| Line 23: |
Line 23: |
| | | | |
| | Table A illustrates the existential interpretation of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. | | Table A illustrates the existential interpretation of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. |
| | + | |
| | + | <br> |
| | | | |
| | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" | | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| Line 79: |
Line 81: |
| | </pre> | | </pre> |
| | | <math>\texttt{(} a \texttt{)}</math> | | | <math>\texttt{(} a \texttt{)}</math> |
| − | | <math>\operatorname{not}~ a.</math> | + | | |
| | + | <math>\begin{matrix} |
| | + | \tilde{a} |
| | + | \\[6pt] |
| | + | a^\prime |
| | + | \\[6pt] |
| | + | \lnot a |
| | + | \\[6pt] |
| | + | \operatorname{not}~ a. |
| | + | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| Line 91: |
Line 102: |
| | </pre> | | </pre> |
| | | <math>a~b~c</math> | | | <math>a~b~c</math> |
| − | | <math>a ~\operatorname{and}~ b ~\operatorname{and}~ c.</math> | + | | |
| | + | <math>\begin{matrix} |
| | + | a \land b \land c |
| | + | \\[6pt] |
| | + | a ~\operatorname{and}~ b ~\operatorname{and}~ c. |
| | + | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| Line 107: |
Line 123: |
| | </pre> | | </pre> |
| | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> | | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> |
| − | | <math>a ~\operatorname{or}~ b ~\operatorname{or}~ c.</math> | + | | |
| | + | <math>\begin{matrix} |
| | + | a \lor b \lor c |
| | + | \\[6pt] |
| | + | a ~\operatorname{or}~ b ~\operatorname{or}~ c. |
| | + | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| Line 124: |
Line 145: |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| | + | a \Rightarrow b |
| | + | \\[6pt] |
| | a ~\operatorname{implies}~ b. | | a ~\operatorname{implies}~ b. |
| | \\[6pt] | | \\[6pt] |
| Line 145: |
Line 168: |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| | + | a + b |
| | + | \\[6pt] |
| | + | a \neq b |
| | + | \\[6pt] |
| | a ~\operatorname{exclusive-or}~ b. | | a ~\operatorname{exclusive-or}~ b. |
| | \\[6pt] | | \\[6pt] |
| Line 166: |
Line 193: |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| | + | a = b |
| | + | \\[6pt] |
| | + | a \iff b |
| | + | \\[6pt] |
| | + | a ~\operatorname{equals}~ b. |
| | + | \\[6pt] |
| | a ~\operatorname{if~and~only~if}~ b. | | a ~\operatorname{if~and~only~if}~ b. |
| − | \\[6pt]
| |
| − | a ~\operatorname{equivalent~to}~ b.
| |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| Line 235: |
Line 266: |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \operatorname{genus}~ a ~\operatorname{with~species}~ b, c. | + | \operatorname{genus}~ a ~\operatorname{of~species}~ b, c. |
| − | \\[4pt] | + | \\[6pt] |
| − | \operatorname{partition}~ a ~\operatorname{among}~ b, c. | + | \operatorname{partition}~ a ~\operatorname{into}~ b, c. |
| − | \\[4pt] | + | \\[6pt] |
| − | \operatorname{pie}~ a ~\operatorname{with~slices}~ b, c. | + | \operatorname{pie}~ a ~\operatorname{of~slices}~ b, c. |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |} | | |} |
| | + | |
| | + | <br> |
| | | | |
| | Table 14 illustrates the entitative interpretation of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. | | Table 14 illustrates the entitative interpretation of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. |