| Line 240: | 
Line 240: | 
|   | |}  |   | |}  | 
|   |  |   |  | 
| − | The underlined parenthetical expressions on the right are the cactus forms for the boolean functions that correspond to inclusive disjunction and logical equivalence, respectively.  By way of a reminder, consult Table 1 on the page at this location:  | + | The underlined parenthetical expressions on the right are the cactus forms for the boolean functions that correspond to inclusive disjunction and logical equivalence, respectively.  Table 1 summarizes the basic elements of the cactus notation for propositional logic.  | 
|   |  |   |  | 
| − | :* [http://stderr.org/pipermail/inquiry/2003-May/000478.html DLOG D1]  | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"  | 
|   | + | |+ <math>\text{Table 1.  Syntax and Semantics of a Calculus for Propositional Logic}\!</math>  | 
|   | + | |- style="background:whitesmoke"  | 
|   | + | | <math>\text{Expression}\!</math>  | 
|   | + | | <math>\text{Interpretation}\!</math>  | 
|   | + | | <math>\text{Other Notations}\!</math>  | 
|   | + | |-  | 
|   | + | | <math>~</math>  | 
|   | + | | <math>\operatorname{True}</math>  | 
|   | + | | <math>1\!</math>  | 
|   | + | |-  | 
|   | + | | <math>(~)</math>  | 
|   | + | | <math>\operatorname{False}</math>  | 
|   | + | | <math>0\!</math>  | 
|   | + | |-  | 
|   | + | | <math>x\!</math>  | 
|   | + | | <math>x\!</math>  | 
|   | + | | <math>x\!</math>  | 
|   | + | |-  | 
|   | + | | <math>(x)\!</math>  | 
|   | + | | <math>\operatorname{Not}\ x</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | x'        \\  | 
|   | + | \tilde{x} \\  | 
|   | + | \lnot x   \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |-  | 
|   | + | | <math>x\ y\ z</math>  | 
|   | + | | <math>x\ \operatorname{and}\ y\ \operatorname{and}\ z</math>  | 
|   | + | | <math>x \land y \land z</math>  | 
|   | + | |-  | 
|   | + | | <math>((x)(y)(z))\!</math>  | 
|   | + | | <math>x\ \operatorname{or}\ y\ \operatorname{or}\ z</math>  | 
|   | + | | <math>x \lor y \lor z</math>  | 
|   | + | |-  | 
|   | + | | <math>(x\ (y))\!</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | x\ \operatorname{implies}\ y                 \\  | 
|   | + | \operatorname{If}\ x\ \operatorname{then}\ y \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | | <math>x \Rightarrow y\!</math>  | 
|   | + | |-  | 
|   | + | | <math>(x, y)\!</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | x\ \operatorname{not~equal~to}\ y \\  | 
|   | + | x\ \operatorname{exclusive~or}\ y \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | x \neq y \\  | 
|   | + | x + y    \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |-  | 
|   | + | | <math>((x, y))\!</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | x\ \operatorname{is~equal~to}\ y    \\  | 
|   | + | x\ \operatorname{if~and~only~if}\ y \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | x = y               \\  | 
|   | + | x \Leftrightarrow y \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |-  | 
|   | + | | <math>(x, y, z)\!</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | \operatorname{Just~one~of} \\  | 
|   | + | x, y, z                    \\  | 
|   | + | \operatorname{is~false}.   \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | x'y~z~ & \lor \\  | 
|   | + | x~y'z~ & \lor \\  | 
|   | + | x~y~z' &      \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |-  | 
|   | + | | <math>((x),(y),(z))\!</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | \operatorname{Just~one~of}    \\  | 
|   | + | x, y, z                       \\  | 
|   | + | \operatorname{is~true}.       \\  | 
|   | + | &                             \\  | 
|   | + | \operatorname{Partition~all}  \\  | 
|   | + | \operatorname{into}\ x, y, z. \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | x~y'z' & \lor \\  | 
|   | + | x'y~z' & \lor \\  | 
|   | + | x'y'z~ &      \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |-  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | ((x, y), z) \\  | 
|   | + | &           \\  | 
|   | + | (x, (y, z)) \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | \operatorname{Oddly~many~of} \\  | 
|   | + | x, y, z                      \\  | 
|   | + | \operatorname{are~true}.     \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |  | 
|   | + | <p><math>x + y + z\!</math></p>  | 
|   | + | <br>  | 
|   | + | <p><math>\begin{matrix}  | 
|   | + | x~y~z~ & \lor \\  | 
|   | + | x~y'z' & \lor \\  | 
|   | + | x'y~z' & \lor \\  | 
|   | + | x'y'z~ &      \\  | 
|   | + | \end{matrix}</math></p>  | 
|   | + | |-  | 
|   | + | | <math>(w, (x),(y),(z))\!</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | \operatorname{Partition}\ w      \\  | 
|   | + | \operatorname{into}\ x, y, z.    \\  | 
|   | + | &                                \\  | 
|   | + | \operatorname{Genus}\ w\ \operatorname{comprises} \\  | 
|   | + | \operatorname{species}\ x, y, z. \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |  | 
|   | + | <math>\begin{matrix}  | 
|   | + | w'x'y'z' & \lor \\  | 
|   | + | w~x~y'z' & \lor \\  | 
|   | + | w~x'y~z' & \lor \\  | 
|   | + | w~x'y'z~ &      \\  | 
|   | + | \end{matrix}</math>  | 
|   | + | |}  | 
|   | + |    | 
|   | + | <br>  | 
|   |  |   |  | 
|   | <pre>  |   | <pre>  |