Changes

Line 414: Line 414:  
Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.
 
Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.
   −
<math>\begin{matrix}
+
<center><math>\begin{matrix}
 
\alpha_0 f = 1            &
 
\alpha_0 f = 1            &
\mathit{iff}              &
+
\mathrm{iff}              &
 
f_0 \Rightarrow f          &
 
f_0 \Rightarrow f          &
\mathit{iff}              &
+
\mathrm{iff}              &
 
0 \Rightarrow f.          &
 
0 \Rightarrow f.          &
\mathrm{Therefore}        &
+
\therefore                &
 
\alpha_0 f = 1            &
 
\alpha_0 f = 1            &
 
\operatorname{for~all}\ f. \\
 
\operatorname{for~all}\ f. \\
 
\alpha_{15} f = 1          &
 
\alpha_{15} f = 1          &
\mathit{iff}              &
+
\mathrm{iff}              &
 
f_{15} \Rightarrow f      &
 
f_{15} \Rightarrow f      &
\mathit{iff}              &
+
\mathrm{iff}              &
 
1 \Rightarrow f.          &
 
1 \Rightarrow f.          &
\mathrm{Therefore}        &
+
\therefore                &
 
\alpha_{15} f = 1          &
 
\alpha_{15} f = 1          &
\mathit{iff} f = 1.        \\
+
\mathrm{iff} f = 1.        \\
 
\beta_0 f = 1              &
 
\beta_0 f = 1              &
\mathit{iff}              &
+
\mathrm{iff}              &
 
f \Rightarrow f_0          &
 
f \Rightarrow f_0          &
\mathit{iff}              &
+
\mathrm{iff}              &
 
f \Rightarrow 0.          &
 
f \Rightarrow 0.          &
\mathrm{Therefore}        &
+
\therefore                &
 
\beta_0 f = 1              &
 
\beta_0 f = 1              &
\mathit{iff} f = 0.        \\
+
\mathrm{iff} f = 0.        \\
 
\beta_{15} f = 1          &
 
\beta_{15} f = 1          &
\mathit{iff}              &
+
\mathrm{iff}              &
 
f \Rightarrow f_{15}      &
 
f \Rightarrow f_{15}      &
\mathit{iff}              &
+
\mathrm{iff}              &
 
f \Rightarrow 1.          &
 
f \Rightarrow 1.          &
\mathrm{Therefore}        &
+
\therefore                &
 
\beta_{15} f = 1          &
 
\beta_{15} f = 1          &
 
\operatorname{for~all}\ f. \\
 
\operatorname{for~all}\ f. \\
\end{matrix}</math>
+
\end{matrix}</math></center>
    
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.
 
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.
12,080

edits