| Line 230: |
Line 230: |
| | | | |
| | {| align="center" cellpadding="12" cellspacing="0" style="border-top:1px solid black" width="90%" | | {| align="center" cellpadding="12" cellspacing="0" style="border-top:1px solid black" width="90%" |
| − | | align="left" style="border-left:1px solid black;" width="33%" | | + | | align="left" style="border-left:1px solid black;" width="50%" | |
| − | <math>\mathfrak{C} (\mathfrak{P})</math> | + | <math>\mathfrak{C} (\mathfrak{P}) : \text{Grammar 1}\!</math> |
| − | | align="center" |
| + | | align="right" style="border-right:1px solid black;" width="50%" | |
| − | <math>\text{Grammar 1}\!</math>
| |
| − | | align="right" style="border-right:1px solid black;" width="33%" | | |
| | <math>\mathfrak{Q} = \emptyset</math> | | <math>\mathfrak{Q} = \emptyset</math> |
| | |- | | |- |
| − | | colspan="3" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" | | + | | colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" | |
| | <math>\begin{array}{llll} | | <math>\begin{array}{llll} |
| | 1. | | 1. |
| Line 275: |
Line 273: |
| | | | |
| | {| align="center" cellpadding="12" cellspacing="0" style="border-top:1px solid black" width="90%" | | {| align="center" cellpadding="12" cellspacing="0" style="border-top:1px solid black" width="90%" |
| − | | align="left" style="border-left:1px solid black;" width="33%" | | + | | align="left" style="border-left:1px solid black;" width="50%" | |
| − | <math>\mathfrak{C} (\mathfrak{P})</math> | + | <math>\mathfrak{C} (\mathfrak{P}) : \text{Grammar 2}\!</math> |
| − | | align="center" |
| + | | align="right" style="border-right:1px solid black;" width="50%" | |
| − | <math>\text{Grammar 2}\!</math>
| + | <math>\mathfrak{Q} = \{ \, ^{\backprime\backprime} T ^{\prime\prime} \, \}</math> |
| − | | align="right" style="border-right:1px solid black;" width="33%" | | |
| − | <math>\mathfrak{Q} = \{ ^{\backprime\backprime} \operatorname{T} ^{\prime\prime} \}</math> | |
| | |- | | |- |
| − | | colspan="3" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" | | + | | colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" | |
| | <math>\begin{array}{llll} | | <math>\begin{array}{llll} |
| | 1. | | 1. |
| Line 351: |
Line 347: |
| | | | |
| | {| align="center" cellpadding="12" cellspacing="0" style="border-top:1px solid black" width="90%" | | {| align="center" cellpadding="12" cellspacing="0" style="border-top:1px solid black" width="90%" |
| − | | align="left" style="border-left:1px solid black;" width="33%" | | + | | align="left" style="border-left:1px solid black;" width="50%" | |
| − | <math>\mathfrak{C} (\mathfrak{P})</math> | + | <math>\mathfrak{C} (\mathfrak{P}) : \text{Grammar 3}\!</math> |
| − | | align="center" |
| + | | align="right" style="border-right:1px solid black;" width="50%" | |
| − | <math>\text{Grammar 3}\!</math>
| + | <math>\mathfrak{Q} = \{ \, ^{\backprime\backprime} F ^{\prime\prime}, \, ^{\backprime\backprime} R ^{\prime\prime}, \, ^{\backprime\backprime} T ^{\prime\prime} \, \}</math> |
| − | | align="right" style="border-right:1px solid black;" width="33%" | | |
| − | <math>\mathfrak{Q} = \{ ^{\backprime\backprime} F ^{\prime\prime}, ^{\backprime\backprime} R ^{\prime\prime}, ^{\backprime\backprime} T ^{\prime\prime} \}</math> | |
| | |- | | |- |
| − | | colspan="3" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" | | + | | colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" | |
| | <math>\begin{array}{llll} | | <math>\begin{array}{llll} |
| | 1. | | 1. |
| | & S | | & S |
| | & :> | | & :> |
| − | & \varepsilon | + | & R |
| | \\ | | \\ |
| | 2. | | 2. |
| | & S | | & S |
| | & :> | | & :> |
| − | & m_1 | + | & F |
| | \\ | | \\ |
| | 3. | | 3. |
| | & S | | & S |
| | & :> | | & :> |
| − | & p_j, \, \text{for each}\ j \in J | + | & S \, \cdot \, S |
| | \\ | | \\ |
| | 4. | | 4. |
| − | & S | + | & R |
| | & :> | | & :> |
| − | & S \, \cdot \, S | + | & \varepsilon |
| | \\ | | \\ |
| | 5. | | 5. |
| − | & S | + | & R |
| | + | & :> |
| | + | & m_1 |
| | + | \\ |
| | + | 6. |
| | + | & R |
| | + | & :> |
| | + | & p_j, \, \text{for each}\ j \in J |
| | + | \\ |
| | + | 7. |
| | + | & R |
| | + | & :> |
| | + | & R \, \cdot \, R |
| | + | \\ |
| | + | 8. |
| | + | & F |
| | & :> | | & :> |
| | & ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, T \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} | | & ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, T \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} |
| | \\ | | \\ |
| − | 6.
| + | 9. |
| | & T | | & T |
| | & :> | | & :> |
| | & S | | & S |
| | \\ | | \\ |
| − | 7.
| + | 10. |
| | & T | | & T |
| | & :> | | & :> |