| Line 15: |
Line 15: |
| | Picture an arbitrary function from a ''source'' or ''domain'' to a ''target'' or ''codomain''. Here is one picture of an <math>f : X \to Y,</math> just about as generic as it needs to be: | | Picture an arbitrary function from a ''source'' or ''domain'' to a ''target'' or ''codomain''. Here is one picture of an <math>f : X \to Y,</math> just about as generic as it needs to be: |
| | | | |
| | + | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
| | + | | |
| | <pre> | | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| Line 27: |
Line 29: |
| | o---------------------------------------o | | o---------------------------------------o |
| | </pre> | | </pre> |
| | + | |} |
| | | | |
| | Now, it is a fact that any old function that you might pick ''factors'' into a surjective ("onto") function and an injective ("one-to-one") function, in the present example just like so: | | Now, it is a fact that any old function that you might pick ''factors'' into a surjective ("onto") function and an injective ("one-to-one") function, in the present example just like so: |
| | | | |
| | + | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
| | + | | |
| | <pre> | | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| Line 45: |
Line 50: |
| | o---------------------------------------o | | o---------------------------------------o |
| | </pre> | | </pre> |
| | + | |} |
| | | | |
| | Writing the functional compositions <math>f = g \circ h</math> "on the right", as they say, we have the following data about the situation: | | Writing the functional compositions <math>f = g \circ h</math> "on the right", as they say, we have the following data about the situation: |
| Line 113: |
Line 119: |
| | signs, like "=", written between ostensible nodes, | | signs, like "=", written between ostensible nodes, |
| | like "o", identify them into a single real node. | | like "o", identify them into a single real node. |
| | + | </pre> |
| | | | |
| | + | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
| | + | | |
| | + | <pre> |
| | o-----------------------------o | | o-----------------------------o |
| | | Denotative Component of L | | | | Denotative Component of L | |
| Line 139: |
Line 149: |
| | | | | | | | |
| | o-----------------------------o | | o-----------------------------o |
| | + | </pre> |
| | + | |} |
| | | | |
| | + | <pre> |
| | This depicts a situation where each of the three objects, | | This depicts a situation where each of the three objects, |
| | x_1, x_2, x_3, has a "proper name" that denotes it alone, | | x_1, x_2, x_3, has a "proper name" that denotes it alone, |
| Line 182: |
Line 195: |
| | | | |
| | In this case, we factor the function f : O -> S | | In this case, we factor the function f : O -> S |
| | + | </pre> |
| | | | |
| | + | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
| | + | | |
| | + | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| | | | | | | | |
| Line 194: |
Line 211: |
| | | | | | | | |
| | o---------------------------------------o | | o---------------------------------------o |
| | + | </pre> |
| | + | |} |
| | | | |
| | into the composition g o h, where g : O -> M, and h : M -> S | | into the composition g o h, where g : O -> M, and h : M -> S |
| | | | |
| | + | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
| | + | | |
| | + | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| | | | | | | | |
| Line 212: |
Line 234: |
| | | | | | | | |
| | o---------------------------------------o | | o---------------------------------------o |
| | + | </pre> |
| | + | |} |
| | | | |
| | + | <pre> |
| | The factorization of an arbitrary function | | The factorization of an arbitrary function |
| | into a surjective ("onto") function followed | | into a surjective ("onto") function followed |
| Line 240: |
Line 265: |
| | we get the augmented sign relation L', shown | | we get the augmented sign relation L', shown |
| | in the next vignette: | | in the next vignette: |
| | + | </pre> |
| | | | |
| | + | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
| | + | | |
| | + | <pre> |
| | o-----------------------------o | | o-----------------------------o |
| | | Denotative Component of L' | | | | Denotative Component of L' | |
| Line 266: |
Line 295: |
| | | | | | | | |
| | o-----------------------------o | | o-----------------------------o |
| | + | </pre> |
| | + | |} |
| | | | |
| | + | <pre> |
| | This amounts to the creation of a hypostatic object x, | | This amounts to the creation of a hypostatic object x, |
| | which affords us a singular denotation for the sign y. | | which affords us a singular denotation for the sign y. |