| Line 5,545: |
Line 5,545: |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| − | | height="60" | <math>\mathit{l}^\mathrm{w} ~=~ \bigcap_{x \in W} L \cdot x</math>
| + | | <math>\mathit{l}^\mathrm{w} ~=~ \bigcap_{x \in W} L \cdot x</math> |
| | |} | | |} |
| | | | |
| Line 5,551: |
Line 5,551: |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| − | |-
| + | | <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> |
| − | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math>
| |
| | |} | | |} |
| | | | |
| Line 5,585: |
Line 5,584: |
| | |} | | |} |
| | | | |
| − | To highlight the role of <math>W\!</math> more clearly, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the idempotent relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information. | + | To highlight the role of <math>W\!</math> more clearly, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information. |
| | + | |
| | + | Computing the denotation of <math>\mathit{l}^\mathrm{w}\!</math> by way of the set-theoretic formula, we can show our work as follows: |
| | + | |
| | + | {| align="center" cellspacing="6" width="90%" |
| | + | | <math>\mathit{l}^\mathrm{w} ~=~ \bigcap_{x \in W} L \cdot x ~=~ L \cdot d ~\cap~ L \cdot f ~=~ \{ c, e \} \cap \{ e, g \} ~=~ \{ e \}</math> |
| | + | |} |
| | | | |
| | With the above picture in mind, we can visualize the computation of <math>(\mathfrak{L}^\mathfrak{W})_u = \textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> as follows: | | With the above picture in mind, we can visualize the computation of <math>(\mathfrak{L}^\mathfrak{W})_u = \textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> as follows: |