Changes

→‎Table 9: cleanup
Line 89: Line 89:     
===Reality at the Threshold of Logic===
 
===Reality at the Threshold of Logic===
  −
{| width="100%" cellpadding="0" cellspacing="0"
  −
| width="4%"  |  
  −
| width="92%" |
  −
But no science can rest entirely on measurement, and many scientific investigations are quite out of reach of that device.  To the scientist longing for non-quantitative techniques, then, mathematical logic brings hope.
  −
| width="4%"  |  
  −
|-
  −
| align="right" colspan="3" | — W.V. Quine, ''Mathematical Logic'', [Qui, 7]
  −
|}
  −
  −
Table 5 accumulates an array of notation that I hope will not be too distracting.  Some of it is rarely needed, but has been filled in for the sake of completeness.  Its purpose is simple, to give literal expression to the visual intuitions that come with venn diagrams, and to help build a bridge between our qualitative and quantitative outlooks on dynamic systems.
      
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 
|+ '''Table 5.  A Bridge Over Troubled Waters'''
 
|+ '''Table 5.  A Bridge Over Troubled Waters'''
 
|- style="background:ghostwhite"
 
|- style="background:ghostwhite"
! Linear Space
+
| align="center" | <math>\mbox{Linear Space}\!</math>
! Liminal Space
+
| align="center" | <math>\mbox{Liminal Space}\!</math>
! Logical Space
+
| align="center" | <math>\mbox{Logical Space}\!</math>
 
|-
 
|-
 
|
 
|
<font face="lucida calligraphy">X</font><br>
+
<math>\begin{matrix}
{''x''<sub>1</sub>, &hellip;, ''x''<sub>''n''</sub>}<br>
+
\mathcal{X}
cardinality ''n''
+
& = & \{x_1, \ldots, x_n\} \\
 +
\end{matrix}</math>
 
|
 
|
<font face="lucida calligraphy"><u>X</u></font><br>
+
<math>\begin{matrix}
{<u>''x''</u><sub>1</sub>, &hellip;, <u>''x''</u><sub>''n''</sub>}<br>
+
\underline\mathcal{X}
cardinality ''n''
+
& = & \{\underline{x}_1, \ldots, \underline{x}_n\} \\
 +
\end{matrix}</math>
 
|
 
|
<font face="lucida calligraphy">A</font><br>
+
<math>\begin{matrix}
{''a''<sub>1</sub>, &hellip;, ''a''<sub>''n''</sub>}<br>
+
\mathcal{A}
cardinality ''n''
+
& = & \{a_1, \ldots, a_n\} \\
 +
\end{matrix}</math>
 
|-
 
|-
 
|
 
|
''X''<sub>''i''</sub><br>
+
<math>\begin{matrix}
〈''x''<sub>''i''</sub>〉<br>
+
X_i
isomorphic to '''K'''
+
& = & \langle x_i \rangle \\
 +
& \cong & \mathbb{K}      \\
 +
\end{matrix}</math>
 
|
 
|
<u>''X''</u><sub>''i''</sub><br>
+
<math>\begin{matrix}
{(<u>''x''</u><sub>''i''</sub>), <u>''x''</u><sub>''i''</sub>}<br>
+
\underline{X}_i
isomorphic to '''B'''
+
& = & \{(\underline{x}_i), \underline{x}_i \} \\
 +
& \cong & \mathbb{B}                          \\
 +
\end{matrix}</math>
 
|
 
|
''A''<sub>''i''</sub><br>
+
<math>\begin{matrix}
{(''a''<sub>''i''</sub>), ''a''<sub>''i''</sub>}<br>
+
A_i
isomorphic to '''B'''
+
& = & \{(a_i), a_i \} \\
 +
& \cong & \mathbb{B}  \\
 +
\end{matrix}</math>
 
|-
 
|-
 
|
 
|
''X''<br>
+
<math>\begin{matrix}
〈<font face="lucida calligraphy">X</font>〉<br>
+
X                                    \\
〈''x''<sub>1</sub>, &hellip;, ''x''<sub>''n''</sub>〉<br>
+
= & \langle \mathcal{X} \rangle      \\
{‹''x''<sub>1</sub>, &hellip;, ''x''<sub>''n''</sub>›}<br>
+
= & \langle x_1, \ldots, x_n \rangle \\
''X''<sub>1</sub> &times; &hellip; &times; ''X''<sub>''n''</sub><br>
+
= & X_1 \times \ldots \times X_n    \\
&prod;<sub>''i''</sub> ''X''<sub>''i''</sub><br>
+
= & \prod_{i=1}^n X_i                \\
isomorphic to '''K'''<sup>''n''</sup>
+
\cong & \mathbb{K}^n                 \\
 +
\end{matrix}</math>
 
|
 
|
<u>''X''</u><br>
+
<math>\begin{matrix}
〈<font face="lucida calligraphy"><u>X</u></font>〉<br>
+
\underline{X}                                                \\
〈<u>''x''</u><sub>1</sub>, &hellip;, <u>''x''</u><sub>''n''</sub>〉<br>
+
= & \langle \underline\mathcal{X} \rangle                    \\
{‹<u>''x''</u><sub>1</sub>, &hellip;, <u>''x''</u><sub>''n''</sub>›}<br>
+
= & \langle \underline{x}_1, \ldots, \underline{x}_n \rangle \\
<u>''X''</u><sub>1</sub> &times; &hellip; &times; <u>''X''</u><sub>''n''</sub><br>
+
= & \underline{X}_1 \times \ldots \times \underline{X}_n    \\
&prod;<sub>''i''</sub> <u>''X''</u><sub>''i''</sub><br>
+
= & \prod_{i=1}^n \underline{X}_i                            \\
isomorphic to '''B'''<sup>''n''</sup>
+
\cong & \mathbb{B}^n                                         \\
 +
\end{matrix}</math>
 
|
 
|
''A''<br>
+
<math>\begin{matrix}
〈<font face="lucida calligraphy">A</font>〉<br>
+
A                                    \\
〈''a''<sub>1</sub>, &hellip;, ''a''<sub>''n''</sub>〉<br>
+
= & \langle \mathcal{A} \rangle      \\
{‹''a''<sub>1</sub>, &hellip;, ''a''<sub>''n''</sub>›}<br>
+
= & \langle a_1, \ldots, a_n \rangle \\
''A''<sub>1</sub> &times; &hellip; &times; ''A''<sub>''n''</sub><br>
+
= & A_1 \times \ldots \times A_n    \\
&prod;<sub>''i''</sub> ''A''<sub>''i''</sub><br>
+
= & \prod_{i=1}^n A_i                \\
isomorphic to '''B'''<sup>''n''</sup>
+
\cong & \mathbb{B}^n                 \\
 +
\end{matrix}</math>
 
|-
 
|-
 
|
 
|
''X''*<br>
+
<math>\begin{matrix}
(hom : ''X'' &rarr; '''K''')<br>
+
X^*
isomorphic to '''K'''<sup>''n''</sup>
+
& = & (\ell : X \to \mathbb{K}) \\
 +
& \cong & \mathbb{K}^n         \\
 +
\end{matrix}</math>
 
|
 
|
<u>''X''</u>*<br>
+
<math>\begin{matrix}
(hom : <u>''X''</u> &rarr; '''B''')<br>
+
\underline{X}^*
isomorphic to '''B'''<sup>''n''</sup>
+
& = & (\ell : \underline{X} \to \mathbb{B}) \\
 +
& \cong & \mathbb{B}^n                     \\
 +
\end{matrix}</math>
 
|
 
|
''A''*<br>
+
<math>\begin{matrix}
(hom : ''A'' &rarr; '''B''')<br>
+
A^*
isomorphic to '''B'''<sup>''n''</sup>
+
& = & (\ell : A \to \mathbb{B}) \\
 +
& \cong & \mathbb{B}^n         \\
 +
\end{matrix}</math>
 
|-
 
|-
 
|
 
|
''X''^<br>
+
<math>\begin{matrix}
(''X'' &rarr; '''K''')<br>
+
X^\uparrow
isomorphic to:<br>
+
& = & (X \to \mathbb{K})               \\
('''K'''<sup>''n''</sup> &rarr; '''K''')
+
& \cong & (\mathbb{K}^n \to \mathbb{K}) \\
 +
\end{matrix}</math>
 
|
 
|
<u>''X''</u>^<br>
+
<math>\begin{matrix}
(<u>''X''</u> &rarr; '''B''')<br>
+
\underline{X}^\uparrow
isomorphic to:<br>
+
& = & (\underline{X} \to \mathbb{B})   \\
('''B'''<sup>''n''</sup> &rarr; '''B''')
+
& \cong & (\mathbb{B}^n \to \mathbb{B}) \\
 +
\end{matrix}</math>
 
|
 
|
''A''^<br>
+
<math>\begin{matrix}
(''A'' &rarr; '''B''')<br>
+
A^\uparrow
isomorphic to:<br>
+
& = & (A \to \mathbb{B})               \\
('''B'''<sup>''n''</sup> &rarr; '''B''')
+
& \cong & (\mathbb{B}^n \to \mathbb{B}) \\
 +
\end{matrix}</math>
 
|-
 
|-
 
|
 
|
''X''<sup>&bull;</sup><br>
+
<math>\begin{matrix}
[<font face="lucida calligraphy">X</font>]<br>
+
X^\circ                                              \\
[''x''<sub>1</sub>, &hellip;, ''x''<sub>''n''</sub>]<br>
+
= & [\mathcal{X}]                                     \\
(''X'', ''X''^)<br>
+
= & [x_1, \ldots, x_n]                               \\
(''X'' +&rarr; '''K''')<br>
+
= & (X, X^\uparrow)                                   \\
(''X'', (''X'' &rarr; '''K'''))<br>
+
= & (X\ +\!\to \mathbb{K})                           \\
isomorphic to:<br>
+
= & (X, (X \to \mathbb{K}))                           \\
('''K'''<sup>''n''</sup>, ('''K'''<sup>''n''</sup> &rarr; '''K'''))<br>
+
\cong & (\mathbb{K}^n, (\mathbb{K}^n \to \mathbb{K})) \\
('''K'''<sup>''n''</sup> +&rarr; '''K''')<br>
+
= & (\mathbb{K}^n\ +\!\to \mathbb{K})                 \\
['''K'''<sup>''n''</sup>]
+
= & [\mathbb{K}^n]                                    \\
 +
\end{matrix}</math>
 
|
 
|
<u>''X''</u><sup>&bull;</sup><br>
+
<math>\begin{matrix}
[<font face="lucida calligraphy"><u>X</u></font>]<br>
+
\underline{X}^\circ                                  \\
[<u>''x''</u><sub>1</sub>, &hellip;, <u>''x''</u><sub>''n''</sub>]<br>
+
= & [\underline\mathcal{X}]                           \\
(<u>''X''</u>, <u>''X''</u>^)<br>
+
= & [\underline{x}_1, \ldots, \underline{x}_n]       \\
(<u>''X''</u> +&rarr; '''B''')<br>
+
= & (\underline{X}, \underline{X}^\uparrow)           \\
(<u>''X''</u>, (<u>''X''</u> &rarr; '''B'''))<br>
+
= & (\underline{X}\ +\!\to \mathbb{B})               \\
isomorphic to:<br>
+
= & (\underline{X}, (\underline{X} \to \mathbb{B}))   \\
('''B'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> &rarr; '''B'''))<br>
+
\cong & (\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})) \\
('''B'''<sup>''n''</sup> +&rarr; '''B''')<br>
+
= & (\mathbb{B}^n\ +\!\to \mathbb{B})                 \\
['''B'''<sup>''n''</sup>]
+
= & [\mathbb{B}^n]                                    \\
 +
\end{matrix}</math>
 
|
 
|
''A''<sup>&bull;</sup><br>
+
<math>\begin{matrix}
[<font face="lucida calligraphy">A</font>]<br>
+
A^\circ                                              \\
[''a''<sub>1</sub>, &hellip;, ''a''<sub>''n''</sub>]<br>
+
= & [\mathcal{A}]                                     \\
(''A'', ''A''^)<br>
+
= & [a_1, \ldots, a_n]                               \\
(''A'' +&rarr; '''B''')<br>
+
= & (A, A^\uparrow)                                   \\
(''A'', (''A'' &rarr; '''B'''))<br>
+
= & (A\ +\!\to \mathbb{B})                           \\
isomorphic to:<br>
+
= & (A, (A \to \mathbb{B}))                           \\
('''B'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> &rarr; '''B'''))<br>
+
\cong & (\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})) \\
('''B'''<sup>''n''</sup> +&rarr; '''B''')<br>
+
= & (\mathbb{B}^n\ +\!\to \mathbb{B})                 \\
['''B'''<sup>''n''</sup>]
+
= & [\mathbb{B}^n]                                    \\
 +
\end{matrix}</math>
 
|}<br>
 
|}<br>
   Line 257: Line 270:     
We have just gone through a lot of work, apparently doing nothing more substantial than spinning a complex spell of notational devices through a labyrinth of baffled spaces and baffling maps.  The reason for doing this was to bind together and to constitute the intuitive concept of a universe of discourse into a coherent categorical object, the kind of thing, once grasped, which can be turned over in the mind and considered in all its manifold changes and facets.  The effort invested in these preliminary measures is intended to pay off later, when we need to consider the state transformations and the time evolution of neural network systems.
 
We have just gone through a lot of work, apparently doing nothing more substantial than spinning a complex spell of notational devices through a labyrinth of baffled spaces and baffling maps.  The reason for doing this was to bind together and to constitute the intuitive concept of a universe of discourse into a coherent categorical object, the kind of thing, once grasped, which can be turned over in the mind and considered in all its manifold changes and facets.  The effort invested in these preliminary measures is intended to pay off later, when we need to consider the state transformations and the time evolution of neural network systems.
 +
 +
===The Extended Universe of Discourse===
 +
 +
====Table 8====
 +
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 +
|+ '''Table 8.  Differential Extension : Basic Notation'''
 +
|- style="background:ghostwhite"
 +
! Symbol
 +
! Notation
 +
! Description
 +
! Type
 +
|-
 +
| <math>\operatorname{d}\mathfrak{A}</math>
 +
| <math>\lbrace\!</math>&nbsp;“<math>\operatorname{d}a_1</math>”&nbsp;<math>, \ldots,\!</math>&nbsp;“<math>\operatorname{d}a_n</math>”&nbsp;<math>\rbrace\!</math>
 +
| Alphabet of<br>
 +
differential<br>
 +
symbols
 +
| <math>[n] = \mathbf{n}</math>
 +
|-
 +
| <math>\operatorname{d}\mathcal{A}</math>
 +
| <math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math>
 +
| Basis of<br>
 +
differential<br>
 +
features
 +
| <math>[n] = \mathbf{n}</math>
 +
|-
 +
| <math>\operatorname{d}A_i</math>
 +
| <math>\{ (\operatorname{d}a_i), \operatorname{d}a_i \}</math>
 +
| Differential<br>
 +
dimension <math>i\!</math>
 +
| <math>\mathbb{D}</math>
 +
|-
 +
| <math>\operatorname{d}A</math>
 +
| <math>\langle \operatorname{d}\mathcal{A} \rangle</math><br>
 +
<math>\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle</math><br>
 +
<math>\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}</math><br>
 +
<math>\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n</math><br>
 +
<math>\textstyle \prod_i \operatorname{d}A_i</math>
 +
| Tangent space<br>
 +
at a point:<br>
 +
Set of changes,<br>
 +
motions, steps,<br>
 +
tangent vectors<br>
 +
at a point
 +
| <math>\mathbb{D}^n</math>
 +
|-
 +
| <math>\operatorname{d}A^*</math>
 +
| <math>(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})</math>
 +
| Linear functions<br>
 +
on <math>\operatorname{d}A</math>
 +
| <math>(\mathbb{D}^n)^* \cong \mathbb{D}^n</math>
 +
|-
 +
| <math>\operatorname{d}A^\uparrow</math>
 +
| <math>(\operatorname{d}A \to \mathbb{B})</math>
 +
| Boolean functions<br>
 +
on <math>\operatorname{d}A</math>
 +
| <math>\mathbb{D}^n \to \mathbb{B}</math>
 +
|-
 +
| <math>\operatorname{d}A^\circ</math>
 +
| <math>[\operatorname{d}\mathcal{A}]</math><br>
 +
<math>(\operatorname{d}A, \operatorname{d}A^\uparrow)</math><br>
 +
<math>(\operatorname{d}A\ +\!\to \mathbb{B})</math><br>
 +
<math>(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))</math><br>
 +
<math>[\operatorname{d}a_1, \ldots, \operatorname{d}a_n]</math>
 +
| Tangent universe<br>
 +
at a point of <math>A^\circ,</math><br>
 +
based on the<br>
 +
tangent features<br>
 +
<math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math>
 +
| <math>(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))</math><br>
 +
<math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br>
 +
<math>[\mathbb{D}^n]</math>
 +
|}<br>
 +
 +
====Table 9====
 +
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 +
|+ '''Table 9.  Higher Order Differential Features'''
 +
|
 +
<p><math>\begin{array}{lllll}
 +
\operatorname{d}^0 \mathcal{A}
 +
& = & \{a_1, \ldots, a_n\}
 +
& = & \mathcal{A} \\
 +
\operatorname{d}^1 \mathcal{A}
 +
& = & \{\operatorname{d}a_1, \ldots, \operatorname{d}a_n\}
 +
& = & \operatorname{d}\mathcal{A} \\
 +
\end{array}</math></p>
 +
<p><math>\begin{array}{lll}
 +
\operatorname{d}^k \mathcal{A}
 +
& = & \{\operatorname{d}^k a_1, \ldots, \operatorname{d}^k a_n\} \\
 +
\operatorname{d}^* \mathcal{A}
 +
& = & \{\operatorname{d}^0 \mathcal{A}, \ldots, \operatorname{d}^k \mathcal{A}, \ldots \} \\
 +
\end{array}</math></p>
 +
|
 +
<p><math>\begin{array}{lll}
 +
\operatorname{E}^0 \mathcal{A}
 +
& = & \operatorname{d}^0 \mathcal{A} \\
 +
\operatorname{E}^1 \mathcal{A}
 +
& = & \operatorname{d}^0 \mathcal{A}\ \cup\ \operatorname{d}^1 \mathcal{A} \\
 +
\operatorname{E}^k \mathcal{A}
 +
& = & \operatorname{d}^0 \mathcal{A}\ \cup\ \ldots\ \cup\ \operatorname{d}^k \mathcal{A} \\
 +
\operatorname{E}^\infty \mathcal{A}
 +
& = & \bigcup\ \operatorname{d}^* \mathcal{A} \\
 +
\end{array}</math></p>
 +
|}<br>
12,089

edits