Line 945: |
Line 945: |
| Since the expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> involves just three variables, it may be worth the trouble to draw a venn diagram of the situation. There are in fact two different ways to execute the picture. | | Since the expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> involves just three variables, it may be worth the trouble to draw a venn diagram of the situation. There are in fact two different ways to execute the picture. |
| | | |
− | Figure 1 indicates the points of the universe of discourse <math>X\!</math> for which the proposition <math>f : X \to \mathbb{B}</math> has the value 1, here interpreted as the logical value <math>\operatorname{true}.</math> In this ''paint by numbers'' style of picture, one simply paints over the cells of a generic template for the universe <math>X,\!</math> going according to some previously adopted convention, for instance: Let the cells that get the value 0 under <math>f\!</math> remain untinted and let the cells that get the value 1 under <math>f\!</math> be painted or shaded. In doing this, it may be good to remind ourselves that the value of the picture as a whole is not in the ''paints'', in other words, the <math>0, 1\!</math> in <math>\mathbb{B},</math> but in the pattern of regions that they indicate. (Note. In this Ascii version, I use [ ] for 0 and [ ` ` ` ] for 1.) | + | Figure 1 indicates the points of the universe of discourse <math>X\!</math> for which the proposition <math>f : X \to \mathbb{B}</math> has the value 1, here interpreted as the logical value <math>\operatorname{true}.</math> In this ''paint by numbers'' style of picture, one simply paints over the cells of a generic template for the universe <math>X,\!</math> going according to some previously adopted convention, for instance: Let the cells that get the value 0 under <math>f\!</math> remain untinted and let the cells that get the value 1 under <math>f\!</math> be painted or shaded. In doing this, it may be good to remind ourselves that the value of the picture as a whole is not in the ''paints'', in other words, the <math>0, 1\!</math> in <math>\mathbb{B},</math> but in the pattern of regions that they indicate. |
| | | |
− | {| align="center" cellpadding="10" style="text-align:center; width:90%" | + | {| align="center" cellpadding="8" style="text-align:center" |
− | | | + | | [[Image:Venn Diagram (P (Q)) (P (R)).jpg|500px]] || (27) |
− | <pre>
| + | |- |
− | o-----------------------------------------------------------o
| + | | <math>\text{Venn Diagram for}~ \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))}</math> |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` ` ` ` `o-------------o` ` ` ` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` ` ` ` / \ ` ` ` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` ` ` `/ \` ` ` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` ` ` / \ ` ` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` ` `/ \` ` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` ` / \ ` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` `o o` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` `| |` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` `| P |` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` `| |` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` `| |` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` `| |` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` o--o----------o o----------o--o ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` `/` ` \ \ / / ` `\` ` ` ` ` ` |
| |
− | | ` ` ` ` ` / ` ` `\ o /` ` ` \ ` ` ` ` ` |
| |
− | | ` ` ` ` `/` ` ` ` \ /`\ / ` ` ` `\` ` ` ` ` |
| |
− | | ` ` ` ` / ` ` ` ` `\ / ` \ /` ` ` ` ` \ ` ` ` ` |
| |
− | | ` ` ` `/` ` ` ` ` ` \ /` ` `\ / ` ` ` ` ` `\` ` ` ` |
| |
− | | ` ` ` o ` ` ` ` ` ` `o--o-------o--o` ` ` ` ` ` ` o ` ` ` |
| |
− | | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` |
| |
− | | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` |
| |
− | | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` |
| |
− | | ` ` ` | ` ` ` Q ` ` ` ` | ` ` ` | ` ` ` ` R ` ` ` | ` ` ` |
| |
− | | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` |
| |
− | | ` ` ` o ` ` ` ` ` ` ` ` o ` ` ` o ` ` ` ` ` ` ` ` o ` ` ` | | |
− | | ` ` ` `\` ` ` ` ` ` ` ` `\` ` `/` ` ` ` ` ` ` ` `/` ` ` ` | | |
− | | ` ` ` ` \ ` ` ` ` ` ` ` ` \ ` / ` ` ` ` ` ` ` ` / ` ` ` ` |
| |
− | | ` ` ` ` `\` ` ` ` ` ` ` ` `\`/` ` ` ` ` ` ` ` `/` ` ` ` ` |
| |
− | | ` ` ` ` ` \ ` ` ` ` ` ` ` ` o ` ` ` ` ` ` ` ` / ` ` ` ` ` |
| |
− | | ` ` ` ` ` `\` ` ` ` ` ` ` `/`\` ` ` ` ` ` ` `/` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` o-------------o ` o-------------o ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| |
− | o-----------------------------------------------------------o
| |
− | Figure 27. Venn Diagram for (p (q))(p (r))
| |
− | </pre> | |
− | | (27)
| |
| |} | | |} |
| | | |
Line 1,026: |
Line 987: |
| | | | | | | |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
− | Figure 28. Venn Diagram for (p (q r))
| + | Venn Diagram for (p (q r)) |
| </pre> | | </pre> |
| | (28) | | | (28) |