Line 1: |
Line 1: |
| + | ==Logic of Relatives== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 3. Relational Composition |
| + | o---------o---------o---------o---------o |
| + | | # !1! | !1! | !1! | |
| + | o=========o=========o=========o=========o |
| + | | L # X | Y | | |
| + | o---------o---------o---------o---------o |
| + | | M # | Y | Z | |
| + | o---------o---------o---------o---------o |
| + | | L o M # X | | Z | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 3. Relational Composition}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L\!</math> |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | | |
| + | |- |
| + | | style="border-right:1px solid black" | <math>M\!</math> |
| + | | |
| + | | <math>Y\!</math> |
| + | | <math>Z\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L \circ M</math> |
| + | | <math>X\!</math> |
| + | | |
| + | | <math>Z\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 9. Composite of Triadic and Dyadic Relations |
| + | o---------o---------o---------o---------o---------o |
| + | | # !1! | !1! | !1! | !1! | |
| + | o=========o=========o=========o=========o=========o |
| + | | G # T | U | | V | |
| + | o---------o---------o---------o---------o---------o |
| + | | L # | U | W | | |
| + | o---------o---------o---------o---------o---------o |
| + | | G o L # T | | W | V | |
| + | o---------o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%" |
| + | |+ <math>\text{Table 9. Composite of Triadic and Dyadic Relations}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | |
| + | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>G\!</math> |
| + | | <math>T\!</math> |
| + | | <math>U\!</math> |
| + | | |
| + | | <math>V\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L\!</math> |
| + | | |
| + | | <math>U\!</math> |
| + | | <math>W\!</math> |
| + | | |
| + | |- |
| + | | style="border-right:1px solid black" | <math>G \circ L</math> |
| + | | <math>T\!</math> |
| + | | |
| + | | <math>W\!</math> |
| + | | <math>V\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 13. Another Brand of Composition |
| + | o---------o---------o---------o---------o |
| + | | # !1! | !1! | !1! | |
| + | o=========o=========o=========o=========o |
| + | | G # X | Y | Z | |
| + | o---------o---------o---------o---------o |
| + | | T # | Y | Z | |
| + | o---------o---------o---------o---------o |
| + | | G o T # X | | Z | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 13. Another Brand of Composition}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>G\!</math> |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | | <math>Z\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>T\!</math> |
| + | | |
| + | | <math>Y\!</math> |
| + | | <math>Z\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>G \circ T</math> |
| + | | <math>X\!</math> |
| + | | |
| + | | <math>Z\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 15. Conjunction Via Composition |
| + | o---------o---------o---------o---------o |
| + | | # !1! | !1! | !1! | |
| + | o=========o=========o=========o=========o |
| + | | L, # X | X | Y | |
| + | o---------o---------o---------o---------o |
| + | | S # | X | Y | |
| + | o---------o---------o---------o---------o |
| + | | L , S # X | | Y | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 15. Conjunction Via Composition}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L,\!</math> |
| + | | <math>X\!</math> |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>S\!</math> |
| + | | |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L,\!S</math> |
| + | | <math>X\!</math> |
| + | | |
| + | | <math>Y\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 18. Relational Composition P o Q |
| + | o---------o---------o---------o---------o |
| + | | # !1! | !1! | !1! | |
| + | o=========o=========o=========o=========o |
| + | | P # X | Y | | |
| + | o---------o---------o---------o---------o |
| + | | Q # | Y | Z | |
| + | o---------o---------o---------o---------o |
| + | | P o Q # X | | Z | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 18. Relational Composition}~ P \circ Q</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>P\!</math> |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | | |
| + | |- |
| + | | style="border-right:1px solid black" | <math>Q\!</math> |
| + | | |
| + | | <math>Y\!</math> |
| + | | <math>Z\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>P \circ Q</math> |
| + | | <math>X\!</math> |
| + | | |
| + | | <math>Z\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| + | Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) |
| + | o---------o---------o---------o---------o |
| + | | # J | J | J | |
| + | o=========o=========o=========o=========o |
| + | | K # X | X | X | |
| + | o---------o---------o---------o---------o |
| + | | L # Y | Y | Y | |
| + | o---------o---------o---------o---------o |
| + | </pre> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |+ <math>\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math> |
| + | |- |
| + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
| + | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> |
| + | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>K\!</math> |
| + | | <math>X\!</math> |
| + | | <math>X\!</math> |
| + | | <math>X\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L\!</math> |
| + | | <math>Y\!</math> |
| + | | <math>Y\!</math> |
| + | | <math>Y\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ==Grammar Stuff== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ '''Table 13. Algorithmic Translation Rules''' |
| + | |- style="background:whitesmoke" |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%" |
| + | | width="33%" | <math>\text{Sentence in PARCE}\!</math> |
| + | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> |
| + | | width="33%" | <math>\text{Graph in PARC}\!</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| + | | width="33%" | <math>\operatorname{Conc}^0</math> |
| + | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> |
| + | | width="33%" | <math>\operatorname{Node}^0</math> |
| + | |- |
| + | | width="33%" | <math>\operatorname{Conc}_{j=1}^k s_j</math> |
| + | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> |
| + | | width="33%" | <math>\operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j)</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| + | | width="33%" | <math>\operatorname{Surc}^0</math> |
| + | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> |
| + | | width="33%" | <math>\operatorname{Lobe}^0</math> |
| + | |- |
| + | | width="33%" | <math>\operatorname{Surc}_{j=1}^k s_j</math> |
| + | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> |
| + | | width="33%" | <math>\operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j)</math> |
| + | |} |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ '''Table 14.1 Semantic Translation : Functional Form''' |
| + | |- style="background:whitesmoke" |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%" |
| + | | width="20%" | <math>\operatorname{Sentence}</math> |
| + | | width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}}</math> |
| + | | width="20%" | <math>\operatorname{Graph}</math> |
| + | | width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}}</math> |
| + | | width="20%" | <math>\operatorname{Proposition}</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| + | | width="20%" | <math>s_j\!</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>C_j\!</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>q_j\!</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| + | | width="20%" | <math>\operatorname{Conc}^0</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>\operatorname{Node}^0</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>\underline{1}</math> |
| + | |- |
| + | | width="20%" | <math>\operatorname{Conc}^k_j s_j</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>\operatorname{Node}^k_j C_j</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>\operatorname{Conj}^k_j q_j</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| + | | width="20%" | <math>\operatorname{Surc}^0</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>\operatorname{Lobe}^0</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>\underline{0}</math> |
| + | |- |
| + | | width="20%" | <math>\operatorname{Surc}^k_j s_j</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>\operatorname{Lobe}^k_j C_j</math> |
| + | | width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math> |
| + | | width="20%" | <math>\operatorname{Surj}^k_j q_j</math> |
| + | |} |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ '''Table 14.2 Semantic Translation : Equational Form''' |
| + | |- style="background:whitesmoke" |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%" |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Sentence} \downharpoonright</math> |
| + | | width="20%" | <math>\stackrel{\operatorname{Parse}}{=}</math> |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Graph} \downharpoonright</math> |
| + | | width="20%" | <math>\stackrel{\operatorname{Denotation}}{=}</math> |
| + | | width="20%" | <math>\operatorname{Proposition}</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| + | | width="20%" | <math>\downharpoonleft s_j \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>\downharpoonleft C_j \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>q_j\!</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Conc}^0 \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Node}^0 \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>\underline{1}</math> |
| + | |- |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Conc}^k_j s_j \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Node}^k_j C_j \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>\operatorname{Conj}^k_j q_j</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Surc}^0 \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Lobe}^0 \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>\underline{0}</math> |
| + | |- |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Surc}^k_j s_j \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>\downharpoonleft \operatorname{Lobe}^k_j C_j \downharpoonright</math> |
| + | | width="20%" | <math>=\!</math> |
| + | | width="20%" | <math>\operatorname{Surj}^k_j q_j</math> |
| + | |} |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ==Table Stuff== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ '''Table 15. Boolean Functions on Zero Variables''' |
| + | |- style="background:whitesmoke" |
| + | | width="14%" | <math>F\!</math> |
| + | | width="14%" | <math>F\!</math> |
| + | | width="48%" | <math>F()\!</math> |
| + | | width="24%" | <math>F\!</math> |
| + | |- |
| + | | <math>\underline{0}</math> |
| + | | <math>F_0^{(0)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>(~)</math> |
| + | |- |
| + | | <math>\underline{1}</math> |
| + | | <math>F_1^{(0)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>((~))</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ '''Table 16. Boolean Functions on One Variable''' |
| + | |- style="background:whitesmoke" |
| + | | width="14%" | <math>F\!</math> |
| + | | width="14%" | <math>F\!</math> |
| + | | colspan="2" | <math>F(x)\!</math> |
| + | | width="24%" | <math>F\!</math> |
| + | |- style="background:whitesmoke" |
| + | | width="14%" | |
| + | | width="14%" | |
| + | | width="24%" | <math>F(\underline{1})</math> |
| + | | width="24%" | <math>F(\underline{0})</math> |
| + | | width="24%" | |
| + | |- |
| + | | <math>F_0^{(1)}\!</math> |
| + | | <math>F_{00}^{(1)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>(~)</math> |
| + | |- |
| + | | <math>F_1^{(1)}\!</math> |
| + | | <math>F_{01}^{(1)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>(x)\!</math> |
| + | |- |
| + | | <math>F_2^{(1)}\!</math> |
| + | | <math>F_{10}^{(1)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>x\!</math> |
| + | |- |
| + | | <math>F_3^{(1)}\!</math> |
| + | | <math>F_{11}^{(1)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>((~))</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ '''Table 17. Boolean Functions on Two Variables''' |
| + | |- style="background:whitesmoke" |
| + | | width="14%" | <math>F\!</math> |
| + | | width="14%" | <math>F\!</math> |
| + | | colspan="4" | <math>F(x, y)\!</math> |
| + | | width="24%" | <math>F\!</math> |
| + | |- style="background:whitesmoke" |
| + | | width="14%" | |
| + | | width="14%" | |
| + | | width="12%" | <math>F(\underline{1}, \underline{1})</math> |
| + | | width="12%" | <math>F(\underline{1}, \underline{0})</math> |
| + | | width="12%" | <math>F(\underline{0}, \underline{1})</math> |
| + | | width="12%" | <math>F(\underline{0}, \underline{0})</math> |
| + | | width="24%" | |
| + | |- |
| + | | <math>F_{0}^{(2)}\!</math> |
| + | | <math>F_{0000}^{(2)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>(~)</math> |
| + | |- |
| + | | <math>F_{1}^{(2)}\!</math> |
| + | | <math>F_{0001}^{(2)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>(x)(y)\!</math> |
| + | |- |
| + | | <math>F_{2}^{(2)}\!</math> |
| + | | <math>F_{0010}^{(2)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>(x) y\!</math> |
| + | |- |
| + | | <math>F_{3}^{(2)}\!</math> |
| + | | <math>F_{0011}^{(2)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>(x)\!</math> |
| + | |- |
| + | | <math>F_{4}^{(2)}\!</math> |
| + | | <math>F_{0100}^{(2)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>x (y)\!</math> |
| + | |- |
| + | | <math>F_{5}^{(2)}\!</math> |
| + | | <math>F_{0101}^{(2)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>(y)\!</math> |
| + | |- |
| + | | <math>F_{6}^{(2)}\!</math> |
| + | | <math>F_{0110}^{(2)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>(x, y)\!</math> |
| + | |- |
| + | | <math>F_{7}^{(2)}\!</math> |
| + | | <math>F_{0111}^{(2)}\!</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>(x y)\!</math> |
| + | |- |
| + | | <math>F_{8}^{(2)}\!</math> |
| + | | <math>F_{1000}^{(2)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>x y\!</math> |
| + | |- |
| + | | <math>F_{9}^{(2)}\!</math> |
| + | | <math>F_{1001}^{(2)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>((x, y))\!</math> |
| + | |- |
| + | | <math>F_{10}^{(2)}\!</math> |
| + | | <math>F_{1010}^{(2)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>y\!</math> |
| + | |- |
| + | | <math>F_{11}^{(2)}\!</math> |
| + | | <math>F_{1011}^{(2)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>(x (y))\!</math> |
| + | |- |
| + | | <math>F_{12}^{(2)}\!</math> |
| + | | <math>F_{1100}^{(2)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>x\!</math> |
| + | |- |
| + | | <math>F_{13}^{(2)}\!</math> |
| + | | <math>F_{1101}^{(2)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>((x)y)\!</math> |
| + | |- |
| + | | <math>F_{14}^{(2)}\!</math> |
| + | | <math>F_{1110}^{(2)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{0}</math> |
| + | | <math>((x)(y))\!</math> |
| + | |- |
| + | | <math>F_{15}^{(2)}\!</math> |
| + | | <math>F_{1111}^{(2)}\!</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>\underline{1}</math> |
| + | | <math>((~))</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ---- |
| + | |
| + | <br> |
| + | |
| + | {| border="1" |
| + | | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› |
| + | | |
| + | {| |
| + | | u = |
| + | |- |
| + | | v = |
| + | |} |
| + | | |
| + | {| |
| + | | 1 1 0 0 |
| + | |- |
| + | | 1 0 1 0 |
| + | |} |
| + | | |
| + | {| |
| + | | = u |
| + | |- |
| + | | = v |
| + | |} |
| + | | rowspan="2" | ''f''<sub>''j''</sub>‹''u'', ''v''› |
| + | |- |
| + | | |
| + | {| |
| + | | x = |
| + | |- |
| + | | y = |
| + | |} |
| + | | |
| + | {| |
| + | | 1 1 1 0 |
| + | |- |
| + | | 1 0 0 1 |
| + | |} |
| + | | |
| + | {| |
| + | | = f‹u, v› |
| + | |- |
| + | | = g‹u, v› |
| + | |} |
| + | |} |
| + | |
| + | <br> |
| + | |
| {| border="1" | | {| border="1" |
| | rowspan="2" | A | | | rowspan="2" | A |
Line 40: |
Line 713: |
| |} | | |} |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 81: |
Line 755: |
| |} | | |} |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 133: |
Line 808: |
| |} | | |} |
| |} | | |} |
| + | |
| <br> | | <br> |