Line 347: |
Line 347: |
| ====Table 9==== | | ====Table 9==== |
| | | |
− | <font face="courier new">
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:left; width:96%" | |
| |+ '''Table 9. Higher Order Differential Features''' | | |+ '''Table 9. Higher Order Differential Features''' |
− | | width=50% |
| + | | |
− | {| cellpadding="4"
| + | <p><math>\begin{array}{lllll} |
− | | <font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | d<sup>0</sup><font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | {''a''<sub>1</sub>,
| |
− | | …,
| |
− | | ''a''<sub>''n''</sub>}
| |
− | |-
| |
− | | d<font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | d<sup>1</sup><font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | {d''a''<sub>1</sub>,
| |
− | | …,
| |
− | | d''a''<sub>''n''</sub>}
| |
− | |-
| |
− | |
| |
− | |
| |
− | | d<sup>''k''</sup><font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | {d<sup>''k''</sup>''a''<sub>''1''</sub>,
| |
− | | …,
| |
− | | d<sup>''k''</sup>''a''<sub>''n''</sub>}
| |
− | |-
| |
− | | d<sup>*</sup><font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | {d<sup>0</sup><font face="lucida calligraphy">A</font>,
| |
− | | …,
| |
− | | d<sup>''k''</sup><font face="lucida calligraphy">A</font>,
| |
− | | …}
| |
− | |}
| |
− | | width=50% |
| |
− | {| cellpadding="4"
| |
− | | E<sup>0</sup><font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | d<sup>0</sup><font face="lucida calligraphy">A</font>
| |
− | |-
| |
− | | E<sup>1</sup><font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | d<sup>0</sup><font face="lucida calligraphy">A</font> ∪ d<sup>1</sup><font face="lucida calligraphy">A</font>
| |
− | |-
| |
− | | E<sup>''k''</sup><font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | d<sup>0</sup><font face="lucida calligraphy">A</font> ∪ … ∪ d<sup>''k''</sup><font face="lucida calligraphy">A</font>
| |
− | |-
| |
− | | E<sup>∞</sup><font face="lucida calligraphy">A</font>
| |
− | | =
| |
− | | ∪ d<sup>*</sup><font face="lucida calligraphy">A</font>
| |
− | |}
| |
− | |}
| |
− | </font><br>
| |
− | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
| |
− | |+ '''Table 9. Higher Order Differential Features'''
| |
− | | width=50% |
| |
− | <math>\begin{smallmatrix} | |
− | \mathcal{A}
| |
− | & = &
| |
| \operatorname{d}^0 \mathcal{A} | | \operatorname{d}^0 \mathcal{A} |
− | & = & | + | & = & \{a_1, \ldots, a_n\} |
− | \{a_1, & \ldots, & a_n\} \\ | + | & = & \mathcal{A} \\ |
− | \operatorname{d}\mathcal{A}
| |
− | & = &
| |
| \operatorname{d}^1 \mathcal{A} | | \operatorname{d}^1 \mathcal{A} |
− | & = & | + | & = & \{\operatorname{d}a_1, \ldots, \operatorname{d}a_n\} |
− | \{\operatorname{d}a_1, & \ldots, & \operatorname{d}a_n\} \\ | + | & = & \operatorname{d}\mathcal{A} \\ |
− | & &
| + | \end{array}</math></p> |
| + | <p><math>\begin{array}{lll} |
| \operatorname{d}^k \mathcal{A} | | \operatorname{d}^k \mathcal{A} |
− | & = & | + | & = & \{\operatorname{d}^k a_1, \ldots, \operatorname{d}^k a_n\} \\ |
− | \{\operatorname{d}^k a_1, | |
− | & \ldots, &
| |
− | \operatorname{d}^k a_n\} \\ | |
| \operatorname{d}^* \mathcal{A} | | \operatorname{d}^* \mathcal{A} |
− | & = & | + | & = & \{\operatorname{d}^0 \mathcal{A}, \ldots, \operatorname{d}^k \mathcal{A}, \ldots \} \\ |
− | \{\operatorname{d}^0 \mathcal{A}, | + | \end{array}</math></p> |
− | & \ldots, &
| + | | |
− | \operatorname{d}^k \mathcal{A}, | + | <p><math>\begin{array}{lll} |
− | & \ldots \}
| + | \operatorname{E}^0 \mathcal{A} |
− | \end{smallmatrix}</math> | + | & = & \operatorname{d}^0 \mathcal{A} \\ |
− | | width=50% |
| + | \operatorname{E}^1 \mathcal{A} |
− | <math>\begin{array}{lll} | + | & = & \operatorname{d}^0 \mathcal{A}\ \cup\ \operatorname{d}^1 \mathcal{A} \\ |
− | \operatorname{E}^0 \mathcal{A} & = & \operatorname{d}^0 \mathcal{A} \\ | + | \operatorname{E}^k \mathcal{A} |
− | \operatorname{E}^1 \mathcal{A} & = & \operatorname{d}^0 \mathcal{A}\ \cup\ \operatorname{d}^1 \mathcal{A} \\ | + | & = & \operatorname{d}^0 \mathcal{A}\ \cup\ \ldots\ \cup\ \operatorname{d}^k \mathcal{A} \\ |
− | \operatorname{E}^k \mathcal{A} & = & \operatorname{d}^0 \mathcal{A}\ \cup\ \ldots\ \cup\ \operatorname{d}^k \mathcal{A} \\ | + | \operatorname{E}^\infty \mathcal{A} |
− | \operatorname{E}^\infty \mathcal{A} & = & \bigcup\ \operatorname{d}^* \mathcal{A} \\ | + | & = & \bigcup\ \operatorname{d}^* \mathcal{A} \\ |
− | \end{array}</math> | + | \end{array}</math></p> |
| |}<br> | | |}<br> |