Changes

MyWikiBiz, Author Your Legacy — Friday November 01, 2024
Jump to navigationJump to search
Line 3,692: Line 3,692:  
# <math>\operatorname{Sub}(x, (y, \underline{~~}))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(y, \underline{~~}),</math> with the effect of producing the saturated rheme <math>(y, x)\!</math> that evaluates to <math>y \cdot x.</math>
 
# <math>\operatorname{Sub}(x, (y, \underline{~~}))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(y, \underline{~~}),</math> with the effect of producing the saturated rheme <math>(y, x)\!</math> that evaluates to <math>y \cdot x.</math>
   −
<pre>
+
In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>x \cdot y,</math> for <math>y\!</math> in <math>G,\!</math> all of which is summarily notated as <math>x = \{ (y : x \cdot y) : y \in G \}.</math>  The pairs <math>(y : x \cdot y)</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin.  This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so:
In (1), we consider the effects of each x in its
  −
practical bearing on contexts of the form <_, y>,
  −
as y ranges over G, and the effects are such that
  −
x takes <_, y> into x·y, for y in G, all of which
  −
is summarily notated as x = {(y : x·y) : y in G}.
  −
The pairs (y : x·y) can be found by picking an x
  −
from the left margin of the group operation table
  −
and considering its effects on each y in turn as
  −
these run along the right margin.  This produces
  −
the regular ante-representation of S_3, like so:
     −
e   =   e:e + f:f + g:g + h:h + i:i + j:j
+
{| align="center" cellpadding="6" width="90%"
 
+
|
f   =   e:f + f:g + g:e + h:j + i:h + j:i
+
<math>\begin{array}{*{13}{c}}
 
+
\operatorname{e}
g   =   e:g + f:e + g:f + h:i + i:j + j:h
+
& = & \operatorname{e}:\operatorname{e}
 
+
& + & \operatorname{f}:\operatorname{f}
h   =   e:h + f:i + g:j + h:e + i:f + j:g
+
& + & \operatorname{g}:\operatorname{g}
 
+
& + & \operatorname{h}:\operatorname{h}
i   =   e:i + f:j + g:h + h:g + i:e + j:f
+
& + & \operatorname{i}:\operatorname{i}
 
+
& + & \operatorname{j}:\operatorname{j}
j   =   e:j + f:h + g:i + h:f + i:g + j:e
+
\\[4pt]
 +
\operatorname{f}
 +
& = & \operatorname{e}:\operatorname{f}
 +
& + & \operatorname{f}:\operatorname{g}
 +
& + & \operatorname{g}:\operatorname{e}
 +
& + & \operatorname{h}:\operatorname{j}
 +
& + & \operatorname{i}:\operatorname{h}
 +
& + & \operatorname{j}:\operatorname{i}
 +
\\[4pt]
 +
\operatorname{g}
 +
& = & \operatorname{e}:\operatorname{g}
 +
& + & \operatorname{f}:\operatorname{e}
 +
& + & \operatorname{g}:\operatorname{f}
 +
& + & \operatorname{h}:\operatorname{i}
 +
& + & \operatorname{i}:\operatorname{j}
 +
& + & \operatorname{j}:\operatorname{h}
 +
\\[4pt]
 +
\operatorname{h}
 +
& = & \operatorname{e}:\operatorname{h}
 +
& + & \operatorname{f}:\operatorname{i}
 +
& + & \operatorname{g}:\operatorname{j}
 +
& + & \operatorname{h}:\operatorname{e}
 +
& + & \operatorname{i}:\operatorname{f}
 +
& + & \operatorname{j}:\operatorname{g}
 +
\\[4pt]
 +
\operatorname{i}
 +
& = & \operatorname{e}:\operatorname{i}
 +
& + & \operatorname{f}:\operatorname{j}
 +
& + & \operatorname{g}:\operatorname{h}
 +
& + & \operatorname{h}:\operatorname{g}
 +
& + & \operatorname{i}:\operatorname{e}
 +
& + & \operatorname{j}:\operatorname{f}
 +
\\[4pt]
 +
\operatorname{j}
 +
& = & \operatorname{e}:\operatorname{j}
 +
& + & \operatorname{f}:\operatorname{h}
 +
& + & \operatorname{g}:\operatorname{i}
 +
& + & \operatorname{h}:\operatorname{f}
 +
& + & \operatorname{i}:\operatorname{g}
 +
& + & \operatorname{j}:\operatorname{e}
 +
\end{array}</math>
 +
|}
    +
<pre>
 
In (2), we consider the effects of each x in its
 
In (2), we consider the effects of each x in its
 
practical bearing on contexts of the form <y, _>,
 
practical bearing on contexts of the form <y, _>,
12,080

edits

Navigation menu