Difference between revisions of "Logic of relatives"
MyWikiBiz, Author Your Legacy — Thursday November 21, 2024
Jump to navigationJump to searchJon Awbrey (talk | contribs) (add category) |
Jon Awbrey (talk | contribs) (more accurate lead) |
||
Line 1: | Line 1: | ||
− | The '''logic of relatives''', short for the '''logic of relative terms''', is the study of [[relation (mathematics)|relation]]s in | + | The '''logic of relatives''', short for the '''logic of relative terms''', is the study of [[relation (mathematics)|relation]]s as represented in systems of signs by means of expressions known as ''rhemes'', ''rhemata'', or ''relative terms''. The treatment of relations by way of their corresponding relative terms affords a distinctive perspective on the subject, even though all angles of approach must ultimately converge on the same formal subject matter. |
The consideration of ''[[relative term]]s'' has its roots in antiquity, but it entered a radically new phase of development with the work of [[Charles Sanders Peirce]], beginning with his paper [[Logic of Relatives (1870)|"Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole's Calculus of Logic" (1870)]]. | The consideration of ''[[relative term]]s'' has its roots in antiquity, but it entered a radically new phase of development with the work of [[Charles Sanders Peirce]], beginning with his paper [[Logic of Relatives (1870)|"Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole's Calculus of Logic" (1870)]]. |
Revision as of 01:48, 1 August 2008
The logic of relatives, short for the logic of relative terms, is the study of relations as represented in systems of signs by means of expressions known as rhemes, rhemata, or relative terms. The treatment of relations by way of their corresponding relative terms affords a distinctive perspective on the subject, even though all angles of approach must ultimately converge on the same formal subject matter.
The consideration of relative terms has its roots in antiquity, but it entered a radically new phase of development with the work of Charles Sanders Peirce, beginning with his paper "Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole's Calculus of Logic" (1870).
References
- Peirce, C.S., "Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole's Calculus of Logic", Memoirs of the American Academy of Arts and Sciences 9, 317–378, 1870. Reprinted, Collected Papers CP 3.45–149, Chronological Edition CE 2, 359–429.
Bibliography
- Aristotle, "The Categories", Harold P. Cooke (trans.), pp. 1–109 in Aristotle, Vol. 1, Loeb Classical Library, William Heinemann, London, UK, 1938.
- Aristotle, "On Interpretation", Harold P. Cooke (trans.), pp. 111–179 in Aristotle, Vol. 1, Loeb Classical Library, William Heinemann, London, UK, 1938.
- Aristotle, "Prior Analytics", Hugh Tredennick (trans.), pp. 181–531 in Aristotle, Vol. 1, Loeb Classical Library, William Heinemann, London, UK, 1938.
- Boole, George, An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Macmillan, 1854. Reprinted with corrections, Dover Publications, New York, NY, 1958.
- Maddux, Roger D., Relation Algebras, vol. 150 in 'Studies in Logic and the Foundations of Mathematics', Elsevier Science, 2006.
- Peirce, C.S., Collected Papers of Charles Sanders Peirce, vols. 1–6, Charles Hartshorne and Paul Weiss (eds.), vols. 7–8, Arthur W. Burks (ed.), Harvard University Press, Cambridge, MA, 1931–1935, 1958. Cited as CP volume.paragraph.
- Peirce, C.S., Writings of Charles S. Peirce : A Chronological Edition, Volume 2, 1867–1871, Peirce Edition Project (eds.), Indiana University Press, Bloomington, IN, 1984. Cited as CE 2.
See also
Template:Col-break- Arity
- Binary relation
- Category theory
- Database
- Logic of Relatives (1870)
- Logic of Relatives (1883)
- Operation