MyWikiBiz, Author Your Legacy — Sunday October 26, 2025
Jump to navigationJump to search
316 bytes added
, 03:58, 24 January 2009
| Line 2,445: |
Line 2,445: |
| | {| align="center" cellpadding="8" width="90%" | | {| align="center" cellpadding="8" width="90%" |
| | | | | | |
| − | <math>\begin{array}{ccccc} | + | <math>\begin{matrix} |
| | p | | p |
| | & = & | | & = & |
| Line 2,466: |
Line 2,466: |
| | (X \to \underline\mathbb{B})^2 | | (X \to \underline\mathbb{B})^2 |
| | \\ | | \\ |
| − | \end{array}</math> | + | \end{matrix}</math> |
| | |} | | |} |
| | | | |
| − | <pre>
| + | Then one has an operator <math>F^\$,</math> the stretch of the connection <math>F\!</math> over <math>X,\!</math> and a proposition <math>F^\$ (p, q),</math> the stretch of <math>F\!</math> to <math>(p, q)\!</math> on <math>X,\!</math> with the following properties: |
| − | Then one has an operator F^$, the stretch of the connection F over X, | |
| − | and a proposition F^$ (p, q), the stretch of F to <p, q> on X, with | |
| − | the following properties: | |
| | | | |
| − | | F^$ = -( , )-^$ : (X -> %B%)^2 -> (X -> %B%) | + | {| align="center" cellpadding="8" width="90%" |
| | | | | | |
| − | | F^$ (p, q) = -(p, q)-^$ : X -> %B%
| + | <math>\begin{array}{ccccl} |
| | + | F^\$ |
| | + | & = & |
| | + | \underline{(} \ldots, \ldots \underline{)}^\$ |
| | + | & : & |
| | + | (X \to \underline\mathbb{B})^2 \to (X \to \underline\mathbb{B}) |
| | + | \\ |
| | + | \\ |
| | + | F^\$ (p, q) |
| | + | & = & |
| | + | \underline{(}~p~,~q~\underline{)}^\$ |
| | + | & : & |
| | + | X \to \underline\mathbb{B} |
| | + | \\ |
| | + | \end{array}</math> |
| | + | |} |
| | | | |
| | + | <pre> |
| | As a result, the application of the proposition F^$ (p, q) to each x in X | | As a result, the application of the proposition F^$ (p, q) to each x in X |
| | yields a logical value in %B%, all in accord with the following equations: | | yields a logical value in %B%, all in accord with the following equations: |