| Line 101: |
Line 101: |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \mathcal{X} & = & \{x_1, \ldots, x_n\} \\ | + | \mathcal{X} |
| | + | & = & \{x_1, \ldots, x_n\} \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \underline\mathcal{X} & = & \{\underline{x}_1, \ldots, \underline{x}_n\} \\ | + | \underline\mathcal{X} |
| | + | & = & \{\underline{x}_1, \ldots, \underline{x}_n\} \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \mathcal{A} & = & \{a_1, \ldots, a_n\} \\ | + | \mathcal{A} |
| | + | & = & \{a_1, \ldots, a_n\} \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | X_i & = & \langle x_i \rangle \\ | + | X_i |
| − | & \cong & \mathbb{K} \\
| + | & = & \langle x_i \rangle \\ |
| | + | & \cong & \mathbb{K} \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \underline{X}_i & = & \{(\underline{x}_i), \underline{x}_i \} \\ | + | \underline{X}_i |
| − | & \cong & \mathbb{B} \\
| + | & = & \{(\underline{x}_i), \underline{x}_i \} \\ |
| | + | & \cong & \mathbb{B} \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | A_i & = & \{(a_i), a_i \} \\ | + | A_i |
| − | & \cong & \mathbb{B} \\
| + | & = & \{(a_i), a_i \} \\ |
| | + | & \cong & \mathbb{B} \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | X & = & \langle \mathcal{X} \rangle \\ | + | X |
| − | & = & \langle x_1, \ldots, x_n \rangle \\
| + | & = & \langle \mathcal{X} \rangle \\ |
| − | & = & X_1 \times \ldots \times X_n \\
| + | & = & \langle x_1, \ldots, x_n \rangle \\ |
| − | & = & \prod_{i=1}^n X_i \\
| + | & = & X_1 \times \ldots \times X_n \\ |
| − | & \cong & \mathbb{K}^n \\
| + | & = & \prod_{i=1}^n X_i \\ |
| | + | & \cong & \mathbb{K}^n \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \underline{X} & = & \langle \underline\mathcal{X} \rangle \\ | + | \underline{X} |
| | + | & = & \langle \underline\mathcal{X} \rangle \\ |
| | & = & \langle \underline{x}_1, \ldots, \underline{x}_n \rangle \\ | | & = & \langle \underline{x}_1, \ldots, \underline{x}_n \rangle \\ |
| | & = & \underline{X}_1 \times \ldots \times \underline{X}_n \\ | | & = & \underline{X}_1 \times \ldots \times \underline{X}_n \\ |
| Line 146: |
Line 154: |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | A & = & \langle \mathcal{A} \rangle \\ | + | A |
| − | & = & \langle a_1, \ldots, a_n \rangle \\
| + | & = & \langle \mathcal{A} \rangle \\ |
| − | & = & A_1 \times \ldots \times A_n \\
| + | & = & \langle a_1, \ldots, a_n \rangle \\ |
| − | & = & \prod_{i=1}^n A_i \\
| + | & = & A_1 \times \ldots \times A_n \\ |
| − | & \cong & \mathbb{B}^n \\
| + | & = & \prod_{i=1}^n A_i \\ |
| | + | & \cong & \mathbb{B}^n \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | X^* & = & (\ell : X \to \mathbb{K}) \\ | + | X^* |
| − | & \cong & \mathbb{K}^n \\
| + | & = & (\ell : X \to \mathbb{K}) \\ |
| | + | & \cong & \mathbb{K}^n \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \underline{X}^* & = & (\ell : \underline{X} \to \mathbb{B}) \\ | + | \underline{X}^* |
| − | & \cong & \mathbb{B}^n \\
| + | & = & (\ell : \underline{X} \to \mathbb{B}) \\ |
| | + | & \cong & \mathbb{B}^n \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | A^* & = & (\ell : A \to \mathbb{B}) \\ | + | A^* |
| − | & \cong & \mathbb{B}^n \\
| + | & = & (\ell : A \to \mathbb{B}) \\ |
| | + | & \cong & \mathbb{B}^n \\ |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| − | ''X''^<br>
| + | <math>\begin{matrix} |
| − | (''X'' → '''K''')<br> | + | X^\uparrow |
| − | isomorphic to:<br>
| + | & = & (X \to \mathbb{K}) \\ |
| − | ('''K'''<sup>''n''</sup> → '''K''') | + | & \cong & (\mathbb{K}^n \to \mathbb{K}) \\ |
| | + | \end{matrix}</math> |
| | | | | | |
| − | <u>''X''</u>^<br> | + | <math>\begin{matrix} |
| − | (<u>''X''</u> → '''B''')<br> | + | \underline{X}^\uparrow |
| − | isomorphic to:<br>
| + | & = & (\underline{X} \to \mathbb{B}) \\ |
| − | ('''B'''<sup>''n''</sup> → '''B''') | + | & \cong & (\mathbb{B}^n \to \mathbb{B}) \\ |
| | + | \end{matrix}</math> |
| | | | | | |
| − | ''A''^<br>
| + | <math>\begin{matrix} |
| − | (''A'' → '''B''')<br> | + | A^\uparrow |
| − | isomorphic to:<br>
| + | & = & (A \to \mathbb{B}) \\ |
| − | ('''B'''<sup>''n''</sup> → '''B''') | + | & \cong & (\mathbb{B}^n \to \mathbb{B}) \\ |
| | + | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |