Changes

MyWikiBiz, Author Your Legacy — Thursday November 28, 2024
Jump to navigationJump to search
Line 945: Line 945:  
Since the expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> involves just three variables, it may be worth the trouble to draw a venn diagram of the situation.  There are in fact two different ways to execute the picture.
 
Since the expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> involves just three variables, it may be worth the trouble to draw a venn diagram of the situation.  There are in fact two different ways to execute the picture.
   −
Figure&nbsp;1 indicates the points of the universe of discourse <math>X\!</math> for which the proposition <math>f : X \to \mathbb{B}</math> has the value 1, here interpreted as the logical value <math>\operatorname{true}.</math>  In this ''paint by numbers'' style of picture, one simply paints over the cells of a generic template for the universe <math>X,\!</math> going according to some previously adopted convention, for instance:  Let the cells that get the value 0 under <math>f\!</math> remain untinted and let the cells that get the value 1 under <math>f\!</math> be painted or shaded.  In doing this, it may be good to remind ourselves that the value of the picture as a whole is not in the ''paints'', in other words, the <math>0, 1\!</math> in <math>\mathbb{B},</math> but in the pattern of regions that they indicate. (Note.  In this Ascii version, I use [&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;] for 0 and [&nbsp;`&nbsp;`&nbsp;`&nbsp;] for 1.)
+
Figure&nbsp;1 indicates the points of the universe of discourse <math>X\!</math> for which the proposition <math>f : X \to \mathbb{B}</math> has the value 1, here interpreted as the logical value <math>\operatorname{true}.</math>  In this ''paint by numbers'' style of picture, one simply paints over the cells of a generic template for the universe <math>X,\!</math> going according to some previously adopted convention, for instance:  Let the cells that get the value 0 under <math>f\!</math> remain untinted and let the cells that get the value 1 under <math>f\!</math> be painted or shaded.  In doing this, it may be good to remind ourselves that the value of the picture as a whole is not in the ''paints'', in other words, the <math>0, 1\!</math> in <math>\mathbb{B},</math> but in the pattern of regions that they indicate.
   −
{| align="center" cellpadding="10" style="text-align:center; width:90%"
+
{| align="center" cellpadding="8" style="text-align:center"
|
+
| [[Image:Venn Diagram (P (Q)) (P (R)).jpg|500px]] || (27)
<pre>
+
|-
o-----------------------------------------------------------o
+
| <math>\text{Venn Diagram for}~ \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))}</math>
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` `o-------------o` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` /              \ ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` `/                \` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` /                  \ ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` `/                    \` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` /                      \ ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` `o                        o` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` `|                        |` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` `|            P           |` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` `|                        |` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` `|                        |` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` `|                        |` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` o--o----------o  o----------o--o ` ` ` ` ` ` |
  −
| ` ` ` ` ` `/` ` \          \ /          / ` `\` ` ` ` ` ` |
  −
| ` ` ` ` ` / ` ` `\          o          /` ` ` \ ` ` ` ` ` |
  −
| ` ` ` ` `/` ` ` ` \        /`\        / ` ` ` `\` ` ` ` ` |
  −
| ` ` ` ` / ` ` ` ` `\      / ` \      /` ` ` ` ` \ ` ` ` ` |
  −
| ` ` ` `/` ` ` ` ` ` \    /` ` `\    / ` ` ` ` ` `\` ` ` ` |
  −
| ` ` ` o ` ` ` ` ` ` `o--o-------o--o` ` ` ` ` ` ` o ` ` ` |
  −
| ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` |
  −
| ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` |
  −
| ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` |
  −
| ` ` ` | ` ` ` Q ` ` ` ` | ` ` ` | ` ` ` ` R ` ` ` | ` ` ` |
  −
| ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` |
  −
| ` ` ` o ` ` ` ` ` ` ` ` o ` ` ` o ` ` ` ` ` ` ` ` o ` ` ` |
  −
| ` ` ` `\` ` ` ` ` ` ` ` `\` ` `/` ` ` ` ` ` ` ` `/` ` ` ` |
  −
| ` ` ` ` \ ` ` ` ` ` ` ` ` \ ` / ` ` ` ` ` ` ` ` / ` ` ` ` |
  −
| ` ` ` ` `\` ` ` ` ` ` ` ` `\`/` ` ` ` ` ` ` ` `/` ` ` ` ` |
  −
| ` ` ` ` ` \ ` ` ` ` ` ` ` ` o ` ` ` ` ` ` ` ` / ` ` ` ` ` |
  −
| ` ` ` ` ` `\` ` ` ` ` ` ` `/`\` ` ` ` ` ` ` `/` ` ` ` ` ` |
  −
| ` ` ` ` ` ` o-------------o ` o-------------o ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
o-----------------------------------------------------------o
  −
Figure 27.  Venn Diagram for (p (q))(p (r))
  −
</pre>
  −
| (27)
   
|}
 
|}
   Line 1,026: Line 987:  
|                                                          |
 
|                                                          |
 
o-----------------------------------------------------------o
 
o-----------------------------------------------------------o
Figure 28.  Venn Diagram for (p (q r))
+
Venn Diagram for (p (q r))
 
</pre>
 
</pre>
 
| (28)
 
| (28)
12,080

edits

Navigation menu