Difference between revisions of "Directory talk:Jon Awbrey/Papers/Syntactic Transformations"
Active discussions
				
				
			Jon Awbrey (talk | contribs)  | 
				Jon Awbrey (talk | contribs)   (→1.3.12.1.  Syntactic Transformation Rules:  del merged text)  | 
				||
| (23 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | <div class="nonumtoc">__TOC__</div>  | ||
| + | |||
==Alternate Version : Needs To Be Reconciled==  | ==Alternate Version : Needs To Be Reconciled==  | ||
| − | ====1.3.12.  Syntactic Transformations====  | + | ====1.3.12.  Syntactic Transformations <big>✔</big>====  | 
| + | |||
| + | =====1.3.12.1.  Syntactic Transformation Rules=====  | ||
| + | |||
| + | <pre>  | ||
| + | Value Rule 1  | ||
| + | |||
| + | If	v, w	C	B  | ||
| + | |||
| + | then	"v = w" is a sentence about <v, w> C B2,  | ||
| + | |||
| + | 	[v = w] is a proposition : B2 -> B,  | ||
| + | |||
| + | and the following are identical values in B:  | ||
| + | |||
| + | V1a.	[ v = w ](v, w)  | ||
| + | |||
| + | V1b.	[ v <=> w ](v, w)  | ||
| + | |||
| + | V1c.	((v , w))  | ||
| + | </pre>  | ||
| + | |||
| + | <pre>  | ||
| + | Value Rule 1  | ||
| + | |||
| + | If	v, w	C	B,  | ||
| + | |||
| + | then the following are equivalent:  | ||
| + | |||
| + | V1a.	v = w.  | ||
| + | |||
| + | V1b.	v <=> w.  | ||
| + | |||
| + | V1c.	(( v , w )).  | ||
| + | </pre>  | ||
| + | |||
| + | A rule that allows one to turn equivalent sentences into identical propositions:  | ||
| + | |||
| + | : (S <=> T) <=> ([S] = [T])  | ||
| − | + | Consider [ v = w ](v, w) and [ v(u) = w(u) ](u)  | |
| − | + | <pre>  | |
| + | Value Rule 1  | ||
| − | + | If	v, w	C	B,  | |
| − | |||
| − | |||
| − | + | then the following are identical values in B:  | |
| − | + | V1a.	[ v = w ]  | |
| − | + | V1b.	[ v <=> w ]  | |
| − | + | V1c.	(( v , w ))  | |
| + | </pre>  | ||
<pre>  | <pre>  | ||
| − | + | Value Rule 1  | |
| − | + | ||
| − | + | If	f, g	:	U -> B,  | |
| − | + | ||
| − | + | and	u	C	U  | |
| − | + | ||
| − | + | then the following are identical values in B:  | |
| − | + | ||
| − | + | V1a.	[ f(u) = g(u) ]  | |
| − | + | ||
| − | + | V1b.	[ f(u) <=> g(u) ]  | |
| − | + | ||
| − | + | V1c.	(( f(u) , g(u) ))  | |
| − | |||
| − | |||
</pre>  | </pre>  | ||
| − | + | <pre>  | |
| + | Value Rule 1  | ||
| + | |||
| + | If	f, g	:	U -> B,  | ||
| + | |||
| + | then the following are identical propositions on U:  | ||
| + | |||
| + | V1a.	[ f = g ]  | ||
| + | |||
| + | V1b.	[ f <=> g ]  | ||
| − | + | V1c.	(( f , g ))$  | |
| + | </pre>  | ||
<pre>  | <pre>  | ||
| − | + | Evaluation Rule 1  | |
| − | + | ||
| − | + | If	f, g	:	U -> B  | |
| − | + | ||
| − | + | and	u	C	U,  | |
| − | + | ||
| − | + | then the following are equivalent:  | |
| − | + | ||
| − | + | E1a.	f(u) = g(u).	:V1a  | |
| − | + | ||
| − | + | 				::  | |
| − | + | ||
| − | + | E1b.	f(u) <=> g(u).	:V1b  | |
| − | + | ||
| − | + | 				::  | |
| − | + | ||
| − | + | E1c.	(( f(u) , g(u) )).	:V1c  | |
| − | + | ||
| − | + | 				:$1a  | |
| + | |||
| + | 				::  | ||
| + | |||
| + | E1d.	(( f , g ))$(u).	:$1b  | ||
</pre>  | </pre>  | ||
| − | + | <pre>  | |
| + | Evaluation Rule 1  | ||
| + | |||
| + | If	S, T	are sentences  | ||
| + | |||
| + | 		about things in the universe U,  | ||
| + | |||
| + | 	f, g	are propositions: U -> B,  | ||
| + | |||
| + | and	u	C	U,  | ||
| + | |||
| + | then the following are equivalent:  | ||
| + | |||
| + | E1a.	f(u) = g(u).	:V1a  | ||
| + | |||
| + | 				::  | ||
| + | |||
| + | E1b.	f(u) <=> g(u).	:V1b  | ||
| + | |||
| + | 				::  | ||
| + | |||
| + | E1c.	(( f(u) , g(u) )).	:V1c  | ||
| + | |||
| + | 				:$1a  | ||
| + | |||
| + | 				::  | ||
| + | |||
| + | E1d.	(( f , g ))$(u).	:$1b  | ||
| + | </pre>  | ||
| − | =====1.3.12.2.  Derived Equivalence Relations=====  | + | =====1.3.12.2.  Derived Equivalence Relations <big>✔</big>=====  | 
| − | =====1.3.12.3.  Digression on Derived Relations=====  | + | =====1.3.12.3.  Digression on Derived Relations <big>✔</big>=====  | 
Latest revision as of 14:58, 12 September 2010
Alternate Version : Needs To Be Reconciled
1.3.12. Syntactic Transformations ✔
1.3.12.1. Syntactic Transformation Rules
Value Rule 1 If v, w C B then "v = w" is a sentence about <v, w> C B2, [v = w] is a proposition : B2 -> B, and the following are identical values in B: V1a. [ v = w ](v, w) V1b. [ v <=> w ](v, w) V1c. ((v , w))
Value Rule 1 If v, w C B, then the following are equivalent: V1a. v = w. V1b. v <=> w. V1c. (( v , w )).
A rule that allows one to turn equivalent sentences into identical propositions:
- (S <=> T) <=> ([S] = [T])
 
Consider [ v = w ](v, w) and [ v(u) = w(u) ](u)
Value Rule 1 If v, w C B, then the following are identical values in B: V1a. [ v = w ] V1b. [ v <=> w ] V1c. (( v , w ))
Value Rule 1 If f, g : U -> B, and u C U then the following are identical values in B: V1a. [ f(u) = g(u) ] V1b. [ f(u) <=> g(u) ] V1c. (( f(u) , g(u) ))
Value Rule 1 If f, g : U -> B, then the following are identical propositions on U: V1a. [ f = g ] V1b. [ f <=> g ] V1c. (( f , g ))$
Evaluation Rule 1 If f, g : U -> B and u C U, then the following are equivalent: E1a. f(u) = g(u). :V1a :: E1b. f(u) <=> g(u). :V1b :: E1c. (( f(u) , g(u) )). :V1c :$1a :: E1d. (( f , g ))$(u). :$1b
Evaluation Rule 1 If S, T are sentences about things in the universe U, f, g are propositions: U -> B, and u C U, then the following are equivalent: E1a. f(u) = g(u). :V1a :: E1b. f(u) <=> g(u). :V1b :: E1c. (( f(u) , g(u) )). :V1c :$1a :: E1d. (( f , g ))$(u). :$1b