Line 2,459: |
Line 2,459: |
| | | |
| ===Rule 5=== | | ===Rule 5=== |
− |
| |
− | <pre>
| |
− | Rule 5
| |
− |
| |
− | If X, Y c U,
| |
− |
| |
− | then the following are equivalent:
| |
− |
| |
− | R5a. X = Y. :D2a
| |
− | ::
| |
− | R5b. u C X <=> u C Y, for all u C U. :D2b
| |
− | :D7a
| |
− | ::
| |
− | R5c. [u C X] = [u C Y], for all u C U. :D7b
| |
− | :???
| |
− | ::
| |
− | R5d. {<u, v> C UxB : v = [u C X]}
| |
− | =
| |
− | {<u, v> C UxB : v = [u C Y]}. :???
| |
− | :D5b
| |
− | ::
| |
− | R5e. {X} = {Y}. :D5a
| |
− | </pre>
| |
| | | |
| <br> | | <br> |
Line 2,490: |
Line 2,467: |
| |- style="height:40px; text-align:center" | | |- style="height:40px; text-align:center" |
| | width="80%" | | | | width="80%" | |
− | | width="20%" style="border-left:1px solid black" | <math>\operatorname{Rule~3}</math> | + | | width="20%" style="border-left:1px solid black" | <math>\operatorname{Rule~5}</math> |
| |} | | |} |
| |- | | |- |
Line 2,497: |
Line 2,474: |
| |- style="height:40px" | | |- style="height:40px" |
| | width="2%" style="border-top:1px solid black" | | | | width="2%" style="border-top:1px solid black" | |
− | | width="14%" style="border-top:1px solid black" | <math>\text{If}\!</math> | + | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
− | | width="64%" style="border-top:1px solid black" | <math>Q ~\subseteq~ X</math> | + | | width="60%" style="border-top:1px solid black" | <math>P, Q ~\subseteq~ X</math> |
| | width="20%" style="border-top:1px solid black; border-left:1px solid black" | | | | width="20%" style="border-top:1px solid black; border-left:1px solid black" | |
− | |- style="height:40px"
| |
− | |
| |
− | | <math>\text{and}\!</math>
| |
− | | <math>x ~\in~ X</math>
| |
− | | style="border-left:1px solid black" |
| |
| |- style="height:40px" | | |- style="height:40px" |
| | | | | |
Line 2,516: |
Line 2,488: |
| |- style="height:40px" | | |- style="height:40px" |
| | width="2%" style="border-top:1px solid black" | | | | width="2%" style="border-top:1px solid black" | |
− | | width="14%" style="border-top:1px solid black" | <math>\operatorname{R3a.}</math> | + | | width="18%" style="border-top:1px solid black" | <math>\operatorname{R5a.}</math> |
− | | width="64%" style="border-top:1px solid black" | <math>x ~\in~ Q</math> | + | | width="60%" style="border-top:1px solid black" | <math>P ~=~ Q</math> |
− | | width="20%" style="border-top:1px solid black; border-left:1px solid black; text-align:center" | <math>\operatorname{R3a~:~R1a}</math> | + | | width="20%" style="border-top:1px solid black; border-left:1px solid black; text-align:center" | <math>\operatorname{R5a~:~D2a}</math> |
| |- style="height:20px" | | |- style="height:20px" |
| | | | | |
Line 2,526: |
Line 2,498: |
| |- style="height:60px" | | |- style="height:60px" |
| | | | | |
− | | <math>\operatorname{R3b.}</math> | + | | <math>\operatorname{R5b.}</math> |
− | | <math>\upharpoonleft Q \upharpoonright (x)</math> | + | | <math>\overset{X}{\underset{x}{\forall}}~ (x \in P ~\Leftrightarrow~ x \in Q)</math> |
| + | | style="border-left:1px solid black; text-align:center" | |
| + | <p><math>\operatorname{R5b~:~D2b}</math></p> |
| + | <p><math>\operatorname{R5b~:~D7a}</math></p> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:60px" |
| + | | |
| + | | <math>\operatorname{R5c.}</math> |
| + | | <math>\overset{X}{\underset{x}{\forall}}~ (\downharpoonleft x \in P \downharpoonright ~=~ \downharpoonleft x \in Q \downharpoonright)</math> |
| + | | style="border-left:1px solid black; text-align:center" | |
| + | <p><math>\operatorname{R5c~:~D7b}</math></p> |
| + | <p><math>\operatorname{R5c~:~\_\_?\_\_}</math></p> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:80px" |
| + | | |
| + | | <math>\operatorname{R5d.}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \{ (x, y) \in X \times \underline\mathbb{B} ~:~ y ~=~ \downharpoonleft x \in P \downharpoonright |
| + | \\ |
| + | = |
| + | \\ |
| + | \{ (x, y) \in X \times \underline\mathbb{B} ~:~ y ~=~ \downharpoonleft x \in Q \downharpoonright |
| + | \end{matrix}</math> |
| | style="border-left:1px solid black; text-align:center" | | | | style="border-left:1px solid black; text-align:center" | |
− | <p><math>\operatorname{R3b~:~R1b}</math></p> | + | <p><math>\operatorname{R5d~:~\_\_?\_\_}</math></p> |
− | <p><math>\operatorname{R3b~:~R2a}</math></p> | + | <p><math>\operatorname{R5d~:~D5b}</math></p> |
| |- style="height:20px" | | |- style="height:20px" |
| | | | | |
Line 2,538: |
Line 2,541: |
| |- style="height:40px" | | |- style="height:40px" |
| | | | | |
− | | <math>\operatorname{R3c.}</math> | + | | <math>\operatorname{R5e.}</math> |
− | | <math>\upharpoonleft Q \upharpoonright (x) ~=~ \underline{1}</math> | + | | <math>\upharpoonleft P \upharpoonright ~=~ \upharpoonleft Q \upharpoonright</math> |
− | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R3c~:~R2b}</math></p> | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R5e~:~D5a}</math> |
| |} | | |} |
| |} | | |} |