\lnot x \land y$ \\ | |
| − | + | $f_{3}$     & | |
| − | + | $f_{0011}$  && | |
| − | + | 0 0 1 1     & | |
| − | + | $(x)$       & | |
| − | + | $\operatorname{not}\ x$ & | |
| − | + | $\lnot x$   \\ | |
| − | + | $f_{4}$     & | |
| − | + | $f_{0100}$  && | |
| − | + | 0 1 0 0     & | |
| − | + | $x\ (y)$    & | |
| − | + | $x\ \operatorname{without}\ y$ & | |
| − | + | $x \land \lnot y$ \\ | |
| − | + | $f_{5}$     & | |
| − | + | $f_{0101}$  && | |
| − | + | 0 1 0 1     & | |
| − | + | $(y)$       & | |
| − | + | $\operatorname{not}\ y$ & | |
| − | + | $\lnot y$   \\ | |
| − | + | $f_{6}$     & | |
| − | + | $f_{0110}$  && | |
| − | + | 0 1 1 0     & | |
| − | + | $(x,\ y)$   & | |
| − | + | $x\ \operatorname{not~equal~to}\ y$ & | |
| − | + | $x \ne y$   \\ | |
| − | + | $f_{7}$     & | |
| − | + | $f_{0111}$  && | |
| − | + | 0 1 1 1     & | |
| − | + | $(x\ y)$    & | |
| − | + | $\operatorname{not~both}\ x\ \operatorname{and}\ y$ & | |
| − | + | $\lnot x \lor \lnot y$ \\ | |
| − | + | \hline | |
| − | + | $f_{8}$     & | |
| − | + | $f_{1000}$  && | |
| − | + | 1 0 0 0     & | |
| − | + | $x\ y$      & | |
| − | + | $x\ \operatorname{and}\ y$ & | |
| − | + | $x \land y$ \\ | |
| − | + | $f_{9}$     & | |
| − | + | $f_{1001}$  && | |
| − | + | 1 0 0 1     & | |
| − | + | $((x,\ y))$ & | |
| − | + | $x\ \operatorname{equal~to}\ y$ & | |
| − | + | $x = y$     \\ | |
| − | + | $f_{10}$    & | |
| − | + | $f_{1010}$  && | |
| − | + | 1 0 1 0     & | |
| − | + | $y$         & | |
| − | + | $y$         & | |
| − | + | $y$         \\ | |
| − | + | $f_{11}$    & | |
| − | + | $f_{1011}$  && | |
| − | + | 1 0 1 1     & | |
| − | + | $(x\ (y))$  & | |
| − | + | $\operatorname{not}\ x\ \operatorname{without}\ y$ & | |
| − | + | $x \Rightarrow y$ \\ | |
| + | $f_{12}$    & | ||
| + | $f_{1100}$  && | ||
| + | 1 1 0 0     & | ||
| + | $x$         & | ||
| + | $x$         & | ||
| + | $x$         \\ | ||
| + | $f_{13}$    & | ||
| + | $f_{1101}$  && | ||
| + | 1 1 0 1     & | ||
| + | $((x)\ y)$  & | ||
| + | $\operatorname{not}\ y\ \operatorname{without}\ x$ & | ||
| + | $x \Leftarrow y$ \\ | ||
| + | $f_{14}$    & | ||
| + | $f_{1110}$  && | ||
| + | 1 1 1 0     & | ||
| + | $((x)(y))$  & | ||
| + | $x\ \operatorname{or}\ y$ & | ||
| + | $x \lor y$  \\ | ||
| + | $f_{15}$    & | ||
| + | $f_{1111}$  && | ||
| + | 1 1 1 1     & | ||
| + | $((~))$     & | ||
| + | $\operatorname{true}$ & | ||
| + | $1$         \\ | ||
| + | \hline | ||
| + | \end{tabular}\end{quote} | ||
| + | |||
| + | \subsection{Table A2.  Propositional Forms on Two Variables} | ||
| + | |||
| + | Table A2 lists the sixteen Boolean functions of two variables in a different order, grouping them by structural similarity into seven natural classes. | ||
| − | + | \begin{quote}\begin{tabular}{|c|c|c|c|c|c|c|} | |
| − | + | \multicolumn{7}{c}{\textbf{Table A2.  Propositional Forms on Two Variables}} \\ | |
| − | + | \hline | |
| − | + | $\mathcal{L}_1$ & | |
| − | + | $\mathcal{L}_2$ && | |
| − | + | $\mathcal{L}_3$ & | |
| − | + | $\mathcal{L}_4$ & | |
| − | + | $\mathcal{L}_5$ & | |
| − | + | $\mathcal{L}_6$ \\ | |
| − | + | \hline | |
| − | + | & & $x =$ & 1 1 0 0 & & & \\ | |
| − | + | & & $y =$ & 1 0 1 0 & & & \\ | |
| − | + | \hline | |
| − | + | $f_{0}$     & | |
| − | + | $f_{0000}$  && | |
| − | + | 0 0 0 0     & | |
| − | + | $(~)$       & | |
| − | + | $\operatorname{false}$ & | |
| − | + | $0$         \\ | |
| − | + | \hline | |
| − | + | $f_{1}$     & | |
| − | + | $f_{0001}$  && | |
| − | + | 0 0 0 1     & | |
| − | + | $(x)(y)$    & | |
| − | + | $\operatorname{neither}\ x\ \operatorname{nor}\ y$ & | |
| − | + | $\lnot x \land \lnot y$ \\ | |
| − | + | $f_{2}$     & | |
| − | + | $f_{0010}$  && | |
| − | + | 0 0 1 0     & | |
| − | + | $(x)\ y$    & | |
| − | + | $y\ \operatorname{without}\ x$ & | |
| − | + | $\lnot x \land y$ \\ | |
| − | + | $f_{4}$     & | |
| − | + | $f_{0100}$  && | |
| − | + | 0 1 0 0     & | |
| − | + | $x\ (y)$    & | |
| − | + | $x\ \operatorname{without}\ y$ & | |
| − | + | $x \land \lnot y$ \\ | |
| − | + | $f_{8}$     & | |
| − | + | $f_{1000}$  && | |
| − | + | 1 0 0 0     & | |
| − | + | $x\ y$      & | |
| − | + | $x\ \operatorname{and}\ y$ & | |
| − | + | $x \land y$ \\ | |
| − | { | + | \hline | 
| − | + | $f_{3}$     & | |
| − | + | $f_{0011}$  && | |
| − | + | 0 0 1 1     & | |
| − | + | $(x)$       & | |
| − | + | $\operatorname{not}\ x$ & | |
| − | + | $\lnot x$   \\ | |
| − | + | $f_{12}$    & | |
| − | + | $f_{1100}$  && | |
| − | + | 1 1 0 0     & | |
| − | + | $x$         & | |
| − | + | $x$         & | |
| − | + | $x$         \\ | |
| − | + | \hline | |
| − | + | $f_{6}$     & | |
| − | + | $f_{0110}$  && | |
| − | + | 0 1 1 0     & | |
| − | + | $(x,\ y)$   & | |
| − | + | $x\ \operatorname{not~equal~to}\ y$ & | |
| − | |  | + | $x \ne y$   \\ | 
| − | |  | + | $f_{9}$     & | 
| − | |  | + | $f_{1001}$  && | 
| − | |  | + | 1 0 0 1     & | 
| − | | | + | $((x,\ y))$ & | 
| − | |  | + | $x\ \operatorname{equal~to}\ y$ & | 
| − | + | $x = y$     \\ | |
| − | + | \hline | |
| − | + | $f_{5}$     & | |
| − | + | $f_{0101}$  && | |
| − | + | 0 1 0 1     & | |
| − | + | $(y)$       & | |
| − | + | $\operatorname{not}\ y$ & | |
| − | + | $\lnot y$   \\ | |
| − | + | $f_{10}$    & | |
| − | + | $f_{1010}$  && | |
| − | + | 1 0 1 0     & | |
| − | + | $y$         & | |
| − | + | $y$         & | |
| − | + | $y$         \\ | |
| − | + | \hline | |
| − | + | $f_{7}$     & | |
| − | + | $f_{0111}$  && | |
| − | + | 0 1 1 1     & | |
| − | + | $(x\ y)$    & | |
| − | + | $\operatorname{not~both}\ x\ \operatorname{and}\ y$ & | |
| − | + | $\lnot x \lor \lnot y$ \\ | |
| − | + | $f_{11}$    & | |
| − | + | $f_{1011}$  && | |
| − | + | 1 0 1 1     & | |
| − | + | $(x\ (y))$  & | |
| − | + | $\operatorname{not}\ x\ \operatorname{without}\ y$ & | |
| − | + | $x \Rightarrow y$ \\ | |
| − | + | $f_{13}$    & | |
| − | + | $f_{1101}$  && | |
| − | + | 1 1 0 1     & | |
| − | + | $((x)\ y)$  & | |
| − | + | $\operatorname{not}\ y\ \operatorname{without}\ x$ & | |
| − | + | $x \Leftarrow y$ \\ | |
| − | { | + | $f_{14}$    & | 
| − | + | $f_{1110}$  && | |
| − | + | 1 1 1 0     & | |
| − | + | $((x)(y))$  & | |
| − | + | $x\ \operatorname{or}\ y$ & | |
| − | + | $x \lor y$  \\ | |
| − | + | \hline | |
| − | + | $f_{15}$    & | |
| − | + | $f_{1111}$  && | |
| − | + | 1 1 1 1     & | |
| − | + | $((~))$     & | |
| − | + | $\operatorname{true}$ & | |
| − | + | $1$         \\ | |
| − | + | \hline | |
| − | + | \end{tabular}\end{quote} | |
| − | + | ||
| − | + | \subsection{Table A3.  $\operatorname{E}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$} | |
| − | + | ||
| − | + | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} | |
| − | + | \multicolumn{6}{c}{\textbf{Table A3.  $\operatorname{E}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$}} \\ | |
| − | + | \hline | |
| − | + | & & | |
| − | + | $\operatorname{T}_{11}$ & | |
| − | + | $\operatorname{T}_{10}$ & | |
| − | + | $\operatorname{T}_{01}$ & | |
| − | + | $\operatorname{T}_{00}$ \\ | |
| − | + | & $f$ & | |
| − | + | $\operatorname{E}f|_{\operatorname{d}x\ \operatorname{d}y}$   & | |
| − | + | $\operatorname{E}f|_{\operatorname{d}x (\operatorname{d}y)}$  & | |
| − | + | $\operatorname{E}f|_{(\operatorname{d}x) \operatorname{d}y}$  & | |
| − | + | $\operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)}$ \\ | |
| − | + | \hline | |
| − | + | $f_{0}$  & $(~)$       & $(~)$       & $(~)$       & $(~)$       & $(~)$       \\ | |
| − | + | \hline | |
| − | |  | + | $f_{1}$  & $(x)(y)$    & $x\ y$      & $x\ (y)$    & $(x)\ y$    & $(x)(y)$    \\ | 
| − | + | $f_{2}$  & $(x)\ y$    & $x\ (y)$    & $x\ y$      & $(x)(y)$    & $(x)\ y$    \\ | |
| − | + | $f_{4}$  & $x\ (y)$    & $(x)\ y$    & $(x)(y)$    & $x\ y$      & $x\ (y)$    \\ | |
| − | + | $f_{8}$  & $x\ y$      & $(x)(y)$    & $(x)\ y$    & $x\ (y)$    & $x\ y$      \\ | |
| − | + | \hline | |
| − | + | $f_{3}$  & $(x)$       & $x$         & $x$         & $(x)$       & $(x)$       \\ | |
| − | + | $f_{12}$ & $x$         & $(x)$       & $(x)$       & $x$         & $x$         \\ | |
| − | + | \hline | |
| − | + | $f_{6}$  & $(x,\ y)$   & $(x,\ y)$   & $((x,\ y))$ & $((x,\ y))$ & $(x,\ y)$   \\ | |
| − | + | $f_{9}$  & $((x,\ y))$ & $((x,\ y))$ & $(x,\ y)$   & $(x,\ y)$   & $((x,\ y))$ \\ | |
| − | + | \hline | |
| − | + | $f_{5}$  & $(y)$       & $y$         & $(y)$       & $y$         & $(y)$       \\ | |
| − | + | $f_{10}$ & $y$         & $(y)$       & $y$         & $(y)$       & $y$         \\ | |
| − | + | \hline | |
| − | + | $f_{7}$  & $(x\ y)$    & $((x)(y))$  & $((x)\ y)$  & $(x\ (y))$  & $(x\ y)$    \\ | |
| − | + | $f_{11}$ & $(x\ (y))$  & $((x)\ y)$  & $((x)(y))$  & $(x\ y)$    & $(x\ (y))$  \\ | |
| − | + | $f_{13}$ & $((x)\ y)$  & $(x\ (y))$  & $(x\ y)$    & $((x)(y))$  & $((x)\ y)$  \\ | |
| − | + | $f_{14}$ & $((x)(y))$  & $(x\ y)$    & $(x\ (y))$  & $((x)\ y)$  & $((x)(y))$  \\ | |
| − | + | \hline | |
| − | + | $f_{15}$ & $((~))$     & $((~))$     & $((~))$     & $((~))$     & $((~))$     \\ | |
| − | + | \hline | |
| − | + | \multicolumn{2}{|c||}{\PMlinkname{Fixed Point}{FixedPoint} Total:} & 4 & 4 & 4 & 16 \\ | |
| − | + | \hline | |
| + | \end{tabular}\end{quote} | ||
| − | + | \subsection{Table A4.  $\operatorname{D}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$} | |
| − | {|  | + | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} | 
| − | | | + | \multicolumn{6}{c}{\textbf{Table A4.  $\operatorname{D}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$}} \\ | 
| − | | | + | \hline | 
| − | + | & $f$ & | |
| − | + | $\operatorname{D}f|_{\operatorname{d}x\ \operatorname{d}y}$   & | |
| − | + | $\operatorname{D}f|_{\operatorname{d}x (\operatorname{d}y)}$  & | |
| − | + | $\operatorname{D}f|_{(\operatorname{d}x) \operatorname{d}y}$  & | |
| − | + | $\operatorname{D}f|_{(\operatorname{d}x)(\operatorname{d}y)}$ \\ | |
| − | + | \hline | |
| − | + | $f_{0}$  & $(~)$       & $(~)$       & $(~)$   & $(~)$   & $(~)$ \\ | |
| − | + | \hline | |
| − | + | $f_{1}$  & $(x)(y)$    & $((x,\ y))$ & $(y)$   & $(x)$   & $(~)$ \\ | |
| − | + | $f_{2}$  & $(x)\ y$    & $(x,\ y)$   & $y$     & $(x)$   & $(~)$ \\ | |
| − | + | $f_{4}$  & $x\ (y)$    & $(x,\ y)$   & $(y)$   & $x$     & $(~)$ \\ | |
| − | + | $f_{8}$  & $x\ y$      & $((x,\ y))$ & $y$     & $x$     & $(~)$ \\ | |
| − | + | \hline | |
| − | | & | + | $f_{3}$  & $(x)$       & $((~))$     & $((~))$ & $(~)$   & $(~)$ \\ | 
| − | | & | + | $f_{12}$ & $x$         & $((~))$     & $((~))$ & $(~)$   & $(~)$ \\ | 
| − | + | \hline | |
| − | | & | + | $f_{6}$  & $(x,\ y)$   & $(~)$       & $((~))$ & $((~))$ & $(~)$ \\ | 
| − | |  | + | $f_{9}$  & $((x,\ y))$ & $(~)$       & $((~))$ & $((~))$ & $(~)$ \\ | 
| − | + | \hline | |
| − | + | $f_{5}$  & $(y)$       & $((~))$     & $(~)$   & $((~))$ & $(~)$ \\ | |
| − | + | $f_{10}$ & $y$         & $((~))$     & $(~)$   & $((~))$ & $(~)$ \\ | |
| − | + | \hline | |
| − | + | $f_{7}$  & $(x\ y)$    & $((x,\ y))$ & $y$     & $x$     & $(~)$ \\ | |
| − | + | $f_{11}$ & $(x\ (y))$  & $(x,\ y)$   & $(y)$   & $x$     & $(~)$ \\ | |
| − | + | $f_{13}$ & $((x)\ y)$  & $(x,\ y)$   & $y$     & $(x)$   & $(~)$ \\ | |
| − | + | $f_{14}$ & $((x)(y))$  & $((x,\ y))$ & $(y)$   & $(x)$   & $(~)$ \\ | |
| − | + | \hline | |
| − | + | $f_{15}$ & $((~))$     & $(~)$       & $(~)$   & $(~)$   & $(~)$ \\ | |
| − | + | \hline | |
| − | + | \end{tabular}\end{quote} | |
| − | + | ||
| − | + | \subsection{Table A5.  $\operatorname{E}f$ Expanded Over Ordinary Features $\{ x, y \}$} | |
| − | + | ||
| − | + | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} | |
| − | + | \multicolumn{6}{c}{\textbf{Table A5.  $\operatorname{E}f$ Expanded Over Ordinary Features $\{ x, y \}$}} \\ | |
| − | + | \hline | |
| − | + | & $f$ & | |
| − | + | $\operatorname{E}f|_{x\ y}$   & | |
| − | + | $\operatorname{E}f|_{x (y)}$  & | |
| − | + | $\operatorname{E}f|_{(x) y}$  & | |
| − | + | $\operatorname{E}f|_{(x)(y)}$ \\ | |
| − | + | \hline | |
| − | + | $f_{0}$ & | |
| − | + | $(~)$   & | |
| − | + | $(~)$   & | |
| − | + | $(~)$   & | |
| − | + | $(~)$   & | |
| − | + | $(~)$   \\ | |
| − | + | \hline | |
| − | + | $f_{1}$  & | |
| − | + | $(x)(y)$ & | |
| − | + | $\operatorname{d}x\ \operatorname{d}y$   & | |
| − | + | $\operatorname{d}x\ (\operatorname{d}y)$ & | |
| − | + | $(\operatorname{d}x)\ \operatorname{d}y$ & | |
| − | + | $(\operatorname{d}x)(\operatorname{d}y)$ \\ | |
| − | |} | + | $f_{2}$  & | 
| − | + | $(x)\ y$ & | |
| − | + | $\operatorname{d}x\ (\operatorname{d}y)$ & | |
| − | + | $\operatorname{d}x\ \operatorname{d}y$   & | |
| − | + | $(\operatorname{d}x)(\operatorname{d}y)$ & | |
| − | + | $(\operatorname{d}x)\ \operatorname{d}y$ \\ | |
| − | + | $f_{4}$  & | |
| − | + | $x\ (y)$ & | |
| − | + | $(\operatorname{d}x)\ \operatorname{d}y$ & | |
| − | + | $(\operatorname{d}x)(\operatorname{d}y)$ & | |
| − | + | $\operatorname{d}x\ \operatorname{d}y$   & | |
| − | { | + | $\operatorname{d}x\ (\operatorname{d}y)$ \\ | 
| − | + | $f_{8}$ & | |
| − | + | $x\ y$  & | |
| − | + | $(\operatorname{d}x)(\operatorname{d}y)$ & | |
| − | + | $(\operatorname{d}x)\ \operatorname{d}y$ & | |
| − | + | $\operatorname{d}x\ (\operatorname{d}y)$ & | |
| − | + | $\operatorname{d}x\ \operatorname{d}y$   \\ | |
| − | + | \hline | |
| − | + | $f_{3}$ & | |
| − | + | $(x)$   & | |
| − | + | $\operatorname{d}x$   & | |
| − | + | $\operatorname{d}x$   & | |
| − | + | $(\operatorname{d}x)$ & | |
| − | + | $(\operatorname{d}x)$ \\ | |
| − | { | + | $f_{12}$ & | 
| − | + | $x$      & | |
| − | + | $(\operatorname{d}x)$ & | |
| − | + | $(\operatorname{d}x)$ & | |
| − | + | $\operatorname{d}x$   & | |
| − | + | $\operatorname{d}x$   \\ | |
| − | + | \hline | |
| − | + | $f_{6}$   & | |
| − | + | $(x,\ y)$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$   & | |
| − | + | $((\operatorname{d}x,\ \operatorname{d}y))$ & | |
| − | + | $((\operatorname{d}x,\ \operatorname{d}y))$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$   \\ | |
| − | + | $f_{9}$     & | |
| − | + | $((x,\ y))$ & | |
| − | + | $((\operatorname{d}x,\ \operatorname{d}y))$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$   & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$   & | |
| − | + | $((\operatorname{d}x,\ \operatorname{d}y))$ \\ | |
| − | + | \hline | |
| − | + | $f_{5}$ & | |
| − | + | $(y)$   & | |
| − | + | $\operatorname{d}y$   & | |
| − | + | $(\operatorname{d}y)$ & | |
| − | + | $\operatorname{d}y$   & | |
| − | + | $(\operatorname{d}y)$ \\ | |
| − | + | $f_{10}$ & | |
| − | + | $y$      & | |
| − | + | $(\operatorname{d}y)$ & | |
| − | + | $\operatorname{d}y$   & | |
| − | + | $(\operatorname{d}y)$ & | |
| − | + | $\operatorname{d}y$   \\ | |
| − | + | \hline | |
| − | { | + | $f_{7}$  & | 
| − | + | $(x\ y)$ & | |
| − | + | $((\operatorname{d}x)(\operatorname{d}y))$ & | |
| − | + | $((\operatorname{d}x)\ \operatorname{d}y)$ & | |
| − | + | $(\operatorname{d}x\ (\operatorname{d}y))$ & | |
| − | + | $(\operatorname{d}x\ \operatorname{d}y)$   \\ | |
| − | + | $f_{11}$   & | |
| − | + | $(x\ (y))$ & | |
| − | + | $((\operatorname{d}x)\ \operatorname{d}y)$ & | |
| − | + | $((\operatorname{d}x)(\operatorname{d}y))$ & | |
| − | + | $(\operatorname{d}x\ \operatorname{d}y)$   & | |
| − | + | $(\operatorname{d}x\ (\operatorname{d}y))$ \\ | |
| − | + | $f_{13}$   & | |
| − | + | $((x)\ y)$ & | |
| − | + | $(\operatorname{d}x\ (\operatorname{d}y))$ & | |
| − | + | $(\operatorname{d}x\ \operatorname{d}y)$   & | |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
| + | $((\operatorname{d}x)\ \operatorname{d}y)$ \\ | ||
| + | $f_{14}$   & | ||
| + | $((x)(y))$ & | ||
| + | $(\operatorname{d}x\ \operatorname{d}y)$   & | ||
| + | $(\operatorname{d}x\ (\operatorname{d}y))$ & | ||
| + | $((\operatorname{d}x)\ \operatorname{d}y)$ & | ||
| + | $((\operatorname{d}x)(\operatorname{d}y))$ \\ | ||
| + | \hline | ||
| + | $f_{15}$ & | ||
| + | $((~))$  & | ||
| + | $((~))$  & | ||
| + | $((~))$  & | ||
| + | $((~))$  & | ||
| + | $((~))$  \\ | ||
| + | \hline | ||
| + | \end{tabular}\end{quote} | ||
| − | + | \subsection{Table A6.  $\operatorname{D}f$ Expanded Over Ordinary Features $\{ x, y \}$} | |
| − | + | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} | |
| − | + | \multicolumn{6}{c}{\textbf{Table A6.  $\operatorname{D}f$ Expanded Over Ordinary Features $\{ x, y \}$}} \\ | |
| − | + | \hline | |
| − | + | & $f$ & | |
| − | { | + | $\operatorname{D}f|_{x\ y}$   & | 
| − | + | $\operatorname{D}f|_{x (y)}$  & | |
| − | + | $\operatorname{D}f|_{(x) y}$  & | |
| − | + | $\operatorname{D}f|_{(x)(y)}$ \\ | |
| − | + | \hline | |
| − | + | $f_{0}$ & | |
| − | + | $(~)$   & | |
| − | + | $(~)$   & | |
| − | + | $(~)$   & | |
| − | + | $(~)$   & | |
| − | + | $(~)$   \\ | |
| − | + | \hline | |
| − | + | $f_{1}$  & | |
| − | + | $(x)(y)$ & | |
| − | + | $\operatorname{d}x\ \operatorname{d}y$     & | |
| − | + | $\operatorname{d}x\ (\operatorname{d}y)$   & | |
| − | + | $(\operatorname{d}x)\ \operatorname{d}y$   & | |
| − | + | $((\operatorname{d}x)(\operatorname{d}y))$ \\ | |
| − | + | $f_{2}$  & | |
| − | + | $(x)\ y$ & | |
| − | + | $\operatorname{d}x\ (\operatorname{d}y)$   & | |
| − | + | $\operatorname{d}x\ \operatorname{d}y$     & | |
| − | + | $((\operatorname{d}x)(\operatorname{d}y))$ & | |
| − | { | + | $(\operatorname{d}x)\ \operatorname{d}y$   \\ | 
| − | + | $f_{4}$  & | |
| − | + | $x\ (y)$ & | |
| − | + | $(\operatorname{d}x)\ \operatorname{d}y$   & | |
| − | + | $((\operatorname{d}x)(\operatorname{d}y))$ & | |
| − | + | $\operatorname{d}x\ \operatorname{d}y$     & | |
| − | + | $\operatorname{d}x\ (\operatorname{d}y)$   \\ | |
| − | + | $f_{8}$ & | |
| − | + | $x\ y$  & | |
| − | + | $((\operatorname{d}x)(\operatorname{d}y))$ & | |
| − | + | $(\operatorname{d}x)\ \operatorname{d}y$   & | |
| − | + | $\operatorname{d}x\ (\operatorname{d}y)$   & | |
| − | + | $\operatorname{d}x\ \operatorname{d}y$     \\ | |
| − | + | \hline | |
| − | + | $f_{3}$ & | |
| − | + | $(x)$   & | |
| − | + | $\operatorname{d}x$ & | |
| − | + | $\operatorname{d}x$ & | |
| − | + | $\operatorname{d}x$ & | |
| − | + | $\operatorname{d}x$ \\ | |
| − | + | $f_{12}$ & | |
| − | + | $x$      & | |
| − | + | $\operatorname{d}x$ & | |
| − | { | + | $\operatorname{d}x$ & | 
| − | + | $\operatorname{d}x$ & | |
| − | + | $\operatorname{d}x$ \\ | |
| − | + | \hline | |
| − | + | $f_{6}$   & | |
| − | + | $(x,\ y)$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$ \\ | |
| − | + | $f_{9}$     & | |
| − | + | $((x,\ y))$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$ & | |
| − | + | $(\operatorname{d}x,\ \operatorname{d}y)$ & | |
| − | < | + | $(\operatorname{d}x,\ \operatorname{d}y)$ \\ | 
| − | + | \hline | |
| − | + | $f_{5}$ & | |
| + | $(y)$   & | ||
| + | $\operatorname{d}y$ & | ||
| + | $\operatorname{d}y$ & | ||
| + | $\operatorname{d}y$ & | ||
| + | $\operatorname{d}y$ \\ | ||
| + | $f_{10}$ & | ||
| + | $y$      & | ||
| + | $\operatorname{d}y$ & | ||
| + | $\operatorname{d}y$ & | ||
| + | $\operatorname{d}y$ & | ||
| + | $\operatorname{d}y$ \\ | ||
| + | \hline | ||
| + | $f_{7}$  & | ||
| + | $(x\ y)$ & | ||
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
| + | $(\operatorname{d}x)\ \operatorname{d}y$   & | ||
| + | $\operatorname{d}x\ (\operatorname{d}y)$   & | ||
| + | $\operatorname{d}x\ \operatorname{d}y$     \\ | ||
| + | $f_{11}$   & | ||
| + | $(x\ (y))$ & | ||
| + | $(\operatorname{d}x)\ \operatorname{d}y$   & | ||
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
| + | $\operatorname{d}x\ \operatorname{d}y$     & | ||
| + | $\operatorname{d}x\ (\operatorname{d}y)$   \\ | ||
| + | $f_{13}$   & | ||
| + | $((x)\ y)$ & | ||
| + | $\operatorname{d}x\ (\operatorname{d}y)$   & | ||
| + | $\operatorname{d}x\ \operatorname{d}y$     & | ||
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
| + | $(\operatorname{d}x)\ \operatorname{d}y$   \\ | ||
| + | $f_{14}$   & | ||
| + | $((x)(y))$ & | ||
| + | $\operatorname{d}x\ \operatorname{d}y$     & | ||
| + | $\operatorname{d}x\ (\operatorname{d}y)$   & | ||
| + | $(\operatorname{d}x)\ \operatorname{d}y$   & | ||
| + | $((\operatorname{d}x)(\operatorname{d}y))$ \\ | ||
| + | \hline | ||
| + | $f_{15}$ & | ||
| + | $((~))$  & | ||
| + | $(~)$    & | ||
| + | $(~)$    & | ||
| + | $(~)$    & | ||
| + | $(~)$    \\ | ||
| + | \hline | ||
| + | \end{tabular}\end{quote} | ||
| + | </pre> | ||
| − | : <math>\ | + | ==Group Operation Tables== | 
| − | + | ||
| − | \\ | + | <br> | 
| − | + | ||
| − | \\ | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | 
| − | + | |+ <math>\text{Table 32.1}~~\text{Scheme of a Group Operation Table}</math> | |
| − | \ | + | |- style="height:50px" | 
| + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>*\!</math> | ||
| + | | style="border-bottom:1px solid black" | <math>x_0\!</math> | ||
| + | | style="border-bottom:1px solid black" | <math>\cdots\!</math> | ||
| + | | style="border-bottom:1px solid black" | <math>x_j\!</math> | ||
| + | | style="border-bottom:1px solid black" | <math>\cdots\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>x_0\!</math> | ||
| + | | <math>x_0 * x_0\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>x_0 * x_j\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>x_i\!</math> | ||
| + | | <math>x_i * x_0\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>x_i * x_j\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | |- style="height:50px" | ||
| + | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | ||
| + | | width="22%" | <math>\cdots\!</math> | ||
| + | | width="22%" | <math>\cdots\!</math> | ||
| + | | width="22%" | <math>\cdots\!</math> | ||
| + | | width="22%" | <math>\cdots\!</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | ||
| + | |+ <math>\text{Table 32.2}~~\text{Scheme of the Regular Ante-Representation}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
| + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>x_0\!</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(x_0 ~,~ x_0 * x_0),\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>(x_j ~,~ x_0 * x_j),\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\cdots\!</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>x_i\!</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(x_0 ~,~ x_i * x_0),\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>(x_j ~,~ x_i * x_j),\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | ||
| + | | width="4%"  | <math>\{\!</math> | ||
| + | | width="18%" | <math>\cdots\!</math> | ||
| + | | width="22%" | <math>\cdots\!</math> | ||
| + | | width="22%" | <math>\cdots\!</math> | ||
| + | | width="18%" | <math>\cdots\!</math> | ||
| + | | width="4%"  | <math>\}\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | |
| − | + | |+ <math>\text{Table 32.3}~~\text{Scheme of the Regular Post-Representation}</math> | |
| − | + | |- style="height:50px" | |
| − | + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | |
| − | + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | |
| − | + | |- style="height:50px" | |
| + | | style="border-right:1px solid black" | <math>x_0\!</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(x_0 ~,~ x_0 * x_0),\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>(x_j ~,~ x_j * x_0),\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\cdots\!</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>x_i\!</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(x_0 ~,~ x_0 * x_i),\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>(x_j ~,~ x_j * x_i),\!</math> | ||
| + | | <math>\cdots\!</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | ||
| + | | width="4%"  | <math>\{\!</math> | ||
| + | | width="18%" | <math>\cdots\!</math> | ||
| + | | width="22%" | <math>\cdots\!</math> | ||
| + | | width="22%" | <math>\cdots\!</math> | ||
| + | | width="18%" | <math>\cdots\!</math> | ||
| + | | width="4%"  | <math>\}\!</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| + | |+ <math>\text{Table 33.1}~~\text{Multiplication Operation of the Group}~V_4</math> | ||
| + | |- style="height:50px" | ||
| + | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{e}</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{f}</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{g}</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{h}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
| + | | <math>\operatorname{e}</math> | ||
| + | | <math>\operatorname{f}</math> | ||
| + | | <math>\operatorname{g}</math> | ||
| + | | <math>\operatorname{h}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
| + | | <math>\operatorname{f}</math> | ||
| + | | <math>\operatorname{e}</math> | ||
| + | | <math>\operatorname{h}</math> | ||
| + | | <math>\operatorname{g}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
| + | | <math>\operatorname{g}</math> | ||
| + | | <math>\operatorname{h}</math> | ||
| + | | <math>\operatorname{e}</math> | ||
| + | | <math>\operatorname{f}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
| + | | <math>\operatorname{h}</math> | ||
| + | | <math>\operatorname{g}</math> | ||
| + | | <math>\operatorname{f}</math> | ||
| + | | <math>\operatorname{e}</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| + | |+ <math>\text{Table 33.2}~~\text{Regular Representation of the Group}~V_4</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
| + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
| + | | width="4%"  | <math>\{\!</math> | ||
| + | | width="16%" | <math>(\operatorname{e}, \operatorname{e}),</math> | ||
| + | | width="20%" | <math>(\operatorname{f}, \operatorname{f}),</math> | ||
| + | | width="20%" | <math>(\operatorname{g}, \operatorname{g}),</math> | ||
| + | | width="16%" | <math>(\operatorname{h}, \operatorname{h})</math> | ||
| + | | width="4%"  | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(\operatorname{e}, \operatorname{f}),</math> | ||
| + | | <math>(\operatorname{f}, \operatorname{e}),</math> | ||
| + | | <math>(\operatorname{g}, \operatorname{h}),</math> | ||
| + | | <math>(\operatorname{h}, \operatorname{g})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(\operatorname{e}, \operatorname{g}),</math> | ||
| + | | <math>(\operatorname{f}, \operatorname{h}),</math> | ||
| + | | <math>(\operatorname{g}, \operatorname{e}),</math> | ||
| + | | <math>(\operatorname{h}, \operatorname{f})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(\operatorname{e}, \operatorname{h}),</math> | ||
| + | | <math>(\operatorname{f}, \operatorname{g}),</math> | ||
| + | | <math>(\operatorname{g}, \operatorname{f}),</math> | ||
| + | | <math>(\operatorname{h}, \operatorname{e})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| + | |+ <math>\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
| + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Symbols}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
| + | | width="4%"  | <math>\{\!</math> | ||
| + | | width="16%" | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> | ||
| + | | width="20%" | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> | ||
| + | | width="20%" | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> | ||
| + | | width="16%" | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})</math> | ||
| + | | width="4%"  | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> | ||
| + | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| + | |+ <math>\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)</math> | ||
| + | |- style="height:50px" | ||
| + | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{a}</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{b}</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{c}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
| + | | <math>\operatorname{1}</math> | ||
| + | | <math>\operatorname{a}</math> | ||
| + | | <math>\operatorname{b}</math> | ||
| + | | <math>\operatorname{c}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{a}</math> | ||
| + | | <math>\operatorname{a}</math> | ||
| + | | <math>\operatorname{b}</math> | ||
| + | | <math>\operatorname{c}</math> | ||
| + | | <math>\operatorname{1}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{b}</math> | ||
| + | | <math>\operatorname{b}</math> | ||
| + | | <math>\operatorname{c}</math> | ||
| + | | <math>\operatorname{1}</math> | ||
| + | | <math>\operatorname{a}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{c}</math> | ||
| + | | <math>\operatorname{c}</math> | ||
| + | | <math>\operatorname{1}</math> | ||
| + | | <math>\operatorname{a}</math> | ||
| + | | <math>\operatorname{b}</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| + | |+ <math>\text{Table 34.2}~~\text{Regular Representation of the Group}~Z_4(\cdot)</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
| + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | width="20%" style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
| + | | width="4%"  | <math>\{\!</math> | ||
| + | | width="16%" | <math>(\operatorname{1}, \operatorname{1}),</math> | ||
| + | | width="20%" | <math>(\operatorname{a}, \operatorname{a}),</math> | ||
| + | | width="20%" | <math>(\operatorname{b}, \operatorname{b}),</math> | ||
| + | | width="16%" | <math>(\operatorname{c}, \operatorname{c})</math> | ||
| + | | width="4%"  | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{a}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(\operatorname{1}, \operatorname{a}),</math> | ||
| + | | <math>(\operatorname{a}, \operatorname{b}),</math> | ||
| + | | <math>(\operatorname{b}, \operatorname{c}),</math> | ||
| + | | <math>(\operatorname{c}, \operatorname{1})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{b}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(\operatorname{1}, \operatorname{b}),</math> | ||
| + | | <math>(\operatorname{a}, \operatorname{c}),</math> | ||
| + | | <math>(\operatorname{b}, \operatorname{1}),</math> | ||
| + | | <math>(\operatorname{c}, \operatorname{a})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{c}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(\operatorname{1}, \operatorname{c}),</math> | ||
| + | | <math>(\operatorname{a}, \operatorname{1}),</math> | ||
| + | | <math>(\operatorname{b}, \operatorname{a}),</math> | ||
| + | | <math>(\operatorname{c}, \operatorname{b})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| + | |+ <math>\text{Table 35.1}~~\text{Additive Presentation of the Group}~Z_4(+)</math> | ||
| + | |- style="height:50px" | ||
| + | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>+\!</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{0}</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{2}</math> | ||
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{3}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{0}</math> | ||
| + | | <math>\operatorname{0}</math> | ||
| + | | <math>\operatorname{1}</math> | ||
| + | | <math>\operatorname{2}</math> | ||
| + | | <math>\operatorname{3}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
| + | | <math>\operatorname{1}</math> | ||
| + | | <math>\operatorname{2}</math> | ||
| + | | <math>\operatorname{3}</math> | ||
| + | | <math>\operatorname{0}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{2}</math> | ||
| + | | <math>\operatorname{2}</math> | ||
| + | | <math>\operatorname{3}</math> | ||
| + | | <math>\operatorname{0}</math> | ||
| + | | <math>\operatorname{1}</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{3}</math> | ||
| + | | <math>\operatorname{3}</math> | ||
| + | | <math>\operatorname{0}</math> | ||
| + | | <math>\operatorname{1}</math> | ||
| + | | <math>\operatorname{2}</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| + | |+ <math>\text{Table 35.2}~~\text{Regular Representation of the Group}~Z_4(+)</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
| + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | width="20%" style="border-right:1px solid black" | <math>\operatorname{0}</math> | ||
| + | | width="4%"  | <math>\{\!</math> | ||
| + | | width="16%" | <math>(\operatorname{0}, \operatorname{0}),</math> | ||
| + | | width="20%" | <math>(\operatorname{1}, \operatorname{1}),</math> | ||
| + | | width="20%" | <math>(\operatorname{2}, \operatorname{2}),</math> | ||
| + | | width="16%" | <math>(\operatorname{3}, \operatorname{3})</math> | ||
| + | | width="4%"  | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(\operatorname{0}, \operatorname{1}),</math> | ||
| + | | <math>(\operatorname{1}, \operatorname{2}),</math> | ||
| + | | <math>(\operatorname{2}, \operatorname{3}),</math> | ||
| + | | <math>(\operatorname{3}, \operatorname{0})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{2}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(\operatorname{0}, \operatorname{2}),</math> | ||
| + | | <math>(\operatorname{1}, \operatorname{3}),</math> | ||
| + | | <math>(\operatorname{2}, \operatorname{0}),</math> | ||
| + | | <math>(\operatorname{3}, \operatorname{1})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |- style="height:50px" | ||
| + | | style="border-right:1px solid black" | <math>\operatorname{3}</math> | ||
| + | | <math>\{\!</math> | ||
| + | | <math>(\operatorname{0}, \operatorname{3}),</math> | ||
| + | | <math>(\operatorname{1}, \operatorname{0}),</math> | ||
| + | | <math>(\operatorname{2}, \operatorname{1}),</math> | ||
| + | | <math>(\operatorname{3}, \operatorname{2})</math> | ||
| + | | <math>\}\!</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | ==Higher Order Propositions== | ||
| + | |||
| + | <br> | ||
| + | |||
| + | <table align="center" cellpadding="4" cellspacing="0" style="text-align:center; width:90%"> | ||
| + | |||
| + | <caption><font size="+2"><math>\text{Table 1.} ~~ \text{Higher Order Propositions} ~ (n = 1)</math></font></caption> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:2px solid black" align="right"><math>x:</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>1 ~ 0</math></td> | ||
| + | <td style="border-bottom:2px solid black; border-right:2px solid black"><math>f</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{0}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{1}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{2}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{3}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{4}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{5}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{6}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{7}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{8}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{9}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{10}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{11}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{12}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{13}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{14}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>m_{15}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{0}</math></td> | ||
| + | <td><math>0 ~ 0</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(~)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{1}</math></td> | ||
| + | <td><math>0 ~ 1</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} x \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{2}</math></td> | ||
| + | <td><math>1 ~ 0</math></td> | ||
| + | <td style="border-right:2px solid black"><math>x</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{3}</math></td> | ||
| + | <td><math>1 ~ 1</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((~))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | </table> | ||
| + | |||
| + | <br> | ||
| + | |||
| + | <table align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:center; width:90%"> | ||
| + | |||
| + | <caption><font size="+2"><math>\text{Table 2.} ~~ \text{Interpretive Categories for Higher Order Propositions} ~ (n = 1)</math></font></caption> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:2px solid black; border-right:2px solid black">Measure</td> | ||
| + | <td style="border-bottom:2px solid black">Happening</td> | ||
| + | <td style="border-bottom:2px solid black">Exactness</td> | ||
| + | <td style="border-bottom:2px solid black">Existence</td> | ||
| + | <td style="border-bottom:2px solid black">Linearity</td> | ||
| + | <td style="border-bottom:2px solid black">Uniformity</td> | ||
| + | <td style="border-bottom:2px solid black">Information</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{0}</math></td> | ||
| + | <td>Nothing happens</td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{1}</math></td> | ||
| + | <td> </td> | ||
| + | <td>Just false</td> | ||
| + | <td>Nothing exists</td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{2}</math></td> | ||
| + | <td> </td> | ||
| + | <td>Just not <math>x</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{3}</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td>Nothing is <math>x</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{4}</math></td> | ||
| + | <td> </td> | ||
| + | <td>Just <math>x</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{5}</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td>Everything is <math>x</math></td> | ||
| + | <td><math>f</math> is linear</td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{6}</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td><math>f</math> is not uniform</td> | ||
| + | <td><math>f</math> is informed</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{7}</math></td> | ||
| + | <td> </td> | ||
| + | <td>Not just true</td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{8}</math></td> | ||
| + | <td> </td> | ||
| + | <td>Just true</td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{9}</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td><math>f</math> is uniform</td> | ||
| + | <td><math>f</math> is not informed</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{10}</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td>Something is not <math>x</math></td> | ||
| + | <td><math>f</math> is not linear</td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{11}</math></td> | ||
| + | <td> </td> | ||
| + | <td>Not just <math>x</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{12}</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td>Something is <math>x</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{13}</math></td> | ||
| + | <td> </td> | ||
| + | <td>Not just not <math>x</math></td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{14}</math></td> | ||
| + | <td> </td> | ||
| + | <td>Not just false</td> | ||
| + | <td>Something exists</td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-right:2px solid black"><math>m_{15}</math></td> | ||
| + | <td>Anything happens</td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td> </td></tr> | ||
| + | |||
| + | </table> | ||
| + | |||
| + | <br> | ||
| + | |||
| + | <table align="center" cellpadding="1" cellspacing="0" style="background:white; color:black; text-align:center; width:90%"> | ||
| + | |||
| + | <caption><font size="+2"><math>\text{Table 3.} ~~ \text{Higher Order Propositions} ~ (n = 2)</math></font></caption> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:2px solid black" align="right"><math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
| + | <td style="border-bottom:2px solid black"> | ||
| + | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
| + | <td style="border-bottom:2px solid black; border-right:2px solid black"><math>f</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{0}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{1}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{2}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{3}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{4}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{5}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{6}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{7}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{8}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{9}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{10}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{11}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{12}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{13}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{14}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{15}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{16}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{17}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{18}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{19}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{20}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{21}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{22}{m}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\underset{23}{m}</math></td> | ||
| + | </tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{0}</math></td> | ||
| + | <td><math>0000</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(~)}</math></td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{1}</math></td> | ||
| + | <td><math>0001</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
| + | <td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{2}</math></td> | ||
| + | <td><math>0010</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{3}</math></td> | ||
| + | <td><math>0011</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{4}</math></td> | ||
| + | <td><math>0100</math></td> | ||
| + | <td style="border-right:2px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{5}</math></td> | ||
| + | <td><math>0101</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{6}</math></td> | ||
| + | <td><math>0110</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{7}</math></td> | ||
| + | <td><math>0111</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{8}</math></td> | ||
| + | <td><math>1000</math></td> | ||
| + | <td style="border-right:2px solid black"><math>u ~ v</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{9}</math></td> | ||
| + | <td><math>1001</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{10}</math></td> | ||
| + | <td><math>1010</math></td> | ||
| + | <td style="border-right:2px solid black"><math>v</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{11}</math></td> | ||
| + | <td><math>1011</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{12}</math></td> | ||
| + | <td><math>1100</math></td> | ||
| + | <td style="border-right:2px solid black"><math>u</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{13}</math></td> | ||
| + | <td><math>1101</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{14}</math></td> | ||
| + | <td><math>1110</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{15}</math></td> | ||
| + | <td><math>1111</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((~))}</math></td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
| + | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
| + | |||
| + | </table> | ||
| + | |||
| + | <br> | ||
| + | |||
| + | <table align="center" cellpadding="1" cellspacing="0" style="text-align:center; width:90%"> | ||
| + | |||
| + | <caption><font size="+2"><math>\text{Table 4.} ~~ \text{Qualifiers of the Implication Ordering:} ~ \alpha_{i} f = \Upsilon (f_{i}, f) = \Upsilon (f_{i} \Rightarrow f)</math></font></caption> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:2px solid black" align="right"> | ||
| + | <math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
| + | <td style="border-bottom:2px solid black"> | ||
| + | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
| + | <td style="border-bottom:2px solid black; border-right:2px solid black"><math>f</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{15}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{14}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{13}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{12}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{11}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{10}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{9}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{8}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{7}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{6}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{5}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{4}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{3}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{2}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{1}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\alpha_{0}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{0}</math></td> | ||
| + | <td><math>0000</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(~)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{1}</math></td> | ||
| + | <td><math>0001</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{2}</math></td> | ||
| + | <td><math>0010</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{3}</math></td> | ||
| + | <td><math>0011</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{4}</math></td> | ||
| + | <td><math>0100</math></td> | ||
| + | <td style="border-right:2px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{5}</math></td> | ||
| + | <td><math>0101</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{6}</math></td> | ||
| + | <td><math>0110</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{7}</math></td> | ||
| + | <td><math>0111</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{8}</math></td> | ||
| + | <td><math>1000</math></td> | ||
| + | <td style="border-right:2px solid black"><math>u ~ v</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{9}</math></td> | ||
| + | <td><math>1001</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{10}</math></td> | ||
| + | <td><math>1010</math></td> | ||
| + | <td style="border-right:2px solid black"><math>v</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{11}</math></td> | ||
| + | <td><math>1011</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{12}</math></td> | ||
| + | <td><math>1100</math></td> | ||
| + | <td style="border-right:2px solid black"><math>u</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{13}</math></td> | ||
| + | <td><math>1101</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{14}</math></td> | ||
| + | <td><math>1110</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{15}</math></td> | ||
| + | <td><math>1111</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((~))}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | </table> | ||
| + | |||
| + | <br> | ||
| + | |||
| + | <table align="center" cellpadding="1" cellspacing="0" style="text-align:center; width:90%"> | ||
| + | |||
| + | <caption><font size="+2"><math>\text{Table 5.} ~~ \text{Qualifiers of the Implication Ordering:} ~ \beta_i f = \Upsilon (f, f_i) = \Upsilon (f \Rightarrow f_i)</math></font></caption> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:2px solid black" align="right"> | ||
| + | <math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
| + | <td style="border-bottom:2px solid black"> | ||
| + | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
| + | |||
| + | <td style="border-bottom:2px solid black; border-right:2px solid black"><math>f</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{0}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{1}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{2}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{3}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{4}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{5}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{6}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{7}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{8}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{9}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{10}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{11}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{12}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{13}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{14}</math></td> | ||
| + | <td style="border-bottom:2px solid black"><math>\beta_{15}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{0}</math></td> | ||
| + | <td><math>0000</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(~)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{1}</math></td> | ||
| + | <td><math>0001</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{2}</math></td> | ||
| + | <td><math>0010</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{3}</math></td> | ||
| + | <td><math>0011</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{4}</math></td> | ||
| + | <td><math>0100</math></td> | ||
| + | <td style="border-right:2px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{5}</math></td> | ||
| + | <td><math>0101</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{6}</math></td> | ||
| + | <td><math>0110</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{7}</math></td> | ||
| + | <td><math>0111</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{8}</math></td> | ||
| + | <td><math>1000</math></td> | ||
| + | <td style="border-right:2px solid black"><math>u ~ v</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{9}</math></td> | ||
| + | <td><math>1001</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{10}</math></td> | ||
| + | <td><math>1010</math></td> | ||
| + | <td style="border-right:2px solid black"><math>v</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{11}</math></td> | ||
| + | <td><math>1011</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{12}</math></td> | ||
| + | <td><math>1100</math></td> | ||
| + | <td style="border-right:2px solid black"><math>u</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{13}</math></td> | ||
| + | <td><math>1101</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{14}</math></td> | ||
| + | <td><math>1110</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{15}</math></td> | ||
| + | <td><math>1111</math></td> | ||
| + | <td style="border-right:2px solid black"><math>\texttt{((~))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | </table> | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
| + | |+ <math>\text{Table 7.} ~~ \text{Syllogistic Premisses as Higher Order Indicator Functions}</math> | ||
| + | | | ||
| + | <math>\begin{array}{clcl} | ||
| + | \mathrm{A} | ||
| + | & \mathrm{Universal~Affirmative} | ||
| + | & \mathrm{All} ~ u ~ \mathrm{is} ~ v | ||
| + | & \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 0 | ||
| + | \\ | ||
| + | \mathrm{E} | ||
| + | & \mathrm{Universal~Negative} | ||
| + | & \mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | & \mathrm{Indicator~of} ~ u \cdot v = 0 | ||
| + | \\ | ||
| + | \mathrm{I} | ||
| + | & \mathrm{Particular~Affirmative} | ||
| + | & \mathrm{Some} ~ u ~ \mathrm{is} ~ v | ||
| + | & \mathrm{Indicator~of} ~ u \cdot v = 1 | ||
| + | \\ | ||
| + | \mathrm{O} | ||
| + | & \mathrm{Particular~Negative} | ||
| + | & \mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | & \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 1 | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | <table align="center" cellpadding="4" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:90%"> | ||
| + | |||
| + | <caption><font size="+2"><math>\text{Table 8.} ~~ \text{Simple Qualifiers of Propositions (Version 1)}</math></font></caption> | ||
| + | |||
| + | <tr> | ||
| + | <td width="4%" style="border-bottom:1px solid black" align="right"> | ||
| + | <math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
| + | <td width="6%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black; border-right:1px solid black"> | ||
| + | <math>f</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \texttt{(} \ell_{11} \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{No} ~ u | ||
| + | \\ | ||
| + | \mathrm{is} ~ v | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \texttt{(} \ell_{10} \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{No} ~ u | ||
| + | \\ | ||
| + | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \texttt{(} \ell_{01} \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{No} ~ \texttt{(} u \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{is} ~ v | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \texttt{(} \ell_{00} \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{No} ~ \texttt{(} u \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \ell_{00} | ||
| + | \\ | ||
| + | \mathrm{Some} ~ \texttt{(} u \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \ell_{01} | ||
| + | \\ | ||
| + | \mathrm{Some} ~ \texttt{(} u \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{is} ~ v | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \ell_{10} | ||
| + | \\ | ||
| + | \mathrm{Some} ~ u | ||
| + | \\ | ||
| + | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \ell_{11} | ||
| + | \\ | ||
| + | \mathrm{Some} ~ u | ||
| + | \\ | ||
| + | \mathrm{is} ~ v | ||
| + | \end{smallmatrix}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{0}</math></td> | ||
| + | <td><math>0000</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(~)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{1}</math></td> | ||
| + | <td><math>0001</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{2}</math></td> | ||
| + | <td><math>0010</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{3}</math></td> | ||
| + | <td><math>0011</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{4}</math></td> | ||
| + | <td><math>0100</math></td> | ||
| + | <td style="border-right:1px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{5}</math></td> | ||
| + | <td><math>0101</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{6}</math></td> | ||
| + | <td><math>0110</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{7}</math></td> | ||
| + | <td><math>0111</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{8}</math></td> | ||
| + | <td><math>1000</math></td> | ||
| + | <td style="border-right:1px solid black"><math>u ~ v</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{9}</math></td> | ||
| + | <td><math>1001</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{10}</math></td> | ||
| + | <td><math>1010</math></td> | ||
| + | <td style="border-right:1px solid black"><math>v</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{11}</math></td> | ||
| + | <td><math>1011</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{12}</math></td> | ||
| + | <td><math>1100</math></td> | ||
| + | <td style="border-right:1px solid black"><math>u</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{13}</math></td> | ||
| + | <td><math>1101</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{14}</math></td> | ||
| + | <td><math>1110</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{15}</math></td> | ||
| + | <td><math>1111</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{((~))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | </table> | ||
| + | |||
| + | <br> | ||
| + | |||
| + | <table align="center" cellpadding="4" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:90%"> | ||
| + | |||
| + | <caption><font size="+2"><math>\text{Table 9.} ~~ \text{Simple Qualifiers of Propositions (Version 2)}</math></font></caption> | ||
| + | |||
| + | <tr> | ||
| + | <td width="4%" style="border-bottom:1px solid black" align="right"> | ||
| + | <math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
| + | <td width="6%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black; border-right:1px solid black"> | ||
| + | <math>f</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \texttt{(} \ell_{11} \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{No} ~ u | ||
| + | \\ | ||
| + | \mathrm{is} ~ v | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \texttt{(} \ell_{10} \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{No} ~ u | ||
| + | \\ | ||
| + | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \texttt{(} \ell_{01} \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{No} ~ \texttt{(} u \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{is} ~ v | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \texttt{(} \ell_{00} \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{No} ~ \texttt{(} u \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \ell_{00} | ||
| + | \\ | ||
| + | \mathrm{Some} ~ \texttt{(} u \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \ell_{01} | ||
| + | \\ | ||
| + | \mathrm{Some} ~ \texttt{(} u \texttt{)} | ||
| + | \\ | ||
| + | \mathrm{is} ~ v | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \ell_{10} | ||
| + | \\ | ||
| + | \mathrm{Some} ~ u | ||
| + | \\ | ||
| + | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
| + | \end{smallmatrix}</math></td> | ||
| + | <td width="10%" style="border-bottom:1px solid black"> | ||
| + | <math>\begin{smallmatrix} | ||
| + | \ell_{11} | ||
| + | \\ | ||
| + | \mathrm{Some} ~ u | ||
| + | \\ | ||
| + | \mathrm{is} ~ v | ||
| + | \end{smallmatrix}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"><math>f_{0}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>0000</math></td> | ||
| + | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>\texttt{(~)}</math></td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{1}</math></td> | ||
| + | <td><math>0001</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{2}</math></td> | ||
| + | <td><math>0010</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{4}</math></td> | ||
| + | <td><math>0100</math></td> | ||
| + | <td style="border-right:1px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"><math>f_{8}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>1000</math></td> | ||
| + | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>u ~ v</math></td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{3}</math></td> | ||
| + | <td><math>0011</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"><math>f_{12}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>1100</math></td> | ||
| + | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>u</math></td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{6}</math></td> | ||
| + | <td><math>0110</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"><math>f_{9}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>1001</math></td> | ||
| + | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{5}</math></td> | ||
| + | <td><math>0101</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"><math>f_{10}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>1010</math></td> | ||
| + | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>v</math></td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{7}</math></td> | ||
| + | <td><math>0111</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{11}</math></td> | ||
| + | <td><math>1011</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{13}</math></td> | ||
| + | <td><math>1101</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"><math>f_{14}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>1110</math></td> | ||
| + | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
| + | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>f_{15}</math></td> | ||
| + | <td><math>1111</math></td> | ||
| + | <td style="border-right:1px solid black"><math>\texttt{((~))}</math></td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:white; color:black">0</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td> | ||
| + | <td style="background:black; color:white">1</td></tr> | ||
| + | |||
| + | </table> | ||
| + | |||
| + | <br> | ||
| + | |||
| + | <table align="center" cellpadding="4" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:90%"> | ||
| + | |||
| + | <caption><font size="+2"><math>\text{Table 10.} ~~ \text{Relation of Quantifiers to Higher Order Propositions}</math></font></caption> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{Mnemonic}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{Category}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{Classical~Form}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{Alternate~Form}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{Symmetric~Form}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{Operator}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>\begin{matrix} | ||
| + | \mathrm{E} | ||
| + | \\ | ||
| + | \mathrm{Exclusive} | ||
| + | \end{matrix}</math></td> | ||
| + | <td><math>\begin{matrix} | ||
| + | \mathrm{Universal} | ||
| + | \\ | ||
| + | \mathrm{Negative} | ||
| + | \end{matrix}</math></td> | ||
| + | <td><math>\mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td> </td> | ||
| + | <td><math>\mathrm{No} ~ u ~ \mathrm{is} ~ v</math></td> | ||
| + | <td><math>\texttt{(} \ell_{11} \texttt{)}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"> | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{A} | ||
| + | \\ | ||
| + | \mathrm{Absolute} | ||
| + | \end{matrix}</math></td> | ||
| + | <td style="border-bottom:1px solid black"> | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{Universal} | ||
| + | \\ | ||
| + | \mathrm{Affirmative} | ||
| + | \end{matrix}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{All} ~ u ~ \mathrm{is} ~ v</math></td> | ||
| + | <td style="border-bottom:1px solid black"> </td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{No} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\texttt{(} \ell_{10} \texttt{)}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td><math>\mathrm{All} ~ v ~ \mathrm{is} ~ u</math></td> | ||
| + | <td><math>\mathrm{No} ~ v ~ \mathrm{is} ~ \texttt{(} u \texttt{)}</math></td> | ||
| + | <td><math>\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v</math></td> | ||
| + | <td><math>\texttt{(} \ell_{01} \texttt{)}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"> </td> | ||
| + | <td style="border-bottom:1px solid black"> </td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{All} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ u</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{No} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ \texttt{(} u \texttt{)}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\texttt{(} \ell_{00} \texttt{)}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td> </td> | ||
| + | <td> </td> | ||
| + | <td><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td> </td> | ||
| + | <td><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td><math>\ell_{00}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td style="border-bottom:1px solid black"> </td> | ||
| + | <td style="border-bottom:1px solid black"> </td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v</math></td> | ||
| + | <td style="border-bottom:1px solid black"> </td> | ||
| + | <td style="border-bottom:1px solid black"><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v</math></td> | ||
| + | <td style="border-bottom:1px solid black"><math>\ell_{01}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>\begin{matrix} | ||
| + | \mathrm{O} | ||
| + | \\ | ||
| + | \mathrm{Obtrusive} | ||
| + | \end{matrix}</math></td> | ||
| + | <td><math>\begin{matrix} | ||
| + | \mathrm{Particular} | ||
| + | \\ | ||
| + | \mathrm{Negative} | ||
| + | \end{matrix}</math></td> | ||
| + | <td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td> </td> | ||
| + | <td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
| + | <td><math>\ell_{10}</math></td></tr> | ||
| + | |||
| + | <tr> | ||
| + | <td><math>\begin{matrix} | ||
| + | \mathrm{I} | ||
| + | \\ | ||
| + | \mathrm{Indefinite} | ||
| + | \end{matrix}</math></td> | ||
| + | <td><math>\begin{matrix} | ||
| + | \mathrm{Particular} | ||
| + | \\ | ||
| + | \mathrm{Affirmative} | ||
| + | \end{matrix}</math></td> | ||
| + | <td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ v</math></td> | ||
| + | <td> </td> | ||
| + | <td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ v</math></td> | ||
| + | <td><math>\ell_{11}</math></td></tr> | ||
| + | |||
| + | </table> | ||
| + | |||
| + | <br> | ||
| + | |||
| + | ==Inquiry Driven Systems== | ||
| + | |||
| + | ===Table 1.  Sign Relation of Interpreter ''A''=== | ||
| + | |||
| + | <pre> | ||
| + | Table 1.  Sign Relation of Interpreter A | ||
| + | o---------------o---------------o---------------o | ||
| + | | Object        | Sign          | Interpretant  | | ||
| + | o---------------o---------------o---------------o | ||
| + | | A             | "A"           | "A"           | | ||
| + | | A             | "A"           | "i"           | | ||
| + | | A             | "i"           | "A"           | | ||
| + | | A             | "i"           | "i"           | | ||
| + | | B             | "B"           | "B"           | | ||
| + | | B             | "B"           | "u"           | | ||
| + | | B             | "u"           | "B"           | | ||
| + | | B             | "u"           | "u"           | | ||
| + | o---------------o---------------o---------------o | ||
| </pre> | </pre> | ||
| − | + | ||
| − | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | |
| − | + | |+ Table 1.  Sign Relation of Interpreter ''A'' | |
| − | + | |- style="background:paleturquoise" | |
| − | + | ! style="width:20%" | Object | |
| − | + | ! style="width:20%" | Sign | |
| − | + | ! style="width:20%" | Interpretant | |
| − | + | |- | |
| − | + | | ''A'' || "A" || "A" | |
| − | + | |- | |
| − | + | | ''A'' || "A" || "i" | |
| − | </pre> | + | |- | 
| − | + | | ''A'' || "i" || "A" | |
| − | + | |- | |
| − | + | | ''A'' || "i" || "i" | |
| − | + | |- | |
| − | + | | ''B'' || "B" || "B" | |
| − | + | |- | |
| − | + | | ''B'' || "B" || "u" | |
| − | + | |- | |
| − | + | | ''B'' || "u" || "B" | |
| − | + | |- | |
| − | + | | ''B'' || "u" || "u" | |
| − | + | |} | |
| − | + | <br> | |
| − | + | ||
| − | + | ===Table 2.  Sign Relation of Interpreter ''B''=== | |
| − | + | ||
| − | + | <pre> | |
| − | + | Table 2.  Sign Relation of Interpreter B | |
| − | + | o---------------o---------------o---------------o | |
| + | | Object        | Sign          | Interpretant  | | ||
| + | o---------------o---------------o---------------o | ||
| + | | A             | "A"           | "A"           | | ||
| + | | A             | "A"           | "u"           | | ||
| + | | A             | "u"           | "A"           | | ||
| + | | A             | "u"           | "u"           | | ||
| + | | B             | "B"           | "B"           | | ||
| + | | B             | "B"           | "i"           | | ||
| + | | B             | "i"           | "B"           | | ||
| + | | B             | "i"           | "i"           | | ||
| + | o---------------o---------------o---------------o | ||
| + | </pre> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | ||
| + | |+ Table 2.  Sign Relation of Interpreter ''B'' | ||
| + | |- style="background:paleturquoise" | ||
| + | ! style="width:20%" | Object | ||
| + | ! style="width:20%" | Sign | ||
| + | ! style="width:20%" | Interpretant | ||
| + | |- | ||
| + | | ''A'' || "A" || "A" | ||
| + | |- | ||
| + | | ''A'' || "A" || "u" | ||
| + | |- | ||
| + | | ''A'' || "u" || "A" | ||
| + | |- | ||
| + | | ''A'' || "u" || "u" | ||
| + | |- | ||
| + | | ''B'' || "B" || "B" | ||
| + | |- | ||
| + | | ''B'' || "B" || "i" | ||
| + | |- | ||
| + | | ''B'' || "i" || "B" | ||
| + | |- | ||
| + | | ''B'' || "i" || "i" | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ===Table 3.  Semiotic Partition of Interpreter ''A''=== | ||
| + | |||
| + | <pre> | ||
| + | Table 3.  A's Semiotic Partition | ||
| + | o-------------------------------o | ||
| + | |      "A"             "i"      | | ||
| + | o-------------------------------o | ||
| + | |      "u"             "B"      | | ||
| + | o-------------------------------o | ||
| + | </pre> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | ||
| + | |+ Table 3.  Semiotic Partition of Interpreter ''A'' | ||
| + | | | ||
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | ||
| + | | width="50%" | "A" | ||
| + | | width="50%" | "i" | ||
| + | |} | ||
| + | |- | ||
| + | | | ||
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | ||
| + | | width="50%" | "u" | ||
| + | | width="50%" | "B" | ||
| + | |} | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ===Table 4.  Semiotic Partition of Interpreter ''B''=== | ||
| + | |||
| + | <pre> | ||
| + | Table 4.  B's Semiotic Partition | ||
| + | o---------------o---------------o | ||
| + | |      "A"      |      "i"      | | ||
| + | |               |               | | ||
| + | |      "u"      |      "B"      | | ||
| + | o---------------o---------------o | ||
| + | </pre> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | ||
| + | |+ Table 4.  Semiotic Partition of Interpreter ''B'' | ||
| + | | | ||
| + | {| align="center" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:50%" | ||
| + | | "A" | ||
| + | |- | ||
| + | | "u" | ||
| + | |} | ||
| + | | | ||
| + | {| align="center" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:50%" | ||
| + | | "i" | ||
| + | |- | ||
| + | | "B" | ||
| + | |} | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ===Table 5.  Alignments of Capacities=== | ||
| + | |||
| + | <pre> | ||
| + | Table 5.  Alignments of Capacities | ||
| + | o-------------------o-----------------------------o | ||
| + | |      Formal       |          Formative          | | ||
| + | o-------------------o-----------------------------o | ||
| + | |     Objective     |        Instrumental         | | ||
| + | |      Passive      |           Active            | | ||
| + | o-------------------o--------------o--------------o | ||
| + | |     Afforded      |  Possessed   |  Exercised   | | ||
| + | o-------------------o--------------o--------------o | ||
| + | </pre> | ||
| + | |||
| + | ===Table 6.  Alignments of Capacities in Aristotle=== | ||
| + | |||
| + | <pre> | ||
| + | Table 6.  Alignments of Capacities in Aristotle | ||
| + | o-------------------o-----------------------------o | ||
| + | |      Matter       |            Form             | | ||
| + | o-------------------o-----------------------------o | ||
| + | |   Potentiality    |          Actuality          | | ||
| + | |    Receptivity    |  Possession  |   Exercise   | | ||
| + | |       Life        |    Sleep     |    Waking    | | ||
| + | |        Wax        |         Impression          | | ||
| + | |        Axe        |    Edge      |   Cutting    | | ||
| + | |        Eye        |   Vision     |    Seeing    | | ||
| + | |       Body        |            Soul             | | ||
| + | o-------------------o-----------------------------o | ||
| + | |       Ship?       |           Sailor?           | | ||
| + | o-------------------o-----------------------------o | ||
| + | </pre> | ||
| + | |||
| + | ===Table 7.  Synthesis of Alignments=== | ||
| + | |||
| + | <pre> | ||
| + | Table 7.  Synthesis of Alignments | ||
| + | o-------------------o-----------------------------o | ||
| + | |      Formal       |          Formative          | | ||
| + | o-------------------o-----------------------------o | ||
| + | |     Objective     |        Instrumental         | | ||
| + | |      Passive      |           Active            | | ||
| + | |     Afforded      |  Possessed   |  Exercised   | | ||
| + | |      To Hold      |   To Have    |    To Use    | | ||
| + | |    Receptivity    |  Possession  |   Exercise   | | ||
| + | |   Potentiality    |          Actuality          | | ||
| + | |      Matter       |            Form             | | ||
| + | o-------------------o-----------------------------o | ||
| + | </pre> | ||
| + | |||
| + | ===Table 8.  Boolean Product=== | ||
| + | |||
| + | <pre> | ||
| + | Table 8.  Boolean Product | ||
| + | o---------o---------o---------o | ||
| + | |   %*%   %   %0%   |   %1%   | | ||
| + | o=========o=========o=========o | ||
| + | |   %0%   %   %0%   |   %0%   | | ||
| + | o---------o---------o---------o | ||
| + | |   %1%   %   %0%   |   %1%   | | ||
| + | o---------o---------o---------o | ||
| + | </pre> | ||
| + | |||
| + | ===Table 9.  Boolean Sum=== | ||
| + | |||
| + | <pre> | ||
| + | Table 9.  Boolean Sum | ||
| + | o---------o---------o---------o | ||
| + | |   %+%   %   %0%   |   %1%   | | ||
| + | o=========o=========o=========o | ||
| + | |   %0%   %   %0%   |   %1%   | | ||
| + | o---------o---------o---------o | ||
| + | |   %1%   %   %1%   |   %0%   | | ||
| + | o---------o---------o---------o | ||
| + | </pre> | ||
| + | |||
| + | ==Logical Tables== | ||
| + | |||
| + | ===Table Templates=== | ||
| + | |||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | ||
| + | |+ Table 1.  Two Variable Template | ||
| + | |- style="background:paleturquoise" | ||
| + | | | ||
| + | {| align="right" style="background:paleturquoise; text-align:right" | ||
| + | | u : | ||
| + | |- | ||
| + | | v : | ||
| + | |} | ||
| + | | | ||
| + | {| style="background:paleturquoise" | ||
| + | | 1 1 0 0 | ||
| + | |- | ||
| + | | 1 0 1 0 | ||
| + | |} | ||
| + | | | ||
| + | {| style="background:paleturquoise" | ||
| + | | f | ||
| + | |- | ||
| + | |   | ||
| + | |} | ||
| + | | | ||
| + | {| style="background:paleturquoise" | ||
| + | | f | ||
| + | |- | ||
| + | |   | ||
| + | |} | ||
| + | | | ||
| + | {| style="background:paleturquoise" | ||
| + | | f | ||
| + | |- | ||
| + | |   | ||
| + | |} | ||
| + | |- | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>0</sub> | ||
| + | |- | ||
| + | | f<sub>1</sub> | ||
| + | |- | ||
| + | | f<sub>2</sub> | ||
| + | |- | ||
| + | | f<sub>3</sub> | ||
| + | |- | ||
| + | | f<sub>4</sub> | ||
| + | |- | ||
| + | | f<sub>5</sub> | ||
| + | |- | ||
| + | | f<sub>6</sub> | ||
| + | |- | ||
| + | | f<sub>7</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | 0 0 0 0 | ||
| + | |- | ||
| + | | 0 0 0 1 | ||
| + | |- | ||
| + | | 0 0 1 0 | ||
| + | |- | ||
| + | | 0 0 1 1 | ||
| + | |- | ||
| + | | 0 1 0 0 | ||
| + | |- | ||
| + | | 0 1 0 1 | ||
| + | |- | ||
| + | | 0 1 1 0 | ||
| + | |- | ||
| + | | 0 1 1 1 | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>0</sub> | ||
| + | |- | ||
| + | | f<sub>1</sub> | ||
| + | |- | ||
| + | | f<sub>2</sub> | ||
| + | |- | ||
| + | | f<sub>3</sub> | ||
| + | |- | ||
| + | | f<sub>4</sub> | ||
| + | |- | ||
| + | | f<sub>5</sub> | ||
| + | |- | ||
| + | | f<sub>6</sub> | ||
| + | |- | ||
| + | | f<sub>7</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>0</sub> | ||
| + | |- | ||
| + | | f<sub>1</sub> | ||
| + | |- | ||
| + | | f<sub>2</sub> | ||
| + | |- | ||
| + | | f<sub>3</sub> | ||
| + | |- | ||
| + | | f<sub>4</sub> | ||
| + | |- | ||
| + | | f<sub>5</sub> | ||
| + | |- | ||
| + | | f<sub>6</sub> | ||
| + | |- | ||
| + | | f<sub>7</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>0</sub> | ||
| + | |- | ||
| + | | f<sub>1</sub> | ||
| + | |- | ||
| + | | f<sub>2</sub> | ||
| + | |- | ||
| + | | f<sub>3</sub> | ||
| + | |- | ||
| + | | f<sub>4</sub> | ||
| + | |- | ||
| + | | f<sub>5</sub> | ||
| + | |- | ||
| + | | f<sub>6</sub> | ||
| + | |- | ||
| + | | f<sub>7</sub> | ||
| + | |} | ||
| + | |- | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>8</sub> | ||
| + | |- | ||
| + | | f<sub>9</sub> | ||
| + | |- | ||
| + | | f<sub>10</sub> | ||
| + | |- | ||
| + | | f<sub>11</sub> | ||
| + | |- | ||
| + | | f<sub>12</sub> | ||
| + | |- | ||
| + | | f<sub>13</sub> | ||
| + | |- | ||
| + | | f<sub>14</sub> | ||
| + | |- | ||
| + | | f<sub>15</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | 1 0 0 0 | ||
| + | |- | ||
| + | | 1 0 0 1 | ||
| + | |- | ||
| + | | 1 0 1 0 | ||
| + | |- | ||
| + | | 1 0 1 1 | ||
| + | |- | ||
| + | | 1 1 0 0 | ||
| + | |- | ||
| + | | 1 1 0 1 | ||
| + | |- | ||
| + | | 1 1 1 0 | ||
| + | |- | ||
| + | | 1 1 1 1 | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>8</sub> | ||
| + | |- | ||
| + | | f<sub>9</sub> | ||
| + | |- | ||
| + | | f<sub>10</sub> | ||
| + | |- | ||
| + | | f<sub>11</sub> | ||
| + | |- | ||
| + | | f<sub>12</sub> | ||
| + | |- | ||
| + | | f<sub>13</sub> | ||
| + | |- | ||
| + | | f<sub>14</sub> | ||
| + | |- | ||
| + | | f<sub>15</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>8</sub> | ||
| + | |- | ||
| + | | f<sub>9</sub> | ||
| + | |- | ||
| + | | f<sub>10</sub> | ||
| + | |- | ||
| + | | f<sub>11</sub> | ||
| + | |- | ||
| + | | f<sub>12</sub> | ||
| + | |- | ||
| + | | f<sub>13</sub> | ||
| + | |- | ||
| + | | f<sub>14</sub> | ||
| + | |- | ||
| + | | f<sub>15</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>8</sub> | ||
| + | |- | ||
| + | | f<sub>9</sub> | ||
| + | |- | ||
| + | | f<sub>10</sub> | ||
| + | |- | ||
| + | | f<sub>11</sub> | ||
| + | |- | ||
| + | | f<sub>12</sub> | ||
| + | |- | ||
| + | | f<sub>13</sub> | ||
| + | |- | ||
| + | | f<sub>14</sub> | ||
| + | |- | ||
| + | | f<sub>15</sub> | ||
| + | |} | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | <font face="courier new"> | ||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | ||
| + | |+ Table 2.  Two Variable Template | ||
| + | |- style="background:paleturquoise" | ||
| + | | | ||
| + | {| align="right" style="background:paleturquoise; text-align:right" | ||
| + | | u : | ||
| + | |- | ||
| + | | v : | ||
| + | |} | ||
| + | | | ||
| + | {| style="background:paleturquoise" | ||
| + | | 1100 | ||
| + | |- | ||
| + | | 1010 | ||
| + | |} | ||
| + | | | ||
| + | {| style="background:paleturquoise" | ||
| + | | f | ||
| + | |- | ||
| + | |   | ||
| + | |} | ||
| + | | | ||
| + | {| style="background:paleturquoise" | ||
| + | | f | ||
| + | |- | ||
| + | |   | ||
| + | |} | ||
| + | | | ||
| + | {| style="background:paleturquoise" | ||
| + | | f | ||
| + | |- | ||
| + | |   | ||
| + | |} | ||
| + | |- | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>0</sub> | ||
| + | |- | ||
| + | | f<sub>1</sub> | ||
| + | |- | ||
| + | | f<sub>2</sub> | ||
| + | |- | ||
| + | | f<sub>3</sub> | ||
| + | |- | ||
| + | | f<sub>4</sub> | ||
| + | |- | ||
| + | | f<sub>5</sub> | ||
| + | |- | ||
| + | | f<sub>6</sub> | ||
| + | |- | ||
| + | | f<sub>7</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | 0000 | ||
| + | |- | ||
| + | | 0001 | ||
| + | |- | ||
| + | | 0010 | ||
| + | |- | ||
| + | | 0011 | ||
| + | |- | ||
| + | | 0100 | ||
| + | |- | ||
| + | | 0101 | ||
| + | |- | ||
| + | | 0110 | ||
| + | |- | ||
| + | | 0111 | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | () | ||
| + | |- | ||
| + | |  (u)(v)  | ||
| + | |- | ||
| + | |  (u) v   | ||
| + | |- | ||
| + | |  (u)     | ||
| + | |- | ||
| + | |   u (v)  | ||
| + | |- | ||
| + | |     (v)  | ||
| + | |- | ||
| + | |  (u, v)  | ||
| + | |- | ||
| + | |  (u  v)  | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>0</sub> | ||
| + | |- | ||
| + | | f<sub>1</sub> | ||
| + | |- | ||
| + | | f<sub>2</sub> | ||
| + | |- | ||
| + | | f<sub>3</sub> | ||
| + | |- | ||
| + | | f<sub>4</sub> | ||
| + | |- | ||
| + | | f<sub>5</sub> | ||
| + | |- | ||
| + | | f<sub>6</sub> | ||
| + | |- | ||
| + | | f<sub>7</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>0</sub> | ||
| + | |- | ||
| + | | f<sub>1</sub> | ||
| + | |- | ||
| + | | f<sub>2</sub> | ||
| + | |- | ||
| + | | f<sub>3</sub> | ||
| + | |- | ||
| + | | f<sub>4</sub> | ||
| + | |- | ||
| + | | f<sub>5</sub> | ||
| + | |- | ||
| + | | f<sub>6</sub> | ||
| + | |- | ||
| + | | f<sub>7</sub> | ||
| + | |} | ||
| + | |- | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>8</sub> | ||
| + | |- | ||
| + | | f<sub>9</sub> | ||
| + | |- | ||
| + | | f<sub>10</sub> | ||
| + | |- | ||
| + | | f<sub>11</sub> | ||
| + | |- | ||
| + | | f<sub>12</sub> | ||
| + | |- | ||
| + | | f<sub>13</sub> | ||
| + | |- | ||
| + | | f<sub>14</sub> | ||
| + | |- | ||
| + | | f<sub>15</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | 1000 | ||
| + | |- | ||
| + | | 1001 | ||
| + | |- | ||
| + | | 1010 | ||
| + | |- | ||
| + | | 1011 | ||
| + | |- | ||
| + | | 1100 | ||
| + | |- | ||
| + | | 1101 | ||
| + | |- | ||
| + | | 1110 | ||
| + | |- | ||
| + | | 1111 | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | |   u  v   | ||
| + | |- | ||
| + | | ((u, v)) | ||
| + | |- | ||
| + | |      v   | ||
| + | |- | ||
| + | |  (u (v)) | ||
| + | |- | ||
| + | |   u      | ||
| + | |- | ||
| + | | ((u) v)  | ||
| + | |- | ||
| + | | ((u)(v)) | ||
| + | |- | ||
| + | | (()) | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>8</sub> | ||
| + | |- | ||
| + | | f<sub>9</sub> | ||
| + | |- | ||
| + | | f<sub>10</sub> | ||
| + | |- | ||
| + | | f<sub>11</sub> | ||
| + | |- | ||
| + | | f<sub>12</sub> | ||
| + | |- | ||
| + | | f<sub>13</sub> | ||
| + | |- | ||
| + | | f<sub>14</sub> | ||
| + | |- | ||
| + | | f<sub>15</sub> | ||
| + | |} | ||
| + | | | ||
| + | {| cellpadding="2" style="background:lightcyan" | ||
| + | | f<sub>8</sub> | ||
| + | |- | ||
| + | | f<sub>9</sub> | ||
| + | |- | ||
| + | | f<sub>10</sub> | ||
| + | |- | ||
| + | | f<sub>11</sub> | ||
| + | |- | ||
| + | | f<sub>12</sub> | ||
| + | |- | ||
| + | | f<sub>13</sub> | ||
| + | |- | ||
| + | | f<sub>14</sub> | ||
| + | |- | ||
| + | | f<sub>15</sub> | ||
| + | |} | ||
| + | |} | ||
| + | </font><br> | ||
| + | |||
| + | ===Higher Order Propositions=== | ||
| + | |||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 7.  Higher Order Propositions (n = 1)''' | ||
| + | |- style="background:paleturquoise" | ||
| + | | \ ''x'' || 1 0 || ''F'' | ||
| + | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
| + | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
| + | |- style="background:paleturquoise" | ||
| + | | ''F'' \ ||   ||   | ||
| + | |00||01||02||03||04||05||06||07||08||09||10||11||12||13||14||15 | ||
| + | |- | ||
| + | | ''F<sub>0</sub> || 0 0 ||  0  ||0||1||0||1||0||1||0||1||0||1||0||1||0||1||0||1 | ||
| + | |- | ||
| + | | ''F<sub>1</sub> || 0 1 || (x) ||0||0||1||1||0||0||1||1||0||0||1||1||0||0||1||1 | ||
| + | |- | ||
| + | | ''F<sub>2</sub> || 1 0 ||  x  ||0||0||0||0||1||1||1||1||0||0||0||0||1||1||1||1 | ||
| + | |- | ||
| + | | ''F<sub>3</sub> || 1 1 ||  1  ||0||0||0||0||0||0||0||0||1||1||1||1||1||1||1||1 | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 8.  Interpretive Categories for Higher Order Propositions (n = 1)''' | ||
| + | |- style="background:paleturquoise" | ||
| + | |Measure||Happening||Exactness||Existence||Linearity||Uniformity||Information | ||
| + | |- | ||
| + | |''m''<sub>0</sub>||nothing happens|| || || || ||  | ||
| + | |- | ||
| + | |''m''<sub>1</sub>|| ||just false||nothing exists|| || ||  | ||
| + | |- | ||
| + | |''m''<sub>2</sub>|| ||just not x|| || || ||  | ||
| + | |- | ||
| + | |''m''<sub>3</sub>|| || ||nothing is x|| || ||  | ||
| + | |- | ||
| + | |''m''<sub>4</sub>|| ||just x|| || || ||  | ||
| + | |- | ||
| + | |''m''<sub>5</sub>|| || ||everything is x||F is linear|| ||  | ||
| + | |- | ||
| + | |''m''<sub>6</sub>|| || || || ||F is not uniform||F is informed | ||
| + | |- | ||
| + | |''m''<sub>7</sub>|| ||not just true|| || || ||  | ||
| + | |- | ||
| + | |''m''<sub>8</sub>|| ||just true|| || || ||  | ||
| + | |- | ||
| + | |''m''<sub>9</sub>|| || || || ||F is uniform||F is not informed | ||
| + | |- | ||
| + | |''m''<sub>10</sub>|| || ||something is not x||F is not linear|| ||  | ||
| + | |- | ||
| + | |''m''<sub>11</sub>|| ||not just x|| || || ||  | ||
| + | |- | ||
| + | |''m''<sub>12</sub>|| || ||something is x|| || ||  | ||
| + | |- | ||
| + | |''m''<sub>13</sub>|| ||not just not x|| || || ||  | ||
| + | |- | ||
| + | |''m''<sub>14</sub>|| ||not just false||something exists|| || ||  | ||
| + | |- | ||
| + | |''m''<sub>15</sub>||anything happens|| || || || ||  | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 9.  Higher Order Propositions (n = 2)''' | ||
| + | |- style="background:paleturquoise" | ||
| + | | align=right | ''x'' : || 1100 || ''f'' | ||
| + | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
| + | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
| + | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
| + | |- style="background:paleturquoise" | ||
| + | | align=right | ''y'' : || 1010 ||   | ||
| + | |0||1||2||3||4||5||6||7||8||9||10||11||12 | ||
| + | |13||14||15||16||17||18||19||20||21||22||23 | ||
| + | |- | ||
| + | | ''f<sub>0</sub> || 0000 || ( ) | ||
| + | | 0    || 1    || 0    || 1    || 0    || 1    || 0    || 1 | ||
| + | | 0    || 1    || 0    || 1    || 0    || 1    || 0    || 1 | ||
| + | | 0    || 1    || 0    || 1    || 0    || 1    || 0    || 1 | ||
| + | |- | ||
| + | | ''f<sub>1</sub> || 0001 || (x)(y) | ||
| + | | || || 1    || 1    || 0    || 0    || 1    || 1 | ||
| + | | 0    || 0    || 1    || 1    || 0    || 0    || 1    || 1 | ||
| + | | 0    || 0    || 1    || 1    || 0    || 0    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>2</sub> || 0010 || (x) y  | ||
| + | | || || || || 1    || 1    || 1    || 1 | ||
| + | | 0    || 0    || 0    || 0    || 1    || 1    || 1    || 1 | ||
| + | | 0    || 0    || 0    || 0    || 1    || 1    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>3</sub> || 0011 || (x)  | ||
| + | | || || || || || || ||  | ||
| + | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 | ||
| + | | 0    || 0    || 0    || 0    || 0    || 0    || 0    || 0 | ||
| + | |- | ||
| + | | ''f<sub>4</sub> || 0100 || x (y) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>5</sub> || 0101 || (y) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>6</sub> || 0110 || (x, y) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>7</sub> || 0111 || (x  y) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>8</sub> || 1000 || x  y  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>9</sub> || 1001 || ((x, y)) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>10</sub> || 1010 || y | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>11</sub> || 1011 || (x (y)) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>12</sub> || 1100 || x | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>13</sub> || 1101 || ((x) y) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>14</sub> || 1110 || ((x)(y)) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |- | ||
| + | | ''f<sub>15</sub> || 1111 || (( )) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || ||  | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 10.  Qualifiers of Implication Ordering:  α<sub>''i'' </sub>''f'' = Υ(''f''<sub>''i''</sub> ⇒ ''f'')''' | ||
| + | |- style="background:paleturquoise" | ||
| + | | align=right | ''x'' : || 1100 || ''f'' | ||
| + | |α||α||α||α||α||α||α||α | ||
| + | |α||α||α||α||α||α||α||α | ||
| + | |- style="background:paleturquoise" | ||
| + | | align=right | ''y'' : || 1010 ||   | ||
| + | |15||14||13||12||11||10||9||8||7||6||5||4||3||2||1||0 | ||
| + | |- | ||
| + | | ''f<sub>0</sub> || 0000 || ( ) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || || 1 | ||
| + | |- | ||
| + | | ''f<sub>1</sub> || 0001 || (x)(y) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>2</sub> || 0010 || (x) y  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || 1    || || 1 | ||
| + | |- | ||
| + | | ''f<sub>3</sub> || 0011 || (x)  | ||
| + | | || || || || || || ||  | ||
| + | | || || || || 1    || 1    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>4</sub> || 0100 || x (y) | ||
| + | | || || || || || || ||  | ||
| + | | || || || 1    || || || || 1 | ||
| + | |- | ||
| + | | ''f<sub>5</sub> || 0101 || (y) | ||
| + | | || || || || || || ||  | ||
| + | | || || 1    || 1    || || || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>6</sub> || 0110 || (x, y) | ||
| + | | || || || || || || ||  | ||
| + | | || 1    || || 1    || || 1    || || 1 | ||
| + | |- | ||
| + | | ''f<sub>7</sub> || 0111 || (x  y) | ||
| + | | || || || || || || ||  | ||
| + | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>8</sub> || 1000 || x  y  | ||
| + | | || || || || || || || 1 | ||
| + | | || || || || || || || 1 | ||
| + | |- | ||
| + | | ''f<sub>9</sub> || 1001 || ((x, y)) | ||
| + | | || || || || || || 1    || 1 | ||
| + | | || || || || || || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>10</sub> || 1010 || y | ||
| + | | || || || || || 1    || || 1 | ||
| + | | || || || || || 1    || || 1 | ||
| + | |- | ||
| + | | ''f<sub>11</sub> || 1011 || (x (y)) | ||
| + | | || || || || 1    || 1    || 1    || 1 | ||
| + | | || || || || 1    || 1    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>12</sub> || 1100 || x | ||
| + | | || || || 1    || || || || 1 | ||
| + | | || || || 1    || || || || 1 | ||
| + | |- | ||
| + | | ''f<sub>13</sub> || 1101 || ((x) y) | ||
| + | | || || 1    || 1    || || || 1    || 1 | ||
| + | | || || 1    || 1    || || || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>14</sub> || 1110 || ((x)(y)) | ||
| + | | || 1    || || 1    || || 1    || || 1 | ||
| + | | || 1    || || 1    || || 1    || || 1 | ||
| + | |- | ||
| + | | ''f<sub>15</sub> || 1111 || (( )) | ||
| + | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 | ||
| + | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 11.  Qualifiers of Implication Ordering:  β<sub>''i'' </sub>''f'' = Υ(''f'' ⇒ ''f''<sub>''i''</sub>)''' | ||
| + | |- style="background:paleturquoise" | ||
| + | | align=right | ''x'' : || 1100 || ''f'' | ||
| + | |β||β||β||β||β||β||β||β | ||
| + | |β||β||β||β||β||β||β||β | ||
| + | |- style="background:paleturquoise" | ||
| + | | align=right | ''y'' : || 1010 ||   | ||
| + | |0||1||2||3||4||5||6||7||8||9||10||11||12||13||14||15 | ||
| + | |- | ||
| + | | ''f<sub>0</sub> || 0000 || ( ) | ||
| + | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 | ||
| + | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>1</sub> || 0001 || (x)(y) | ||
| + | | || 1    || || 1    || || 1    || || 1 | ||
| + | | || 1    || || 1    || || 1    || || 1 | ||
| + | |- | ||
| + | | ''f<sub>2</sub> || 0010 || (x) y  | ||
| + | | || || 1    || 1    || || || 1    || 1 | ||
| + | | || || 1    || 1    || || || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>3</sub> || 0011 || (x)  | ||
| + | | || || || 1    || || || || 1 | ||
| + | | || || || 1    || || || || 1 | ||
| + | |- | ||
| + | | ''f<sub>4</sub> || 0100 || x (y) | ||
| + | | || || || || 1    || 1    || 1    || 1 | ||
| + | | || || || || 1    || 1    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>5</sub> || 0101 || (y) | ||
| + | | || || || || || 1    || || 1 | ||
| + | | || || || || || 1    || || 1 | ||
| + | |- | ||
| + | | ''f<sub>6</sub> || 0110 || (x, y) | ||
| + | | || || || || || || 1    || 1 | ||
| + | | || || || || || || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>7</sub> || 0111 || (x  y) | ||
| + | | || || || || || || || 1 | ||
| + | | || || || || || || || 1 | ||
| + | |- | ||
| + | | ''f<sub>8</sub> || 1000 || x  y  | ||
| + | | || || || || || || ||  | ||
| + | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>9</sub> || 1001 || ((x, y)) | ||
| + | | || || || || || || ||  | ||
| + | | || 1    || || 1    || || 1    || || 1 | ||
| + | |- | ||
| + | | ''f<sub>10</sub> || 1010 || y | ||
| + | | || || || || || || ||  | ||
| + | | || || 1    || 1    || || || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>11</sub> || 1011 || (x (y)) | ||
| + | | || || || || || || ||  | ||
| + | | || || || 1    || || || || 1 | ||
| + | |- | ||
| + | | ''f<sub>12</sub> || 1100 || x | ||
| + | | || || || || || || ||  | ||
| + | | || || || || 1    || 1    || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>13</sub> || 1101 || ((x) y) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || 1    || || 1 | ||
| + | |- | ||
| + | | ''f<sub>14</sub> || 1110 || ((x)(y)) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || 1    || 1 | ||
| + | |- | ||
| + | | ''f<sub>15</sub> || 1111 || (( )) | ||
| + | | || || || || || || ||  | ||
| + | | || || || || || || || 1 | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 13.  Syllogistic Premisses as Higher Order Indicator Functions''' | ||
| + | | A | ||
| + | | align=left | Universal Affirmative | ||
| + | | align=left | All | ||
| + | | x || is || y | ||
| + | | align=left | Indicator of " x (y)" = 0 | ||
| + | |- | ||
| + | | E | ||
| + | | align=left | Universal Negative | ||
| + | | align=left | All | ||
| + | | x || is || (y) | ||
| + | | align=left | Indicator of " x  y " = 0 | ||
| + | |- | ||
| + | | I | ||
| + | | align=left | Particular Affirmative | ||
| + | | align=left | Some | ||
| + | | x || is || y | ||
| + | | align=left | Indicator of " x  y " = 1 | ||
| + | |- | ||
| + | | O | ||
| + | | align=left | Particular Negative | ||
| + | | align=left | Some | ||
| + | | x || is || (y) | ||
| + | | align=left | Indicator of " x (y)" = 1 | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 14.  Relation of Quantifiers to Higher Order Propositions''' | ||
| + | |- style="background:paleturquoise" | ||
| + | |Mnemonic||Category||Classical Form||Alternate Form||Symmetric Form||Operator | ||
| + | |- | ||
| + | | E<br>Exclusive | ||
| + | | Universal<br>Negative | ||
| + | | align=left | All x is (y) | ||
| + | | align=left |   | ||
| + | | align=left | No x is y | ||
| + | | (''L''<sub>11</sub>) | ||
| + | |- | ||
| + | | A<br>Absolute | ||
| + | | Universal<br>Affirmative | ||
| + | | align=left | All x is y | ||
| + | | align=left |   | ||
| + | | align=left | No x is (y) | ||
| + | | (''L''<sub>10</sub>) | ||
| + | |- | ||
| + | |   | ||
| + | |   | ||
| + | | align=left | All y is x | ||
| + | | align=left | No y is (x) | ||
| + | | align=left | No (x) is y | ||
| + | | (''L''<sub>01</sub>) | ||
| + | |- | ||
| + | |   | ||
| + | |   | ||
| + | | align=left | All (y) is x | ||
| + | | align=left | No (y) is (x) | ||
| + | | align=left | No (x) is (y) | ||
| + | | (''L''<sub>00</sub>) | ||
| + | |- | ||
| + | |   | ||
| + | |   | ||
| + | | align=left | Some (x) is (y) | ||
| + | | align=left |   | ||
| + | | align=left | Some (x) is (y) | ||
| + | | ''L''<sub>00</sub> | ||
| + | |- | ||
| + | |   | ||
| + | |   | ||
| + | | align=left | Some (x) is y | ||
| + | | align=left |   | ||
| + | | align=left | Some (x) is y | ||
| + | | ''L''<sub>01</sub> | ||
| + | |- | ||
| + | | O<br>Obtrusive | ||
| + | | Particular<br>Negative | ||
| + | | align=left | Some x is (y) | ||
| + | | align=left |   | ||
| + | | align=left | Some x is (y) | ||
| + | | ''L''<sub>10</sub> | ||
| + | |- | ||
| + | | I<br>Indefinite | ||
| + | | Particular<br>Affirmative | ||
| + | | align=left | Some x is y | ||
| + | | align=left |   | ||
| + | | align=left | Some x is y | ||
| + | | ''L''<sub>11</sub> | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 15.  Simple Qualifiers of Propositions (n = 2)''' | ||
| + | |- style="background:paleturquoise" | ||
| + | | align=right | ''x'' : || 1100 || ''f'' | ||
| + | | (''L''<sub>11</sub>) | ||
| + | | (''L''<sub>10</sub>) | ||
| + | | (''L''<sub>01</sub>) | ||
| + | | (''L''<sub>00</sub>) | ||
| + | |  ''L''<sub>00</sub> | ||
| + | |  ''L''<sub>01</sub> | ||
| + | |  ''L''<sub>10</sub> | ||
| + | |  ''L''<sub>11</sub> | ||
| + | |- style="background:paleturquoise" | ||
| + | | align=right | ''y'' : || 1010 ||   | ||
| + | | align=left |   no  x  <br> is  y | ||
| + | | align=left |   no  x  <br> is (y) | ||
| + | | align=left |   no (x) <br> is  y | ||
| + | | align=left |   no (x) <br> is (y) | ||
| + | | align=left | some (x) <br> is (y) | ||
| + | | align=left | some (x) <br> is  y | ||
| + | | align=left | some  x  <br> is (y) | ||
| + | | align=left | some  x  <br> is  y | ||
| + | |- | ||
| + | | ''f<sub>0</sub> || 0000 || ( ) | ||
| + | | 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0 | ||
| + | |- | ||
| + | | ''f<sub>1</sub> || 0001 || (x)(y) | ||
| + | | 1 || 1 || 1 || 0 || 1 || 0 || 0 || 0 | ||
| + | |||
| + | |- | ||
| + | | ''f<sub>2</sub> || 0010 || (x) y  | ||
| + | | 1 || 1 || 0 || 1 || 0 || 1 || 0 || 0 | ||
| + | |- | ||
| + | | ''f<sub>3</sub> || 0011 || (x)  | ||
| + | | 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0 | ||
| + | |- | ||
| + | | ''f<sub>4</sub> || 0100 || x (y) | ||
| + | | 1 || 0 || 1 || 1 || 0 || 0 || 1 || 0 | ||
| + | |- | ||
| + | | ''f<sub>5</sub> || 0101 || (y) | ||
| + | | 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 | ||
| + | |- | ||
| + | | ''f<sub>6</sub> || 0110 || (x, y) | ||
| + | | 1 || 0 || 0 || 1 || 0 || 1 || 1 || 0 | ||
| + | |- | ||
| + | | ''f<sub>7</sub> || 0111 || (x  y) | ||
| + | | 1 || 0 || 0 || 0 || 1 || 1 || 1 || 0 | ||
| + | |- | ||
| + | | ''f<sub>8</sub> || 1000 || x  y  | ||
| + | | 0 || 1 || 1 || 1 || 0 || 0 || 0 || 1 | ||
| + | |- | ||
| + | | ''f<sub>9</sub> || 1001 || ((x, y)) | ||
| + | | 0 || 1 || 1 || 0 || 1 || 0 || 0 || 1 | ||
| + | |- | ||
| + | | ''f<sub>10</sub> || 1010 || y | ||
| + | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | ||
| + | |- | ||
| + | | ''f<sub>11</sub> || 1011 || (x (y)) | ||
| + | | 0 || 1 || 0 || 0 || 1 || 1 || 0 || 1 | ||
| + | |- | ||
| + | | ''f<sub>12</sub> || 1100 || x | ||
| + | | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 | ||
| + | |- | ||
| + | | ''f<sub>13</sub> || 1101 || ((x) y) | ||
| + | | 0 || 0 || 1 || 0 || 1 || 0 || 1 || 1 | ||
| + | |- | ||
| + | | ''f<sub>14</sub> || 1110 || ((x)(y)) | ||
| + | | 0 || 0 || 0 || 1 || 0 || 1 || 1 || 1 | ||
| + | |- | ||
| + | | ''f<sub>15</sub> || 1111 || (( )) | ||
| + | | 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + |  Table 7.  Higher Order Propositions (n = 1) | ||
| + |  o------o-----o-----o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o---o | ||
| + |  |  \ x | 1 0 |  F  |m |m |m |m |m |m |m |m |m |m |m |m |m |m |m |m  | | ||
| + |  | F \  |     |     |00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15 | | ||
| + |  o------o-----o-----o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o---o | ||
| + |  |      |     |     |                                                | | ||
| + |  | F_0  | 0 0 |  0  | 0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 | | ||
| + |  |      |     |     |                                                | | ||
| + |  | F_1  | 0 1 | (x) | 0  0  1  1  0  0  1  1  0  0  1  1  0  0  1  1 | | ||
| + |  |      |     |     |                                                | | ||
| + |  | F_2  | 1 0 |  x  | 0  0  0  0  1  1  1  1  0  0  0  0  1  1  1  1 | | ||
| + |  |      |     |     |                                                | | ||
| + |  | F_3  | 1 1 |  1  | 0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1 | | ||
| + |  |      |     |     |                                                | | ||
| + |  o------o-----o-----o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o---o | ||
| + | <br> | ||
| + | |||
| + |  Table 8.  Interpretive Categories for Higher Order Propositions (n = 1) | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  |Measure| Happening| Exactness  | Existence  | Linearity|Uniformity|Information| | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_0   | nothing  |            |            |          |          |           | | ||
| + |  |       | happens  |            |            |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_1   |          |            | nothing    |          |          |           | | ||
| + |  |       |          | just false | exists     |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_2   |          |            |            |          |          |           | | ||
| + |  |       |          | just not x |            |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_3   |          |            | nothing    |          |          |           | | ||
| + |  |       |          |            | is x       |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_4   |          |            |            |          |          |           | | ||
| + |  |       |          | just x     |            |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_5   |          |            | everything | F is     |          |           | | ||
| + |  |       |          |            | is x       | linear   |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_6   |          |            |            |          | F is not | F is      | | ||
| + |  |       |          |            |            |          | uniform  | informed  | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_7   |          | not        |            |          |          |           | | ||
| + |  |       |          | just true  |            |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_8   |          |            |            |          |          |           | | ||
| + |  |       |          | just true  |            |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_9   |          |            |            |          | F is     | F is not  | | ||
| + |  |       |          |            |            |          | uniform  | informed  | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_10  |          |            | something  | F is not |          |           | | ||
| + |  |       |          |            | is not x   | linear   |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_11  |          | not        |            |          |          |           | | ||
| + |  |       |          | just x     |            |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_12  |          |            | something  |          |          |           | | ||
| + |  |       |          |            | is x       |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_13  |          | not        |            |          |          |           | | ||
| + |  |       |          | just not x |            |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_14  |          | not        | something  |          |          |           | | ||
| + |  |       |          | just false | exists     |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + |  | m_15  | anything |            |            |          |          |           | | ||
| + |  |       | happens  |            |            |          |          |           | | ||
| + |  o-------o----------o------------o------------o----------o----------o-----------o | ||
| + | <br> | ||
| + | |||
| + |  Table 9.  Higher Order Propositions (n = 2) | ||
| + |  o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o | ||
| + |  |  | x | 1100 |    f     |m|m|m|m|m|m|m|m|m|m|m|m|m|m|m|m|.| | ||
| + |  |  | y | 1010 |          |0|0|0|0|0|0|0|0|0|0|1|1|1|1|1|1|.| | ||
| + |  | f \  |      |          |0|1|2|3|4|5|6|7|8|9|0|1|2|3|4|5|.| | ||
| + |  o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_0  | 0000 |    ()    |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_1  | 0001 |  (x)(y)  |    1 1 0 0 1 1 0 0 1 1 0 0 1 1  | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_2  | 0010 |  (x) y   |        1 1 1 1 0 0 0 0 1 1 1 1  | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_3  | 0011 |  (x)     |                1 1 1 1 1 1 1 1  | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_4  | 0100 |   x (y)  |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_5  | 0101 |     (y)  |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_6  | 0110 |  (x, y)  |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_7  | 0111 |  (x  y)  |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_8  | 1000 |   x  y   |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_9  | 1001 | ((x, y)) |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_10 | 1010 |      y   |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_11 | 1011 |  (x (y)) |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_12 | 1100 |   x      |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_13 | 1101 | ((x) y)  |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_14 | 1110 | ((x)(y)) |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  | f_15 | 1111 |   (())   |                                 | | ||
| + |  |      |      |          |                                 | | ||
| + |  o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o | ||
| + | <br> | ||
| + | |||
| + |  Table 10.  Qualifiers of Implication Ordering:  !a!_i f  =  !Y!(f_i => f) | ||
| + |  o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
| + |  |  | x | 1100 |    f     |a |a |a |a |a |a |a |a |a |a |a |a |a |a |a |a | | ||
| + |  |  | y | 1010 |          |1 |1 |1 |1 |1 |1 |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 | | ||
| + |  | f \  |      |          |5 |4 |3 |2 |1 |0 |9 |8 |7 |6 |5 |4 |3 |2 |1 |0 | | ||
| + |  o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_0  | 0000 |    ()    |                                             1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_1  | 0001 |  (x)(y)  |                                          1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_2  | 0010 |  (x) y   |                                       1     1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_3  | 0011 |  (x)     |                                    1  1  1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_4  | 0100 |   x (y)  |                                 1           1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_5  | 0101 |     (y)  |                              1  1        1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_6  | 0110 |  (x, y)  |                           1     1     1     1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_7  | 0111 |  (x  y)  |                        1  1  1  1  1  1  1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_8  | 1000 |   x  y   |                     1                       1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_9  | 1001 | ((x, y)) |                  1  1                    1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_10 | 1010 |      y   |               1     1                 1     1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_11 | 1011 |  (x (y)) |            1  1  1  1              1  1  1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_12 | 1100 |   x      |         1           1           1           1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_13 | 1101 | ((x) y)  |      1  1        1  1        1  1        1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_14 | 1110 | ((x)(y)) |   1     1     1     1     1     1     1     1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_15 | 1111 |   (())   |1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
| + | <br> | ||
| + | |||
| + |  Table 11.  Qualifiers of Implication Ordering:  !b!_i f  =  !Y!(f => f_i) | ||
| + |  o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
| + |  |  | x | 1100 |    f     |b |b |b |b |b |b |b |b |b |b |b |b |b |b |b |b | | ||
| + |  |  | y | 1010 |          |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 |1 |1 |1 |1 |1 |1 | | ||
| + |  | f \  |      |          |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |0 |1 |2 |3 |4 |5 | | ||
| + |  o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_0  | 0000 |    ()    |1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_1  | 0001 |  (x)(y)  |   1     1     1     1     1     1     1     1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_2  | 0010 |  (x) y   |      1  1        1  1        1  1        1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_3  | 0011 |  (x)     |         1           1           1           1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_4  | 0100 |   x (y)  |            1  1  1  1              1  1  1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_5  | 0101 |     (y)  |               1     1                 1     1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_6  | 0110 |  (x, y)  |                  1  1                    1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_7  | 0111 |  (x  y)  |                     1                       1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_8  | 1000 |   x  y   |                        1  1  1  1  1  1  1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_9  | 1001 | ((x, y)) |                           1     1     1     1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_10 | 1010 |      y   |                              1  1        1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_11 | 1011 |  (x (y)) |                                 1           1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_12 | 1100 |   x      |                                    1  1  1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_13 | 1101 | ((x) y)  |                                       1     1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_14 | 1110 | ((x)(y)) |                                          1  1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_15 | 1111 |   (())   |                                             1 | | ||
| + |  |      |      |          |                                               | | ||
| + |  o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
| + | <br> | ||
| + | |||
| + |  Table 13.  Syllogistic Premisses as Higher Order Indicator Functions | ||
| + |  o---o------------------------o-----------------o---------------------------o | ||
| + |  |   |                        |                 |                           | | ||
| + |  | A | Universal Affirmative  | All   x  is  y  | Indicator of " x (y)" = 0 | | ||
| + |  |   |                        |                 |                           | | ||
| + |  | E | Universal Negative     | All   x  is (y) | Indicator of " x  y " = 0 | | ||
| + |  |   |                        |                 |                           | | ||
| + |  | I | Particular Affirmative | Some  x  is  y  | Indicator of " x  y " = 1 | | ||
| + |  |   |                        |                 |                           | | ||
| + |  | O | Particular Negative    | Some  x  is (y) | Indicator of " x (y)" = 1 | | ||
| + |  |   |                        |                 |                           | | ||
| + |  o---o------------------------o-----------------o---------------------------o | ||
| + | <br> | ||
| + | |||
| + |  Table 14.  Relation of Quantifiers to Higher Order Propositions | ||
| + |  o------------o------------o-----------o-----------o-----------o-----------o | ||
| + |  | Mnemonic   | Category   | Classical | Alternate | Symmetric | Operator  | | ||
| + |  |            |            |   Form    |   Form    |   Form    |           | | ||
| + |  o============o============o===========o===========o===========o===========o | ||
| + |  |     E      | Universal  |  All   x  |           |   No   x  |  (L_11)   | | ||
| + |  | Exclusive  |  Negative  |   is  (y) |           |   is   y  |           | | ||
| + |  o------------o------------o-----------o-----------o-----------o-----------o | ||
| + |  |     A      | Universal  |  All   x  |           |   No   x  |  (L_10)   | | ||
| + |  | Absolute   |  Affrmtve  |   is   y  |           |   is  (y) |           | | ||
| + |  o------------o------------o-----------o-----------o-----------o-----------o | ||
| + |  |            |            |  All   y  |   No   y  |   No  (x) |  (L_01)   | | ||
| + |  |            |            |   is   x  |   is  (x) |   is   y  |           | | ||
| + |  o------------o------------o-----------o-----------o-----------o-----------o | ||
| + |  |            |            |  All  (y) |   No  (y) |   No  (x) |  (L_00)   | | ||
| + |  |            |            |   is   x  |   is  (x) |   is  (y) |           | | ||
| + |  o------------o------------o-----------o-----------o-----------o-----------o | ||
| + |  |            |            | Some  (x) |           | Some  (x) |   L_00    | | ||
| + |  |            |            |   is  (y) |           |   is  (y) |           | | ||
| + |  o------------o------------o-----------o-----------o-----------o-----------o | ||
| + |  |            |            | Some  (x) |           | Some  (x) |   L_01    | | ||
| + |  |            |            |   is   y  |           |   is   y  |           | | ||
| + |  o------------o------------o-----------o-----------o-----------o-----------o | ||
| + |  |     O      | Particular | Some   x  |           | Some   x  |   L_10    | | ||
| + |  | Obtrusive  |  Negative  |   is  (y) |           |   is  (y) |           | | ||
| + |  o------------o------------o-----------o-----------o-----------o-----------o | ||
| + |  |     I      | Particular | Some   x  |           | Some   x  |   L_11    | | ||
| + |  | Indefinite |  Affrmtve  |   is   y  |           |   is   y  |           | | ||
| + |  o------------o------------o-----------o-----------o-----------o-----------o | ||
| + | <br> | ||
| + | |||
| + |  Table 15.  Simple Qualifiers of Propositions (n = 2) | ||
| + |  o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o | ||
| + |  |  | x | 1100 |    f     |(L11)|(L10)|(L01)|(L00)| L00 | L01 | L10 | L11 | | ||
| + |  |  | y | 1010 |          |no  x|no  x|no ~x|no ~x|sm ~x|sm ~x|sm  x|sm  x| | ||
| + |  | f \  |      |          |is  y|is ~y|is  y|is ~y|is ~y|is  y|is ~y|is  y| | ||
| + |  o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_0  | 0000 |    ()    |  1     1     1     1     0     0     0     0  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_1  | 0001 |  (x)(y)  |  1     1     1     0     1     0     0     0  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_2  | 0010 |  (x) y   |  1     1     0     1     0     1     0     0  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_3  | 0011 |  (x)     |  1     1     0     0     1     1     0     0  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_4  | 0100 |   x (y)  |  1     0     1     1     0     0     1     0  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_5  | 0101 |     (y)  |  1     0     1     0     1     0     1     0  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_6  | 0110 |  (x, y)  |  1     0     0     1     0     1     1     0  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_7  | 0111 |  (x  y)  |  1     0     0     0     1     1     1     0  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_8  | 1000 |   x  y   |  0     1     1     1     0     0     0     1  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_9  | 1001 | ((x, y)) |  0     1     1     0     1     0     0     1  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_10 | 1010 |      y   |  0     1     0     1     0     1     0     1  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_11 | 1011 |  (x (y)) |  0     1     0     0     1     1     0     1  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_12 | 1100 |   x      |  0     0     1     1     0     0     1     1  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_13 | 1101 | ((x) y)  |  0     0     1     0     1     0     1     1  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_14 | 1110 | ((x)(y)) |  0     0     0     1     0     1     1     1  | | ||
| + |  |      |      |          |                                               | | ||
| + |  | f_15 | 1111 |   (())   |  0     0     0     0     1     1     1     1  | | ||
| + |  |      |      |          |                                               | | ||
| + |  o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o | ||
| + | <br> | ||
| + | |||
| + | ===[[Zeroth Order Logic]]=== | ||
| + | |||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 1.  Propositional Forms on Two Variables''' | ||
| + | |- style="background:paleturquoise" | ||
| + | ! style="width:15%" | L<sub>1</sub> | ||
| + | ! style="width:15%" | L<sub>2</sub> | ||
| + | ! style="width:15%" | L<sub>3</sub> | ||
| + | ! style="width:15%" | L<sub>4</sub> | ||
| + | ! style="width:15%" | L<sub>5</sub> | ||
| + | ! style="width:15%" | L<sub>6</sub> | ||
| + | |- style="background:paleturquoise" | ||
| + | |   | ||
| + | | align="right" | x : | ||
| + | | 1 1 0 0  | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- style="background:paleturquoise" | ||
| + | |   | ||
| + | | align="right" | y : | ||
| + | | 1 0 1 0 | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- | ||
| + | | f<sub>0</sub> || f<sub>0000</sub> || 0 0 0 0 || ( ) || false || 0 | ||
| + | |- | ||
| + | | f<sub>1</sub> || f<sub>0001</sub> || 0 0 0 1 || (x)(y) || neither x nor y || ¬x ∧ ¬y | ||
| + | |- | ||
| + | | f<sub>2</sub> || f<sub>0010</sub> || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y | ||
| + | |- | ||
| + | | f<sub>3</sub> || f<sub>0011</sub> || 0 0 1 1 || (x) || not x || ¬x | ||
| + | |- | ||
| + | | f<sub>4</sub> || f<sub>0100</sub> || 0 1 0 0 || x (y) || x and not y || x ∧ ¬y | ||
| + | |- | ||
| + | | f<sub>5</sub> || f<sub>0101</sub> || 0 1 0 1 || (y) || not y || ¬y | ||
| + | |- | ||
| + | | f<sub>6</sub> || f<sub>0110</sub> || 0 1 1 0 || (x, y) || x not equal to y || x ≠ y | ||
| + | |- | ||
| + | | f<sub>7</sub> || f<sub>0111</sub> || 0 1 1 1 || (x y) || not both x and y || ¬x ∨ ¬y | ||
| + | |- | ||
| + | | f<sub>8</sub> || f<sub>1000</sub> || 1 0 0 0 || x y || x and y || x ∧ y | ||
| + | |- | ||
| + | | f<sub>9</sub> || f<sub>1001</sub> || 1 0 0 1 || ((x, y)) || x equal to y || x = y | ||
| + | |- | ||
| + | | f<sub>10</sub> || f<sub>1010</sub> || 1 0 1 0 || y || y || y | ||
| + | |- | ||
| + | | f<sub>11</sub> || f<sub>1011</sub> || 1 0 1 1 || (x (y)) || not x without y || x → y | ||
| + | |- | ||
| + | | f<sub>12</sub> || f<sub>1100</sub> || 1 1 0 0 || x || x || x | ||
| + | |- | ||
| + | | f<sub>13</sub> || f<sub>1101</sub> || 1 1 0 1 || ((x) y) || not y without x || x ← y | ||
| + | |- | ||
| + | | f<sub>14</sub> || f<sub>1110</sub> || 1 1 1 0 || ((x)(y)) || x or y  || x ∨ y | ||
| + | |- | ||
| + | | f<sub>15</sub> || f<sub>1111</sub> || 1 1 1 1 || (( )) || true || 1 | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:90%" | ||
| + | |+ '''Table 1.  Propositional Forms on Two Variables''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:15%" | L<sub>1</sub> | ||
| + | ! style="width:15%" | L<sub>2</sub> | ||
| + | ! style="width:15%" | L<sub>3</sub> | ||
| + | ! style="width:15%" | L<sub>4</sub> | ||
| + | ! style="width:15%" | L<sub>5</sub> | ||
| + | ! style="width:15%" | L<sub>6</sub> | ||
| + | |- style="background:aliceblue" | ||
| + | |   | ||
| + | | align="right" | x : | ||
| + | | 1 1 0 0  | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- style="background:aliceblue" | ||
| + | |   | ||
| + | | align="right" | y : | ||
| + | | 1 0 1 0 | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- | ||
| + | | f<sub>0</sub> || f<sub>0000</sub> || 0 0 0 0 || ( ) || false || 0 | ||
| + | |- | ||
| + | | f<sub>1</sub> || f<sub>0001</sub> || 0 0 0 1 || (x)(y) || neither x nor y || ¬x ∧ ¬y | ||
| + | |- | ||
| + | | f<sub>2</sub> || f<sub>0010</sub> || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y | ||
| + | |- | ||
| + | | f<sub>3</sub> || f<sub>0011</sub> || 0 0 1 1 || (x) || not x || ¬x | ||
| + | |- | ||
| + | | f<sub>4</sub> || f<sub>0100</sub> || 0 1 0 0 || x (y) || x and not y || x ∧ ¬y | ||
| + | |- | ||
| + | | f<sub>5</sub> || f<sub>0101</sub> || 0 1 0 1 || (y) || not y || ¬y | ||
| + | |- | ||
| + | | f<sub>6</sub> || f<sub>0110</sub> || 0 1 1 0 || (x, y) || x not equal to y || x ≠ y | ||
| + | |- | ||
| + | | f<sub>7</sub> || f<sub>0111</sub> || 0 1 1 1 || (x y) || not both x and y || ¬x ∨ ¬y | ||
| + | |- | ||
| + | | f<sub>8</sub> || f<sub>1000</sub> || 1 0 0 0 || x y || x and y || x ∧ y | ||
| + | |- | ||
| + | | f<sub>9</sub> || f<sub>1001</sub> || 1 0 0 1 || ((x, y)) || x equal to y || x = y | ||
| + | |- | ||
| + | | f<sub>10</sub> || f<sub>1010</sub> || 1 0 1 0 || y || y || y | ||
| + | |- | ||
| + | | f<sub>11</sub> || f<sub>1011</sub> || 1 0 1 1 || (x (y)) || not x without y || x → y | ||
| + | |- | ||
| + | | f<sub>12</sub> || f<sub>1100</sub> || 1 1 0 0 || x || x || x | ||
| + | |- | ||
| + | | f<sub>13</sub> || f<sub>1101</sub> || 1 1 0 1 || ((x) y) || not y without x || x ← y | ||
| + | |- | ||
| + | | f<sub>14</sub> || f<sub>1110</sub> || 1 1 1 0 || ((x)(y)) || x or y  || x ∨ y | ||
| + | |- | ||
| + | | f<sub>15</sub> || f<sub>1111</sub> || 1 1 1 1 || (( )) || true || 1 | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ===Template Draft=== | ||
| + | |||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:98%" | ||
| + | |+ '''Propositional Forms on Two Variables''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:14%" | L<sub>1</sub> | ||
| + | ! style="width:14%" | L<sub>2</sub> | ||
| + | ! style="width:14%" | L<sub>3</sub> | ||
| + | ! style="width:14%" | L<sub>4</sub> | ||
| + | ! style="width:14%" | L<sub>5</sub> | ||
| + | ! style="width:14%" | L<sub>6</sub> | ||
| + | ! style="width:14%" | Name | ||
| + | |- style="background:aliceblue" | ||
| + | |   | ||
| + | | align="right" | x : | ||
| + | | 1 1 0 0  | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- style="background:aliceblue" | ||
| + | |   | ||
| + | | align="right" | y : | ||
| + | | 1 0 1 0 | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |   | ||
| + | |- | ||
| + | | f<sub>0</sub> || f<sub>0000</sub> || 0 0 0 0 || ( ) || false || 0 || Falsity | ||
| + | |- | ||
| + | | f<sub>1</sub> || f<sub>0001</sub> || 0 0 0 1 || (x)(y) || neither x nor y || ¬x ∧ ¬y || [[NNOR]] | ||
| + | |- | ||
| + | | f<sub>2</sub> || f<sub>0010</sub> || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y || Insuccede | ||
| + | |- | ||
| + | | f<sub>3</sub> || f<sub>0011</sub> || 0 0 1 1 || (x) || not x || ¬x || Not One | ||
| + | |- | ||
| + | | f<sub>4</sub> || f<sub>0100</sub> || 0 1 0 0 || x (y) || x and not y || x ∧ ¬y || Imprecede | ||
| + | |- | ||
| + | | f<sub>5</sub> || f<sub>0101</sub> || 0 1 0 1 || (y) || not y || ¬y || Not Two | ||
| + | |- | ||
| + | | f<sub>6</sub> || f<sub>0110</sub> || 0 1 1 0 || (x, y) || x not equal to y || x ≠ y || Inequality | ||
| + | |- | ||
| + | | f<sub>7</sub> || f<sub>0111</sub> || 0 1 1 1 || (x y) || not both x and y || ¬x ∨ ¬y || NAND | ||
| + | |- | ||
| + | | f<sub>8</sub> || f<sub>1000</sub> || 1 0 0 0 || x y || x and y || x ∧ y || [[Conjunction]] | ||
| + | |- | ||
| + | | f<sub>9</sub> || f<sub>1001</sub> || 1 0 0 1 || ((x, y)) || x equal to y || x = y || Equality | ||
| + | |- | ||
| + | | f<sub>10</sub> || f<sub>1010</sub> || 1 0 1 0 || y || y || y || Two | ||
| + | |- | ||
| + | | f<sub>11</sub> || f<sub>1011</sub> || 1 0 1 1 || (x (y)) || not x without y || x → y || [[Logical implcation|Implication]] | ||
| + | |- | ||
| + | | f<sub>12</sub> || f<sub>1100</sub> || 1 1 0 0 || x || x || x || One | ||
| + | |- | ||
| + | | f<sub>13</sub> || f<sub>1101</sub> || 1 1 0 1 || ((x) y) || not y without x || x ← y || [[Logical involution|Involution]] | ||
| + | |- | ||
| + | | f<sub>14</sub> || f<sub>1110</sub> || 1 1 1 0 || ((x)(y)) || x or y  || x ∨ y || [[Disjunction]] | ||
| + | |- | ||
| + | | f<sub>15</sub> || f<sub>1111</sub> || 1 1 1 1 || (( )) || true || 1 || Tautology | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ===[[Truth Tables]]=== | ||
| + | |||
| + | ====[[Logical negation]]==== | ||
| + | |||
| + | '''Logical negation''' is an [[logical operation|operation]] on one [[logical value]], typically the value of a [[proposition]], that produces a value of ''true'' when its operand is false and a value of ''false'' when its operand is true. | ||
| + | |||
| + | The [[truth table]] of '''NOT p''' (also written as '''~p''' or '''¬p''') is as follows: | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:40%" | ||
| + | |+ '''Logical Negation''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:20%" | p | ||
| + | ! style="width:20%" | ¬p | ||
| + | |- | ||
| + | | F || T | ||
| + | |- | ||
| + | | T || F | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application.  Among these variants are the following: | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; width:40%" | ||
| + | |+ '''Variant Notations''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="text-align:center" | Notation | ||
| + | ! Vocalization | ||
| + | |- | ||
| + | | style="text-align:center" | <math>\bar{p}</math> | ||
| + | | bar ''p'' | ||
| + | |- | ||
| + | | style="text-align:center" | <math>p'\!</math> | ||
| + | | ''p'' prime,<p> ''p'' complement | ||
| + | |- | ||
| + | | style="text-align:center" | <math>!p\!</math> | ||
| + | | bang ''p'' | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | No matter how it is notated or symbolized, the logical negation ¬''p'' is read as "it is not the case that ''p''", or usually more simply as "not ''p''". | ||
| + | |||
| + | * Within a system of [[classical logic]], double negation, that is, the negation of the negation of a proposition ''p'', is [[logically equivalent]] to the initial proposition ''p''.  Expressed in symbolic terms, ¬(¬''p'') ⇔ ''p''. | ||
| + | |||
| + | * Within a system of [[intuitionistic logic]], however, ¬¬''p'' is a weaker statement than ''p''.  On the other hand, the logical equivalence ¬¬¬''p'' ⇔ ¬''p'' remains valid. | ||
| + | |||
| + | Logical negation can be defined in terms of other logical operations.  For example, ~''p'' can be defined as ''p'' → ''F'', where → is [[material implication]] and ''F'' is absolute falsehood.  Conversely, one can define ''F'' as ''p'' & ~''p'' for any proposition ''p'', where & is [[logical conjunction]].  The idea here is that any [[contradiction]] is false.  While these ideas work in both classical and intuitionistic logic, they don't work in [[Brazilian logic]], where contradictions are not necessarily false.  But in classical logic, we get a further identity: ''p'' → ''q'' can be defined as ~''p'' ∨ ''q'', where ∨ is [[logical disjunction]]. | ||
| + | |||
| + | Algebraically, logical negation corresponds to the ''complement'' in a [[Boolean algebra]] (for classical logic) or a [[Heyting algebra]] (for intuitionistic logic). | ||
| + | |||
| + | ====[[Logical conjunction]]==== | ||
| + | |||
| + | '''Logical conjunction''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are true. | ||
| + | |||
| + | The [[truth table]] of '''p AND q''' (also written as '''p ∧ q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows: | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
| + | |+ '''Logical Conjunction''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:15%" | p | ||
| + | ! style="width:15%" | q | ||
| + | ! style="width:15%" | p ∧ q | ||
| + | |- | ||
| + | | F || F || F | ||
| + | |- | ||
| + | | F || T || F | ||
| + | |- | ||
| + | | T || F || F | ||
| + | |- | ||
| + | | T || T || T | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ====[[Logical disjunction]]==== | ||
| + | |||
| + | '''Logical disjunction''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are false. | ||
| + | |||
| + | The [[truth table]] of '''p OR q''' (also written as '''p ∨ q''') is as follows: | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
| + | |+ '''Logical Disjunction''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:15%" | p | ||
| + | ! style="width:15%" | q | ||
| + | ! style="width:15%" | p ∨ q | ||
| + | |- | ||
| + | | F || F || F | ||
| + | |- | ||
| + | | F || T || T | ||
| + | |- | ||
| + | | T || F || T | ||
| + | |- | ||
| + | | T || T || T | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ====[[Logical equality]]==== | ||
| + | |||
| + | '''Logical equality''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both operands are false or both operands are true. | ||
| + | |||
| + | The [[truth table]] of '''p EQ q''' (also written as '''p = q''', '''p ↔ q''', or '''p ≡ q''') is as follows: | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
| + | |+ '''Logical Equality''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:15%" | p | ||
| + | ! style="width:15%" | q | ||
| + | ! style="width:15%" | p = q | ||
| + | |- | ||
| + | | F || F || T | ||
| + | |- | ||
| + | | F || T || F | ||
| + | |- | ||
| + | | T || F || F | ||
| + | |- | ||
| + | | T || T || T | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ====[[Exclusive disjunction]]==== | ||
| + | |||
| + | '''Exclusive disjunction''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' just in case exactly one of its operands is true. | ||
| + | |||
| + | The [[truth table]] of '''p XOR q''' (also written as '''p + q''', '''p ⊕ q''', or '''p ≠ q''') is as follows: | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
| + | |+ '''Exclusive Disjunction''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:15%" | p | ||
| + | ! style="width:15%" | q | ||
| + | ! style="width:15%" | p XOR q | ||
| + | |- | ||
| + | | F || F || F | ||
| + | |- | ||
| + | | F || T || T | ||
| + | |- | ||
| + | | T || F || T | ||
| + | |- | ||
| + | | T || T || F | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | The following equivalents can then be deduced: | ||
| + | |||
| + | : <math>\begin{matrix} | ||
| + | p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ | ||
| + | \\ | ||
| + |       & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\ | ||
| + | \\ | ||
| + |       & = & (p \lor q) & \land & \lnot (p \land q) | ||
| + | \end{matrix}</math> | ||
| + | |||
| + | '''Generalized''' or '''n-ary''' XOR is true when the number of 1-bits  is odd. | ||
| + | |||
| + | <pre> | ||
| + |  A + B = (A ∧ !B) ∨ (!A ∧ B) | ||
| + |        = {(A ∧ !B) ∨ !A} ∧ {(A ∧ !B) ∨ B} | ||
| + |        = {(A ∨ !A) ∧ (!B ∨ !A)} ∧ {(A ∨ B) ∧ (!B ∨ B)} | ||
| + |        = (!A ∨ !B) ∧ (A ∨ B) | ||
| + |        = !(A ∧ B) ∧ (A ∨ B) | ||
| + | </pre> | ||
| + | |||
| + | <pre> | ||
| + |  p + q = (p ∧ !q)  ∨ (!p ∧ B) | ||
| + | |||
| + |        = {(p ∧ !q) ∨ !p} ∧ {(p ∧ !q) ∨ q} | ||
| + | |||
| + |        = {(p ∨ !q) ∧ (!q ∨ !p)} ∧ {(p ∨ q) ∧ (!q ∨ q)} | ||
| + | |||
| + |        = (!p ∨ !q) ∧ (p ∨ q) | ||
| + | |||
| + |        = !(p ∧ q)  ∧ (p ∨ q) | ||
| + | </pre> | ||
| + | |||
| + | <pre> | ||
| + |  p + q = (p ∧ ~q)  ∨ (~p ∧ q) | ||
| + | |||
| + |        = ((p ∧ ~q) ∨ ~p) ∧ ((p ∧ ~q) ∨ q) | ||
| + | |||
| + |        = ((p ∨ ~q) ∧ (~q ∨ ~p)) ∧ ((p ∨ q) ∧ (~q ∨ q)) | ||
| + | |||
| + |        = (~p ∨ ~q) ∧ (p ∨ q) | ||
| + | |||
| + |        = ~(p ∧ q)  ∧ (p ∨ q) | ||
| + | </pre> | ||
| + | |||
| + | : <math>\begin{matrix} | ||
| + | p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ | ||
| + | & = & ((p \land \lnot q) \lor \lnot p) & \and & ((p \land \lnot q) \lor q) \\ | ||
| + | & = & ((p \lor \lnot q) \land (\lnot q \lor \lnot p)) & \land & ((p \lor q) \land (\lnot q \lor q)) \\ | ||
| + | & = & (\lnot p \lor \lnot q) & \land & (p \lor q) \\ | ||
| + | & = & \lnot (p \land q) & \land & (p \lor q) | ||
| + | \end{matrix}</math> | ||
| + | |||
| + | ====[[Logical implication]]==== | ||
| + | |||
| + | The '''material conditional''' and '''logical implication''' are both associated with an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if the first operand is true and the second operand is false. | ||
| + | |||
| + | The [[truth table]] associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows: | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
| + | |+ '''Logical Implication''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:15%" | p | ||
| + | ! style="width:15%" | q | ||
| + | ! style="width:15%" | p ⇒ q | ||
| + | |- | ||
| + | | F || F || T | ||
| + | |- | ||
| + | | F || T || T | ||
| + | |- | ||
| + | | T || F || F | ||
| + | |- | ||
| + | | T || T || T | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ====[[Logical NAND]]==== | ||
| + | |||
| + | The '''NAND operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are true.  In other words, it produces a value of ''true'' if and only if at least one of its operands is false. | ||
| + | |||
| + | The [[truth table]] of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows: | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
| + | |+ '''Logical NAND''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:15%" | p | ||
| + | ! style="width:15%" | q | ||
| + | ! style="width:15%" | p ↑ q | ||
| + | |- | ||
| + | | F || F || T | ||
| + | |- | ||
| + | | F || T || T | ||
| + | |- | ||
| + | | T || F || T | ||
| + | |- | ||
| + | | T || T || F | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ====[[Logical NNOR]]==== | ||
| + | |||
| + | The '''NNOR operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are false.  In other words, it produces a value of ''false'' if and only if at least one of its operands is true. | ||
| + | |||
| + | The [[truth table]] of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows: | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
| + | |+ '''Logical NOR''' | ||
| + | |- style="background:aliceblue" | ||
| + | ! style="width:15%" | p | ||
| + | ! style="width:15%" | q | ||
| + | ! style="width:15%" | p ↓ q | ||
| + | |- | ||
| + | | F || F || T | ||
| + | |- | ||
| + | | F || T || F | ||
| + | |- | ||
| + | | T || F || F | ||
| + | |- | ||
| + | | T || T || F | ||
| + | |} | ||
| + | <br> | ||
| + | |||
| + | ==Relational Tables== | ||
| + | |||
| + | ===Factorization=== | ||
| + | |||
| + | {| align="center" style="text-align:center; width:60%" | ||
| + | | | ||
| + | {| align="center" style="text-align:center; width:100%" | ||
| + | | <math>\text{Table 7.  Plural Denotation}\!</math> | ||
| + | |} | ||
| + | |- | ||
| + | | | ||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:100%" | ||
| + | |- style="background:#f0f0ff" | ||
| + | | width="33%" | <math>\text{Object}\!</math> | ||
| + | | width="33%" | <math>\text{Sign}\!</math> | ||
| + | | width="33%" | <math>\text{Interpretant}\!</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | o_1 \\ o_2 \\ o_3 \\ \ldots \\ o_k \\ \ldots | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | s \\ s \\ s \\ \ldots \\ s \\ \ldots | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| + | |} | ||
| + | |||
| + | <br> | ||
| + | |||
| + | {| align="center" style="text-align:center; width:60%" | ||
| + | | | ||
| + | {| align="center" style="text-align:center; width:100%" | ||
| + | | <math>\text{Table 8.  Sign Relation}~ L</math> | ||
| + | |} | ||
| + | |- | ||
| + | | | ||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:100%" | ||
| + | |- style="background:#f0f0ff" | ||
| + | | width="33%" | <math>\text{Object}\!</math> | ||
| + | | width="33%" | <math>\text{Sign}\!</math> | ||
| + | | width="33%" | <math>\text{Interpretant}\!</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | o_1 \\ o_2 \\ o_3 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | s \\ s \\ s | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \ldots \\ \ldots \\ \ldots | ||
| \end{matrix}</math> | \end{matrix}</math> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |} | |} | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |} | |} | ||
| − | |||
| − | |||
| − | |||
| ===Sign Relations=== | ===Sign Relations=== | ||
Latest revision as of 03:22, 26 April 2012
Cactus Language
Ascii Tables
| o-------------------o | | | @ | | | o-------------------o | | | o | | | | | @ | | | o-------------------o | | | a | | @ | | | o-------------------o | | | a | | o | | | | | @ | | | o-------------------o | | | a b c | | @ | | | o-------------------o | | | a b c | | o o o | | \|/ | | o | | | | | @ | | | o-------------------o | | | a b | | o---o | | | | | @ | | | o-------------------o | | | a b | | o---o | | \ / | | @ | | | o-------------------o | | | a b | | o---o | | \ / | | o | | | | | @ | | | o-------------------o | | | a b c | | o--o--o | | \ / | | \ / | | @ | | | o-------------------o | | | a b c | | o o o | | | | | | | o--o--o | | \ / | | \ / | | @ | | | o-------------------o | | | b c | | o o | | a | | | | o--o--o | | \ / | | \ / | | @ | | | o-------------------o | 
| Table 13. The Existential Interpretation o----o-------------------o-------------------o-------------------o | Ex | Cactus Graph | Cactus Expression | Existential | | | | | Interpretation | o----o-------------------o-------------------o-------------------o | | | | | | 1 | @ | " " | true. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | o | | | | | | | | | | 2 | @ | ( ) | untrue. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | 3 | @ | a | a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | | o | | | | | | | | | | 4 | @ | (a) | not a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | 5 | @ | a b c | a and b and c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o o o | | | | | \|/ | | | | | o | | | | | | | | | | 6 | @ | ((a)(b)(c)) | a or b or c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | | | a implies b. | | | a b | | | | | o---o | | if a then b. | | | | | | | | 7 | @ | ( a (b)) | no a sans b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | a exclusive-or b. | | | \ / | | | | 8 | @ | ( a , b ) | a not equal to b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | | | | \ / | | | | | o | | a if & only if b. | | | | | | | | 9 | @ | (( a , b )) | a equates with b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o--o--o | | | | | \ / | | | | | \ / | | just one false | | 10 | @ | ( a , b , c ) | out of a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o o o | | | | | | | | | | | | | o--o--o | | | | | \ / | | | | | \ / | | just one true | | 11 | @ | ((a),(b),(c)) | among a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | | | genus a over | | | b c | | species b, c. | | | o o | | | | | a | | | | partition a | | | o--o--o | | among b & c. | | | \ / | | | | | \ / | | whole pie a: | | 12 | @ | ( a ,(b),(c)) | slices b, c. | | | | | | o----o-------------------o-------------------o-------------------o | 
| Table 14. The Entitative Interpretation o----o-------------------o-------------------o-------------------o | En | Cactus Graph | Cactus Expression | Entitative | | | | | Interpretation | o----o-------------------o-------------------o-------------------o | | | | | | 1 | @ | " " | untrue. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | o | | | | | | | | | | 2 | @ | ( ) | true. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | 3 | @ | a | a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | | o | | | | | | | | | | 4 | @ | (a) | not a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | 5 | @ | a b c | a or b or c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o o o | | | | | \|/ | | | | | o | | | | | | | | | | 6 | @ | ((a)(b)(c)) | a and b and c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | | | a implies b. | | | | | | | | o a | | if a then b. | | | | | | | | 7 | @ b | (a) b | not a, or b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | a if & only if b. | | | \ / | | | | 8 | @ | ( a , b ) | a equates with b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | | | | \ / | | | | | o | | a exclusive-or b. | | | | | | | | 9 | @ | (( a , b )) | a not equal to b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o--o--o | | | | | \ / | | | | | \ / | | not just one true | | 10 | @ | ( a , b , c ) | out of a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o--o--o | | | | | \ / | | | | | \ / | | | | | o | | | | | | | | just one true | | 11 | @ | (( a , b , c )) | among a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | | o | | genus a over | | | | b c | | species b, c. | | | o--o--o | | | | | \ / | | partition a | | | \ / | | among b & c. | | | o | | | | | | | | whole pie a: | | 12 | @ | (((a), b , c )) | slices b, c. | | | | | | o----o-------------------o-------------------o-------------------o | 
| Table 15. Existential & Entitative Interpretations of Cactus Structures o-----------------o-----------------o-----------------o-----------------o | Cactus Graph | Cactus String | Existential | Entitative | | | | Interpretation | Interpretation | o-----------------o-----------------o-----------------o-----------------o | | | | | | @ | " " | true | false | | | | | | o-----------------o-----------------o-----------------o-----------------o | | | | | | o | | | | | | | | | | | @ | ( ) | false | true | | | | | | o-----------------o-----------------o-----------------o-----------------o | | | | | | C_1 ... C_k | | | | | @ | C_1 ... C_k | C_1 & ... & C_k | C_1 v ... v C_k | | | | | | o-----------------o-----------------o-----------------o-----------------o | | | | | | C_1 C_2 C_k | | Just one | Not just one | | o---o-...-o | | | | | \ / | | of the C_j, | of the C_j, | | \ / | | | | | \ / | | j = 1 to k, | j = 1 to k, | | \ / | | | | | @ | (C_1, ..., C_k) | is not true. | is true. | | | | | | o-----------------o-----------------o-----------------o-----------------o | 
Wiki TeX Tables
|- |
| \(\text{Object}\!\) | \(\text{Sign}\!\) | \(\text{Interpretant}\!\) | 
| \(\begin{matrix} o_1 \\ o_2 \\ o_3 \\ \ldots \\ o_k \\ \ldots \end{matrix}\) | \(\begin{matrix} s \\ s \\ s \\ \ldots \\ s \\ \ldots \end{matrix}\) | \(\begin{matrix} \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \end{matrix}\) | 
|}
| 
 | ||||||
| 
 | 
Sign Relations
| O | = | Object Domain | |
| S | = | Sign Domain | |
| I | = | Interpretant Domain | 
| O | = | {Ann, Bob} | = | {A, B} | |
| S | = | {"Ann", "Bob", "I", "You"} | = | {"A", "B", "i", "u"} | |
| I | = | {"Ann", "Bob", "I", "You"} | = | {"A", "B", "i", "u"} | 
| Object | Sign | Interpretant | 
|---|---|---|
| A | "A" | "A" | 
| A | "A" | "i" | 
| A | "i" | "A" | 
| A | "i" | "i" | 
| B | "B" | "B" | 
| B | "B" | "u" | 
| B | "u" | "B" | 
| B | "u" | "u" | 
| Object | Sign | Interpretant | 
|---|---|---|
| A | "A" | "A" | 
| A | "A" | "u" | 
| A | "u" | "A" | 
| A | "u" | "u" | 
| B | "B" | "B" | 
| B | "B" | "i" | 
| B | "i" | "B" | 
| B | "i" | "i" | 
Triadic Relations
Algebraic Examples
| X | Y | Z | 
|---|---|---|
| 0 | 0 | 0 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 0 | 
| X | Y | Z | 
|---|---|---|
| 0 | 0 | 1 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 1 | 
Semiotic Examples
| Object | Sign | Interpretant | 
|---|---|---|
| A | "A" | "A" | 
| A | "A" | "i" | 
| A | "i" | "A" | 
| A | "i" | "i" | 
| B | "B" | "B" | 
| B | "B" | "u" | 
| B | "u" | "B" | 
| B | "u" | "u" | 
| Object | Sign | Interpretant | 
|---|---|---|
| A | "A" | "A" | 
| A | "A" | "u" | 
| A | "u" | "A" | 
| A | "u" | "u" | 
| B | "B" | "B" | 
| B | "B" | "i" | 
| B | "i" | "B" | 
| B | "i" | "i" | 
Dyadic Projections
| LOS | = | projOS(L) | = | { (o, s) ∈ O × S : (o, s, i) ∈ L for some i ∈ I } | |
| LSO | = | projSO(L) | = | { (s, o) ∈ S × O : (o, s, i) ∈ L for some i ∈ I } | |
| LIS | = | projIS(L) | = | { (i, s) ∈ I × S : (o, s, i) ∈ L for some o ∈ O } | |
| LSI | = | projSI(L) | = | { (s, i) ∈ S × I : (o, s, i) ∈ L for some o ∈ O } | |
| LOI | = | projOI(L) | = | { (o, i) ∈ O × I : (o, s, i) ∈ L for some s ∈ S } | |
| LIO | = | projIO(L) | = | { (i, o) ∈ I × O : (o, s, i) ∈ L for some s ∈ S } | 
Method 1 : Subtitles as Captions
| 
 | 
 | 
| 
 | 
 | 
| 
 | 
 | 
Method 2 : Subtitles as Top Rows
| projOS(LA) 
 | projOS(LB) 
 | 
| projSI(LA) 
 | projSI(LB) 
 | 
| projOI(LA) 
 | projOI(LB) 
 | 
Relation Reduction
Method 1 : Subtitles as Captions
| X | Y | Z | 
|---|---|---|
| 0 | 0 | 0 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 0 | 
| X | Y | Z | 
|---|---|---|
| 0 | 0 | 1 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 1 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
 | 
| projXY(L0) = projXY(L1) | projXZ(L0) = projXZ(L1) | projYZ(L0) = projYZ(L1) | 
| Object | Sign | Interpretant | 
|---|---|---|
| A | "A" | "A" | 
| A | "A" | "i" | 
| A | "i" | "A" | 
| A | "i" | "i" | 
| B | "B" | "B" | 
| B | "B" | "u" | 
| B | "u" | "B" | 
| B | "u" | "u" | 
| Object | Sign | Interpretant | 
|---|---|---|
| A | "A" | "A" | 
| A | "A" | "u" | 
| A | "u" | "A" | 
| A | "u" | "u" | 
| B | "B" | "B" | 
| B | "B" | "i" | 
| B | "i" | "B" | 
| B | "i" | "i" | 
| 
 | 
 | 
 | 
| 
 | 
 | 
 | 
| projXY(LA) ≠ projXY(LB) | projXZ(LA) ≠ projXZ(LB) | projYZ(LA) ≠ projYZ(LB) | 
Method 2 : Subtitles as Top Rows
| X | Y | Z | 
|---|---|---|
| 0 | 0 | 0 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 0 | 
| X | Y | Z | 
|---|---|---|
| 0 | 0 | 1 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 1 | 
| projXY(L0) 
 | projXZ(L0) 
 | projYZ(L0) 
 | 
| projXY(L1) 
 | projXZ(L1) 
 | projYZ(L1) 
 | 
| projXY(L0) = projXY(L1) | projXZ(L0) = projXZ(L1) | projYZ(L0) = projYZ(L1) | 
| Object | Sign | Interpretant | 
|---|---|---|
| A | "A" | "A" | 
| A | "A" | "i" | 
| A | "i" | "A" | 
| A | "i" | "i" | 
| B | "B" | "B" | 
| B | "B" | "u" | 
| B | "u" | "B" | 
| B | "u" | "u" | 
| Object | Sign | Interpretant | 
|---|---|---|
| A | "A" | "A" | 
| A | "A" | "u" | 
| A | "u" | "A" | 
| A | "u" | "u" | 
| B | "B" | "B" | 
| B | "B" | "i" | 
| B | "i" | "B" | 
| B | "i" | "i" | 
| projXY(LA) 
 | projXZ(LA) 
 | projYZ(LA) 
 | 
| projXY(LB) 
 | projXZ(LB) 
 | projYZ(LB) 
 | 
| projXY(LA) ≠ projXY(LB) | projXZ(LA) ≠ projXZ(LB) | projYZ(LA) ≠ projYZ(LB) | 
Formatted Text Display
- So in a triadic fact, say, the example 
| A gives B to C | 
- we make no distinction in the ordinary logic of relations between the subject nominative, the direct object, and the indirect object.  We say that the proposition has three logical subjects.  We regard it as a mere affair of English grammar that there are six ways of expressing this: 
| A gives B to C | A benefits C with B | 
| B enriches C at expense of A | C receives B from A | 
| C thanks A for B | B leaves A for C | 
- These six sentences express one and the same indivisible phenomenon. (C.S. Peirce, "The Categories Defended", MS 308 (1903), EP 2, 170-171).
Work Area
| x0 | x1 | 2f0 | 2f1 | 2f2 | 2f3 | 2f4 | 2f5 | 2f6 | 2f7 | 2f8 | 2f9 | 2f10 | 2f11 | 2f12 | 2f13 | 2f14 | 2f15 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Draft 1
| 
 | 
 | 
 | 
Draft 2
| 
 | 
 | 
 | 
Inquiry and Analogy
Test Patterns
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
Table 10
| \(x\): | 1 0 | \(f\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | 
| \(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(x:\) | 1 0 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | 
| \(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 11
| Measure | Happening | Exactness | Existence | Linearity | Uniformity | Information | 
| \(m_0\!\) | Nothing happens | |||||
| \(m_1\!\) | Just false | Nothing exists | ||||
| \(m_2\!\) | Just not \(x\!\) | |||||
| \(m_3\!\) | Nothing is \(x\!\) | |||||
| \(m_4\!\) | Just \(x\!\) | |||||
| \(m_5\!\) | Everything is \(x\!\) | \(f\!\) is linear | ||||
| \(m_6\!\) | \(f\!\) is not uniform | \(f\!\) is informed | ||||
| \(m_7\!\) | Not just true | |||||
| \(m_8\!\) | Just true | |||||
| \(m_9\!\) | \(f\!\) is uniform | \(f\!\) is not informed | ||||
| \(m_{10}\!\) | Something is not \(x\!\) | \(f\!\) is not linear | ||||
| \(m_{11}\!\) | Not just \(x\!\) | |||||
| \(m_{12}\!\) | Something is \(x\!\) | |||||
| \(m_{13}\!\) | Not just not \(x\!\) | |||||
| \(m_{14}\!\) | Not just false | Something exists | ||||
| \(m_{15}\!\) | Anything happens | 
Table 12
| \(x:\) \(y:\) | 1100 1010 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) | 
| \(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0001 | \((x)(y)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | ||
| \(f_2\) | 0010 | \((x) y\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | ||||
| \(f_3\) | 0011 | \((x)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
| \(f_4\) | 0100 | \(x (y)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||
| \(f_5\) | 0101 | \((y)\!\) | ||||||||||||||||||||||||
| \(f_6\) | 0110 | \((x, y)\!\) | ||||||||||||||||||||||||
| \(f_7\) | 0111 | \((x y)\!\) | ||||||||||||||||||||||||
| \(f_8\) | 1000 | \(x y\!\) | ||||||||||||||||||||||||
| \(f_9\) | 1001 | \(((x, y))\!\) | ||||||||||||||||||||||||
| \(f_{10}\) | 1010 | \(y\!\) | ||||||||||||||||||||||||
| \(f_{11}\) | 1011 | \((x (y))\!\) | ||||||||||||||||||||||||
| \(f_{12}\) | 1100 | \(x\!\) | ||||||||||||||||||||||||
| \(f_{13}\) | 1101 | \(((x) y)\!\) | ||||||||||||||||||||||||
| \(f_{14}\) | 1110 | \(((x)(y))\!\) | ||||||||||||||||||||||||
| \(f_{15}\) | 1111 | \(((~))\!\) | 
| \(u:\) \(v:\) | 1100 1010 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) | 
| \(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
Table 13
| \(u:\) \(v:\) | 1100 1010 | \(f\!\) | \(\alpha_0\) | \(\alpha_1\) | \(\alpha_2\) | \(\alpha_3\) | \(\alpha_4\) | \(\alpha_5\) | \(\alpha_6\) | \(\alpha_7\) | \(\alpha_8\) | \(\alpha_9\) | \(\alpha_{10}\) | \(\alpha_{11}\) | \(\alpha_{12}\) | \(\alpha_{13}\) | \(\alpha_{14}\) | \(\alpha_{15}\) | 
| \(f_0\) | 0000 | \((~)\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_2\) | 0010 | \((u) v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_5\) | 0101 | \((v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_7\) | 0111 | \((u v)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{10}\) | 1010 | \(v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| \(f_{12}\) | 1100 | \(u\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| \(f_{15}\) | 1111 | \(((~))\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 14
| \(u:\) \(v:\) | 1100 1010 | \(f\!\) | \(\beta_0\) | \(\beta_1\) | \(\beta_2\) | \(\beta_3\) | \(\beta_4\) | \(\beta_5\) | \(\beta_6\) | \(\beta_7\) | \(\beta_8\) | \(\beta_9\) | \(\beta_{10}\) | \(\beta_{11}\) | \(\beta_{12}\) | \(\beta_{13}\) | \(\beta_{14}\) | \(\beta_{15}\) | 
| \(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 
| \(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 
| \(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
Figure 15
Table 16
| \(\begin{array}{clcl} \mathrm{A} & \mathrm{Universal~Affirmative} & \mathrm{All}\ u\ \mathrm{is}\ v & \mathrm{Indicator~of}\ u (v) = 0 \\ \mathrm{E} & \mathrm{Universal~Negative} & \mathrm{All}\ u\ \mathrm{is}\ (v) & \mathrm{Indicator~of}\ u \cdot v = 0 \\ \mathrm{I} & \mathrm{Particular~Affirmative} & \mathrm{Some}\ u\ \mathrm{is}\ v & \mathrm{Indicator~of}\ u \cdot v = 1 \\ \mathrm{O} & \mathrm{Particular~Negative} & \mathrm{Some}\ u\ \mathrm{is}\ (v) & \mathrm{Indicator~of}\ u (v) = 1 \\ \end{array}\) | 
Table 17
| \(u:\) \(v:\) | 1100 1010 | \(f\!\) | \((\ell_{11})\) \(\text{No } u \) \(\text{is } v \) | \((\ell_{10})\) \(\text{No } u \) \(\text{is }(v)\) | \((\ell_{01})\) \(\text{No }(u)\) \(\text{is } v \) | \((\ell_{00})\) \(\text{No }(u)\) \(\text{is }(v)\) | \( \ell_{00} \) \(\text{Some }(u)\) \(\text{is }(v)\) | \( \ell_{01} \) \(\text{Some }(u)\) \(\text{is } v \) | \( \ell_{10} \) \(\text{Some } u \) \(\text{is }(v)\) | \( \ell_{11} \) \(\text{Some } u \) \(\text{is } v \) | 
| \(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 
| \(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 
| \(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 
| \(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 
| \(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 
| \(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
Table 18
| \(u:\) \(v:\) | 1100 1010 | \(f\!\) | \((\ell_{11})\) \(\text{No } u \) \(\text{is } v \) | \((\ell_{10})\) \(\text{No } u \) \(\text{is }(v)\) | \((\ell_{01})\) \(\text{No }(u)\) \(\text{is } v \) | \((\ell_{00})\) \(\text{No }(u)\) \(\text{is }(v)\) | \( \ell_{00} \) \(\text{Some }(u)\) \(\text{is }(v)\) | \( \ell_{01} \) \(\text{Some }(u)\) \(\text{is } v \) | \( \ell_{10} \) \(\text{Some } u \) \(\text{is }(v)\) | \( \ell_{11} \) \(\text{Some } u \) \(\text{is } v \) | 
| \(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 
| \(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 
| \(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 
| \(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 
| \(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
Table 19
| \(\text{Mnemonic}\) | \(\text{Category}\) | \(\text{Classical Form}\) | \(\text{Alternate Form}\) | \(\text{Symmetric Form}\) | \(\text{Operator}\) | 
| \(\text{E}\!\) \(\text{Exclusive}\) | \(\text{Universal}\) \(\text{Negative}\) | \(\text{All}\ u\ \text{is}\ (v)\) | \(\text{No}\ u\ \text{is}\ v \) | \((\ell_{11})\) | |
| \(\text{A}\!\) \(\text{Absolute}\) | \(\text{Universal}\) \(\text{Affirmative}\) | \(\text{All}\ u\ \text{is}\ v \) | \(\text{No}\ u\ \text{is}\ (v)\) | \((\ell_{10})\) | |
| \(\text{All}\ v\ \text{is}\ u \) | \(\text{No}\ v\ \text{is}\ (u)\) | \(\text{No}\ (u)\ \text{is}\ v \) | \((\ell_{01})\) | ||
| \(\text{All}\ (v)\ \text{is}\ u \) | \(\text{No}\ (v)\ \text{is}\ (u)\) | \(\text{No}\ (u)\ \text{is}\ (v)\) | \((\ell_{00})\) | ||
| \(\text{Some}\ (u)\ \text{is}\ (v)\) | \(\text{Some}\ (u)\ \text{is}\ (v)\) | \(\ell_{00}\!\) | |||
| \(\text{Some}\ (u)\ \text{is}\ v\) | \(\text{Some}\ (u)\ \text{is}\ v\) | \(\ell_{01}\!\) | |||
| \(\text{O}\!\) \(\text{Obtrusive}\) | \(\text{Particular}\) \(\text{Negative}\) | \(\text{Some}\ u\ \text{is}\ (v)\) | \(\text{Some}\ u\ \text{is}\ (v)\) | \(\ell_{10}\!\) | |
| \(\text{I}\!\) \(\text{Indefinite}\) | \(\text{Particular}\) \(\text{Affirmative}\) | \(\text{Some}\ u\ \text{is}\ v\) | \(\text{Some}\ u\ \text{is}\ v\) | \(\ell_{11}\!\) |