Line 1: |
Line 1: |
| {{DISPLAYTITLE:Riffs and Rotes}} | | {{DISPLAYTITLE:Riffs and Rotes}} |
− | __TOC__ | + | <div class="nonumtoc">__TOC__</div> |
| | | |
| ==Idea== | | ==Idea== |
Line 48: |
Line 48: |
| Each index <math>i\!</math> and exponent <math>j\!</math> appearing in the prime factorization of a positive integer <math>n\!</math> is itself a positive integer, and thus has a prime factorization of its own. | | Each index <math>i\!</math> and exponent <math>j\!</math> appearing in the prime factorization of a positive integer <math>n\!</math> is itself a positive integer, and thus has a prime factorization of its own. |
| | | |
− | Continuing with the same example, the index <math>504\!</math> has the factorization <math>2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1\!</math> and the index <math>529\!</math> has the factorization <math>{23}^2 = \text{p}_9^2.\!</math> Taking this information together with previously known factorizations allows the following replacements to be made in the above expression: | + | Continuing with the same example, the index <math>504\!</math> has the factorization <math>2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1\!</math> and the index <math>529\!</math> has the factorization <math>{23}^2 = \text{p}_9^2.\!</math> Taking this information together with previously known factorizations allows the following replacements to be made in the expression above: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
Line 99: |
Line 99: |
| |} | | |} |
| | | |
− | The pattern of indices and exponents exhibited in this example is called a ''doubly recursive factorization'', or ''DRF''. Applying the same procedure to any positive integer <math>n\!</math> produces an expression called the DRF of <math>n.\!</math> If <math>\mathbb{M}</math> is the set of positive integers, <math>\mathcal{L}</math> is the set of DRF expressions, and the mapping defined by the factorization process is denoted <math>\operatorname{drf} : \mathbb{M} \to \mathcal{L},</math> then the doubly recursive factorization of <math>n\!</math> is denoted <math>\operatorname{drf}(n).\!</math> | + | The pattern of indices and exponents illustrated here is called a ''doubly recursive factorization'', or ''DRF''. Applying the same procedure to any positive integer <math>n\!</math> produces an expression called the DRF of <math>n.\!</math> If <math>\mathbb{M}</math> is the set of positive integers, <math>\mathcal{L}</math> is the set of DRF expressions, and the mapping defined by the factorization process is denoted <math>\operatorname{drf} : \mathbb{M} \to \mathcal{L},</math> then the doubly recursive factorization of <math>n\!</math> is denoted <math>\operatorname{drf}(n).\!</math> |
| | | |
| The forms of DRF expressions can be mapped into either one of two classes of graph-theoretical structures, called ''riffs'' and ''rotes'', respectively. | | The forms of DRF expressions can be mapped into either one of two classes of graph-theoretical structures, called ''riffs'' and ''rotes'', respectively. |
Line 116: |
Line 116: |
| ==Riffs in Numerical Order== | | ==Riffs in Numerical Order== |
| | | |
− | {| align="center" border="1" cellpadding="10" | + | {| align="center" border="1" cellpadding="12" |
| |+ style="height:25px" | <math>\text{Riffs in Numerical Order}\!</math> | | |+ style="height:25px" | <math>\text{Riffs in Numerical Order}\!</math> |
| | valign="bottom" | | | | valign="bottom" | |
Line 374: |
Line 374: |
| | | |
| {| align="center" border="1" cellpadding="6" | | {| align="center" border="1" cellpadding="6" |
| + | |+ style="height:25px" | <math>\text{Rotes in Numerical Order}\!</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <p>[[Image:Rote 1 Big.jpg|20px]]</p><br> | | <p>[[Image:Rote 1 Big.jpg|20px]]</p><br> |
Line 625: |
Line 626: |
| <p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> | | <p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> |
| <p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}</math></p> | | <p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}</math></p> |
| + | |} |
| + | |
| + | ==Prime Animations== |
| + | |
| + | ===Riffs 1 to 60=== |
| + | |
| + | {| align="center" |
| + | | [[Image:Animation Riff 60 x 0.16.gif]] |
| + | |} |
| + | |
| + | ===Rotes 1 to 60=== |
| + | |
| + | {| align="center" |
| + | | [[Image:Animation Rote 60 x 0.16.gif]] |
| |} | | |} |
| | | |
Line 635: |
Line 650: |
| * '''Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.''' | | * '''Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.''' |
| | | |
− | * [http://oeis.org/wiki/A061396 OEIS Wiki Entry for A061396]. | + | * [http://oeis.org/A061396 OEIS Entry for A061396]. |
| | | |
| {| align="center" border="1" width="96%" | | {| align="center" border="1" width="96%" |
Line 775: |
Line 790: |
| * '''Triangle in which k-th row lists natural number values for the collection of riffs with k nodes.''' | | * '''Triangle in which k-th row lists natural number values for the collection of riffs with k nodes.''' |
| | | |
− | * [http://oeis.org/wiki/A062504 OEIS Wiki Entry for A062504]. | + | * [http://oeis.org/A062504 OEIS Entry for A062504]. |
| | | |
| {| align="center" | | {| align="center" |
Line 1,180: |
Line 1,195: |
| * '''Nodes in riff (rooted index-functional forest) for n.''' | | * '''Nodes in riff (rooted index-functional forest) for n.''' |
| | | |
− | * [http://oeis.org/wiki/A062537 OEIS Wiki Entry for A062537]. | + | * [http://oeis.org/A062537 OEIS Entry for A062537]. |
| | | |
| {| align="center" border="1" cellpadding="10" | | {| align="center" border="1" cellpadding="10" |
Line 1,441: |
Line 1,456: |
| * '''Smallest j with n nodes in its riff (rooted index-functional forest).''' | | * '''Smallest j with n nodes in its riff (rooted index-functional forest).''' |
| | | |
− | * [http://oeis.org/wiki/A062860 OEIS Wiki Entry for A062860]. | + | * [http://oeis.org/A062860 OEIS Entry for A062860]. |
| | | |
| {| align="center" border="1" cellpadding="10" | | {| align="center" border="1" cellpadding="10" |
Line 1,492: |
Line 1,507: |
| * '''a(n) = rhig(n) = rote height in gammas of n, where the "rote" corresponding to a positive integer n is a graph derived from the primes factorization of n, as illustrated in the comments.''' | | * '''a(n) = rhig(n) = rote height in gammas of n, where the "rote" corresponding to a positive integer n is a graph derived from the primes factorization of n, as illustrated in the comments.''' |
| | | |
− | * [http://oeis.org/wiki/A109301 OEIS Wiki Entry for A109301]. | + | * [http://oeis.org/A109301 OEIS Entry for A109301]. |
| | | |
| ; Example | | ; Example |
Line 1,793: |
Line 1,808: |
| <p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> | | <p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> |
| <p><math>a(60) ~=~ 3</math></p> | | <p><math>a(60) ~=~ 3</math></p> |
| + | |} |
| + | |
| + | ==Miscellaneous Examples== |
| + | |
| + | {| align="center" border="1" width="96%" |
| + | |+ style="height:24px" | <math>\text{Integers, Riffs, Rotes}\!</math> |
| + | |- style="height:50px; background:#f0f0ff" |
| + | | |
| + | {| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%" |
| + | | width="10%" | <math>\text{Integer}\!</math> |
| + | | width="45%" | <math>\text{Riff}\!</math> |
| + | | width="45%" | <math>\text{Rote}\!</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="12" style="text-align:center; width:100%" |
| + | | width="10%" | <math>1\!</math> |
| + | | width="45%" | |
| + | | width="45%" | [[Image:Rote 1 Big.jpg|15px]] |
| + | |- |
| + | | <math>2\!</math> |
| + | | [[Image:Riff 2 Big.jpg|15px]] |
| + | | [[Image:Rote 2 Big.jpg|30px]] |
| + | |- |
| + | | <math>3\!</math> |
| + | | [[Image:Riff 3 Big.jpg|30px]] |
| + | | [[Image:Rote 3 Big.jpg|30px]] |
| + | |- |
| + | | <math>4\!</math> |
| + | | [[Image:Riff 4 Big.jpg|30px]] |
| + | | [[Image:Rote 4 Big.jpg|48px]] |
| + | |- |
| + | | <math>360\!</math> |
| + | | [[Image:Riff 360 Big.jpg|120px]] |
| + | | [[Image:Rote 360 Big.jpg|135px]] |
| + | |- |
| + | | <math>2010\!</math> |
| + | | [[Image:Riff 2010 Big.jpg|138px]] |
| + | | [[Image:Rote 2010 Big.jpg|144px]] |
| + | |- |
| + | | <math>2011\!</math> |
| + | | [[Image:Riff 2011 Big.jpg|84px]] |
| + | | [[Image:Rote 2011 Big.jpg|120px]] |
| + | |- |
| + | | <math>2012\!</math> |
| + | | [[Image:Riff 2012 Big.jpg|100px]] |
| + | | [[Image:Rote 2012 Big.jpg|125px]] |
| + | |- |
| + | | <math>2500\!</math> |
| + | | [[Image:Riff 2500 Big.jpg|66px]] |
| + | | [[Image:Rote 2500 Big.jpg|125px]] |
| + | |- |
| + | | <math>802701\!</math> |
| + | | [[Image:Riff 802701 Big.jpg|156px]] |
| + | | [[Image:Rote 802701 Big.jpg|245px]] |
| + | |- |
| + | | <math>123456789\!</math> |
| + | | [[Image:Riff 123456789 Big.jpg|162px]] |
| + | | [[Image:Rote 123456789 Big.jpg|256px]] |
| + | |} |
| |} | | |} |