| Line 1: |
Line 1: |
| − | ==Place for Discussion== | + | ==Work Area • Logical Cacti== |
| − | | |
| − | … | |
| − | | |
| − | ==Work Area==
| |
| − | | |
| − | ===Logical Cacti===
| |
| | | | |
| | ; Theme One Program — Logical Cacti | | ; Theme One Program — Logical Cacti |
| Line 12: |
Line 6: |
| | : http://stderr.org/pipermail/inquiry/2005-February/002361.html | | : http://stderr.org/pipermail/inquiry/2005-February/002361.html |
| | | | |
| − | ====Original Version====
| + | ===Original Version=== |
| | | | |
| − | <pre>
| + | Up till now we've been working to hammer out a two-edged sword of syntax, honing the syntax of ''painted and rooted cacti and expressions'' (PARCAE), and turning it to use in taming the syntax of two-level formal languages. |
| − | Up till now we've been working to hammer out a two-edged sword of syntax, | |
| − | honing the syntax of "painted and rooted cacti and expressions" (PARCAE), | |
| − | and turning it to use in taming the syntax of two-level formal languages. | |
| | | | |
| − | But the purpose of a logical syntax is to support a logical semantics, | + | But the purpose of a logical syntax is to support a logical semantics, which means, for starters, to bear interpretation as sentential signs that can denote objective propositions about some universe of objects. |
| − | which means, for starters, to bear interpretation as sentential signs | |
| − | that can denote objective propositions about some universe of objects. | |
| | | | |
| − | One of the difficulties that we face in this discussion is that the | + | One of the difficulties that we face in this discussion is that the words ''interpretation'', ''meaning'', ''semantics'', and so on will have so many different meanings from one moment to the next of their use. A dedicated neologician might be able to think up distinctive names for all of the aspects of meaning and all of the approaches to them that will concern us here, but I will just have to do the best that I can with the common lot of ambiguous terms, leaving it to context and the intelligent interpreter to sort it out as much as possible. |
| − | words "interpretation", "meaning", "semantics", and so on will have | |
| − | so many different meanings from one moment to the next of their use. | |
| − | A dedicated neologician might be able to think up distinctive names | |
| − | for all of the aspects of meaning and all of the approaches to them | |
| − | that will concern us here, but I will just have to do the best that | |
| − | I can with the common lot of ambiguous terms, leaving it to context | |
| − | and the intelligent interpreter to sort it out as much as possible. | |
| | | | |
| − | As it happens, the language of cacti is so abstract that it can bear | + | As it happens, the language of cacti is so abstract that it can bear at least two different interpretations as logical sentences denoting logical propositions. The two interpretations that I know about are descended from the ones that Charles Sanders Peirce called the ''entitative'' and the ''existential'' interpretations of his systems of graphical logics. For our present aims, I shall briefly introduce the alternatives and then quickly move to the existential interpretation of logical cacti. |
| − | at least two different interpretations as logical sentences denoting | |
| − | logical propositions. The two interpretations that I know about are | |
| − | descended from the ones that C.S. Peirce called the "entitative" and | |
| − | the "existential" interpretations of his systems of graphical logics. | |
| − | For our present aims, I shall briefly introduce the alternatives and | |
| − | then quickly move to the existential interpretation of logical cacti. | |
| | | | |
| − | Table 13 illustrates the "existential interpretation" | + | Table A illustrates the existential interpretation of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. |
| − | of cactus graphs and cactus expressions by providing | |
| − | English translations for a few of the most basic and | |
| − | commonly occurring forms. | |
| | | | |
| − | Table 13. The Existential Interpretation
| + | <br> |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | Ex | Cactus Graph | Cactus Expression | Existential |
| |
| − | | | | | Interpretation |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | 1 | @ | " " | true. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | o | | |
| |
| − | | | | | | |
| |
| − | | 2 | @ | ( ) | untrue. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a | | |
| |
| − | | 3 | @ | a | a. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a | | |
| |
| − | | | o | | |
| |
| − | | | | | | |
| |
| − | | 4 | @ | (a) | not a. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b c | | |
| |
| − | | 5 | @ | a b c | a and b and c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b c | | |
| |
| − | | | o o o | | |
| |
| − | | | \|/ | | |
| |
| − | | | o | | |
| |
| − | | | | | | |
| |
| − | | 6 | @ | ((a)(b)(c)) | a or b or c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | | | a implies b. |
| |
| − | | | a b | | |
| |
| − | | | o---o | | if a then b. |
| |
| − | | | | | | |
| |
| − | | 7 | @ | ( a (b)) | no a sans b. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b | | |
| |
| − | | | o---o | | a exclusive-or b. |
| |
| − | | | \ / | | |
| |
| − | | 8 | @ | ( a , b ) | a not equal to b. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b | | |
| |
| − | | | o---o | | |
| |
| − | | | \ / | | |
| |
| − | | | o | | a if & only if b. |
| |
| − | | | | | | |
| |
| − | | 9 | @ | (( a , b )) | a equates with b. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b c | | |
| |
| − | | | o--o--o | | |
| |
| − | | | \ / | | |
| |
| − | | | \ / | | just one false |
| |
| − | | 10 | @ | ( a , b , c ) | out of a, b, c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b c | | |
| |
| − | | | o o o | | |
| |
| − | | | | | | | | |
| |
| − | | | o--o--o | | |
| |
| − | | | \ / | | |
| |
| − | | | \ / | | just one true |
| |
| − | | 11 | @ | ((a),(b),(c)) | among a, b, c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | | | genus a over |
| |
| − | | | b c | | species b, c. |
| |
| − | | | o o | | |
| |
| − | | | a | | | | partition a |
| |
| − | | | o--o--o | | among b & c. |
| |
| − | | | \ / | | |
| |
| − | | | \ / | | whole pie a: |
| |
| − | | 12 | @ | ( a ,(b),(c)) | slices b, c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| | | | |
| − | Table 14 illustrates the "entitative interpretation" | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| − | of cactus graphs and cactus expressions by providing | + | |+ <math>\text{Table A.}~~\text{Existential Interpretation}</math> |
| − | English translations for a few of the most basic and
| + | |- style="background:#f0f0ff" |
| − | commonly occurring forms.
| + | | <math>\text{Cactus Graph}\!</math> |
| | + | | <math>\text{Cactus Expression}\!</math> |
| | + | | <math>\text{Interpretation}\!</math> |
| | + | |- |
| | + | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] |
| | + | | <math>{}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}</math> |
| | + | | <math>\operatorname{true}.</math> |
| | + | |- |
| | + | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] |
| | + | | <math>\texttt{(~)}</math> |
| | + | | <math>\operatorname{false}.</math> |
| | + | |- |
| | + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] |
| | + | | <math>a\!</math> |
| | + | | <math>a.\!</math> |
| | + | |- |
| | + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] |
| | + | | <math>\texttt{(} a \texttt{)}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \tilde{a} |
| | + | \\[2pt] |
| | + | a^\prime |
| | + | \\[2pt] |
| | + | \lnot a |
| | + | \\[2pt] |
| | + | \operatorname{not}~ a. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] |
| | + | | <math>a~b~c</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a \land b \land c |
| | + | \\[6pt] |
| | + | a ~\operatorname{and}~ b ~\operatorname{and}~ c. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] |
| | + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a \lor b \lor c |
| | + | \\[6pt] |
| | + | a ~\operatorname{or}~ b ~\operatorname{or}~ c. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="120px" | [[Image:Cactus (A(B)) Big.jpg|60px]] |
| | + | | <math>\texttt{(} a \texttt{(} b \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a \Rightarrow b |
| | + | \\[2pt] |
| | + | a ~\operatorname{implies}~ b. |
| | + | \\[2pt] |
| | + | \operatorname{if}~ a ~\operatorname{then}~ b. |
| | + | \\[2pt] |
| | + | \operatorname{not}~ a ~\operatorname{without}~ b. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] |
| | + | | <math>\texttt{(} a \texttt{,} b \texttt{)}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a + b |
| | + | \\[2pt] |
| | + | a \neq b |
| | + | \\[2pt] |
| | + | a ~\operatorname{exclusive-or}~ b. |
| | + | \\[2pt] |
| | + | a ~\operatorname{not~equal~to}~ b. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] |
| | + | | <math>\texttt{((} a \texttt{,} b \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a = b |
| | + | \\[2pt] |
| | + | a \iff b |
| | + | \\[2pt] |
| | + | a ~\operatorname{equals}~ b. |
| | + | \\[2pt] |
| | + | a ~\operatorname{if~and~only~if}~ b. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] |
| | + | | <math>\texttt{(} a \texttt{,} b \texttt{,} c \texttt{)}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{just~one~of} |
| | + | \\ |
| | + | a, b, c |
| | + | \\ |
| | + | \operatorname{is~false}. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus ((A),(B),(C)) Big.jpg|65px]] |
| | + | | <math>\texttt{((} a \texttt{),(} b \texttt{),(} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{just~one~of} |
| | + | \\ |
| | + | a, b, c |
| | + | \\ |
| | + | \operatorname{is~true}. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus (A,(B),(C)) Big.jpg|65px]] |
| | + | | <math>\texttt{(} a \texttt{,(} b \texttt{),(} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{genus}~ a ~\operatorname{of~species}~ b, c. |
| | + | \\[6pt] |
| | + | \operatorname{partition}~ a ~\operatorname{into}~ b, c. |
| | + | \\[6pt] |
| | + | \operatorname{pie}~ a ~\operatorname{of~slices}~ b, c. |
| | + | \end{matrix}</math> |
| | + | |} |
| | | | |
| − | Table 14. The Entitative Interpretation
| + | <br> |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | En | Cactus Graph | Cactus Expression | Entitative |
| |
| − | | | | | Interpretation |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | 1 | @ | " " | untrue. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | o | | |
| |
| − | | | | | | |
| |
| − | | 2 | @ | ( ) | true. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a | | |
| |
| − | | 3 | @ | a | a. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a | | |
| |
| − | | | o | | |
| |
| − | | | | | | |
| |
| − | | 4 | @ | (a) | not a. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b c | | |
| |
| − | | 5 | @ | a b c | a or b or c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b c | | |
| |
| − | | | o o o | | |
| |
| − | | | \|/ | | |
| |
| − | | | o | | |
| |
| − | | | | | | |
| |
| − | | 6 | @ | ((a)(b)(c)) | a and b and c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | | | a implies b. |
| |
| − | | | | | |
| |
| − | | | o a | | if a then b. |
| |
| − | | | | | | |
| |
| − | | 7 | @ b | (a) b | not a, or b. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b | | |
| |
| − | | | o---o | | a if & only if b. |
| |
| − | | | \ / | | |
| |
| − | | 8 | @ | ( a , b ) | a equates with b. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b | | |
| |
| − | | | o---o | | |
| |
| − | | | \ / | | |
| |
| − | | | o | | a exclusive-or b. |
| |
| − | | | | | | |
| |
| − | | 9 | @ | (( a , b )) | a not equal to b. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b c | | |
| |
| − | | | o--o--o | | |
| |
| − | | | \ / | | |
| |
| − | | | \ / | | not just one true |
| |
| − | | 10 | @ | ( a , b , c ) | out of a, b, c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a b c | | |
| |
| − | | | o--o--o | | |
| |
| − | | | \ / | | |
| |
| − | | | \ / | | |
| |
| − | | | o | | |
| |
| − | | | | | | just one true |
| |
| − | | 11 | @ | (( a , b , c )) | among a, b, c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| − | | | | | |
| |
| − | | | a | | |
| |
| − | | | o | | genus a over |
| |
| − | | | | b c | | species b, c. |
| |
| − | | | o--o--o | | |
| |
| − | | | \ / | | partition a |
| |
| − | | | \ / | | among b & c. |
| |
| − | | | o | | |
| |
| − | | | | | | whole pie a: |
| |
| − | | 12 | @ | (((a), b , c )) | slices b, c. |
| |
| − | | | | | |
| |
| − | o----o-------------------o-------------------o-------------------o
| |
| | | | |
| − | For the time being, the main things to take away from Tables 13 and 14 are
| + | Table B illustrates the entitative interpretation of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. |
| − | the ideas that the compositional structure of cactus graphs and expressions
| |
| − | can be articulated in terms of two different kinds of connective operations,
| |
| − | and that there are two distinct ways of mapping this compositional structure | |
| − | into the compositional structure of propositional sentences, say, in English:
| |
| | | | |
| − | 1. The "node connective" joins a number of
| + | <br> |
| − | component cacti C_1, ..., C_k at a node:
| |
| | | | |
| | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| | + | |+ <math>\text{Table B.}~~\text{Entitative Interpretation}</math> |
| | + | |- style="background:#f0f0ff" |
| | + | | <math>\text{Cactus Graph}\!</math> |
| | + | | <math>\text{Cactus Expression}\!</math> |
| | + | | <math>\text{Interpretation}\!</math> |
| | + | |- |
| | + | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] |
| | + | | <math>{}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}</math> |
| | + | | <math>\operatorname{false}.</math> |
| | + | |- |
| | + | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] |
| | + | | <math>\texttt{(~)}</math> |
| | + | | <math>\operatorname{true}.</math> |
| | + | |- |
| | + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] |
| | + | | <math>a\!</math> |
| | + | | <math>a.\!</math> |
| | + | |- |
| | + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] |
| | + | | <math>\texttt{(} a \texttt{)}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \tilde{a} |
| | + | \\[2pt] |
| | + | a^\prime |
| | + | \\[2pt] |
| | + | \lnot a |
| | + | \\[2pt] |
| | + | \operatorname{not}~ a. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] |
| | + | | <math>a~b~c</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a \lor b \lor c |
| | + | \\[6pt] |
| | + | a ~\operatorname{or}~ b ~\operatorname{or}~ c. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] |
| | + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a \land b \land c |
| | + | \\[6pt] |
| | + | a ~\operatorname{and}~ b ~\operatorname{and}~ c. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="120px" | [[Image:Cactus (A)B Big.jpg|35px]] |
| | + | | <math>\texttt{(} a \texttt{)} b</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a \Rightarrow b |
| | + | \\[2pt] |
| | + | a ~\operatorname{implies}~ b. |
| | + | \\[2pt] |
| | + | \operatorname{if}~ a ~\operatorname{then}~ b. |
| | + | \\[2pt] |
| | + | \operatorname{not}~ a, ~\operatorname{or}~ b. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] |
| | + | | <math>\texttt{(} a \texttt{,} b \texttt{)}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a = b |
| | + | \\[2pt] |
| | + | a \iff b |
| | + | \\[2pt] |
| | + | a ~\operatorname{equals}~ b. |
| | + | \\[2pt] |
| | + | a ~\operatorname{if~and~only~if}~ b. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] |
| | + | | <math>\texttt{((} a \texttt{,} b \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | a + b |
| | + | \\[2pt] |
| | + | a \neq b |
| | + | \\[2pt] |
| | + | a ~\operatorname{exclusive-or}~ b. |
| | + | \\[2pt] |
| | + | a ~\operatorname{not~equal~to}~ b. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] |
| | + | | <math>\texttt{(} a \texttt{,} b \texttt{,} c \texttt{)}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{not~just~one~of} |
| | + | \\ |
| | + | a, b, c |
| | + | \\ |
| | + | \operatorname{is~true}. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus ((A,B,C)) Big.jpg|65px]] |
| | + | | <math>\texttt{((} a \texttt{,} b \texttt{,} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{just~one~of} |
| | + | \\ |
| | + | a, b, c |
| | + | \\ |
| | + | \operatorname{is~true}. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="200px" | [[Image:Cactus (((A),B,C)) Big.jpg|65px]] |
| | + | | <math>\texttt{(((} a \texttt{),} b \texttt{,} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{genus}~ a ~\operatorname{of~species}~ b, c. |
| | + | \\[6pt] |
| | + | \operatorname{partition}~ a ~\operatorname{into}~ b, c. |
| | + | \\[6pt] |
| | + | \operatorname{pie}~ a ~\operatorname{of~slices}~ b, c. |
| | + | \end{matrix}</math> |
| | + | |} |
| | + | |
| | + | <br> |
| | + | |
| | + | For the time being, the main things to take away from Tables A and B are the ideas that the compositional structure of cactus graphs and expressions can be articulated in terms of two different kinds of connective operations, and that there are two distinct ways of mapping this compositional structure into the compositional structure of propositional sentences, say, in English: |
| | + | |
| | + | {| align="center" cellpadding="6" width="90%" |
| | + | | valign="top" | 1. |
| | + | | The ''node connective'' joins a number of component cacti <math>C_1, \ldots, C_k</math> at a node: |
| | + | |- |
| | + | | |
| | + | | |
| | + | <pre> |
| | C_1 ... C_k | | C_1 ... C_k |
| | @ | | @ |
| − | | + | </pre> |
| − | 2. The "lobe connective" joins a number of | + | |- |
| − | component cacti C_1, ..., C_k to a lobe:
| + | | valign="top" | 2. |
| − | | + | | The ''lobe connective'' joins a number of component cacti <math>C_1, \ldots, C_k</math> to a lobe: |
| | + | |- |
| | + | | |
| | + | | |
| | + | <pre> |
| | C_1 C_2 C_k | | C_1 C_2 C_k |
| | o---o-...-o | | o---o-...-o |
| Line 263: |
Line 300: |
| | \ / | | \ / |
| | @ | | @ |
| | + | </pre> |
| | + | |} |
| | | | |
| − | Table 15 summarizes the existential and entitative | + | Table 15 summarizes the existential and entitative interpretations of the primitive cactus structures, in effect, the graphical constants and connectives. |
| − | interpretations of the primitive cactus structures, | |
| − | in effect, the graphical constants and connectives. | |
| | | | |
| | + | {| align="center" cellpadding="6" style="text-align:center; width:90%" |
| | + | | |
| | + | <pre> |
| | Table 15. Existential & Entitative Interpretations of Cactus Structures | | Table 15. Existential & Entitative Interpretations of Cactus Structures |
| | o-----------------o-----------------o-----------------o-----------------o | | o-----------------o-----------------o-----------------o-----------------o |
| Line 298: |
Line 338: |
| | | | | | | | | | | | | | |
| | o-----------------o-----------------o-----------------o-----------------o | | o-----------------o-----------------o-----------------o-----------------o |
| | + | </pre> |
| | + | |} |
| | | | |
| − | It is possible to specify "abstract rules of equivalence" (AROE's) | + | It is possible to specify ''abstract rules of equivalence'' (AROEs) between cacti, rules for transforming one cactus into another that are ''formal'' in the sense of being indifferent to the above choices for logical or semantic interpretations, and that partition the set of cacti into formal equivalence classes. |
| − | between cacti, rules for transforming one cactus into another that | |
| − | are "formal" in the sense of being indifferent to the above choices | |
| − | for logical or semantic interpretations, and that partition the set | |
| − | of cacti into formal equivalence classes. | |
| | | | |
| − | A "reduction" is an equivalence transformation | + | A ''reduction'' is an equivalence transformation that is applied in the direction of decreasing graphical complexity. |
| − | that is applied in the direction of decreasing | |
| − | graphical complexity. | |
| | | | |
| − | A "basic reduction" is a reduction that applies | + | A ''basic reduction'' is a reduction that applies to one of the two families of basic connectives. |
| − | to one of the two families of basic connectives. | |
| | | | |
| − | Table 16 schematizes the two types of basic reductions | + | Table 16 schematizes the two types of basic reductions in a purely formal, interpretation-independent fashion. |
| − | in a purely formal, interpretation-independent fashion. | |
| | | | |
| | + | {| align="center" cellpadding="6" style="text-align:center; width:90%" |
| | + | | |
| | + | <pre> |
| | Table 16. Basic Reductions | | Table 16. Basic Reductions |
| | o---------------------------------------o | | o---------------------------------------o |
| Line 342: |
Line 379: |
| | | | | | | | |
| | o---------------------------------------o | | o---------------------------------------o |
| | + | </pre> |
| | + | |} |
| | | | |
| − | The careful reader will have noticed that we have begun to use | + | The careful reader will have noticed that we have begun to use graphical paints like "a", "b", "c" and schematic proxies like "C_1", "C_j", "C_k" in a variety of novel and unjustified ways. |
| − | graphical paints like "a", "b", "c" and schematic proxies like | |
| − | "C_1", "C_j", "C_k" in a variety of novel and unjustified ways. | |
| − | | |
| − | The careful writer would have already introduced a whole bevy of
| |
| − | technical concepts and proved a whole crew of formal theorems to
| |
| − | justify their use before contemplating this stage of development,
| |
| − | but I have been hurrying to proceed with the informal exposition,
| |
| − | and this expedition must leave steps to the reader's imagination.
| |
| | | | |
| − | Of course I mean the "active imagination".
| + | The careful writer would have already introduced a whole bevy of technical concepts and proved a whole crew of formal theorems to justify their use before contemplating this stage of development, but I have been hurrying to proceed with the informal exposition, and this expedition must leave steps to the reader's imagination. |
| − | So let me assist the prospective exercise
| |
| − | with a few hints of what it would take to
| |
| − | guarantee that these practices make sense.
| |
| | | | |
| − | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
| + | Of course I mean the ''active imagination''. So let me assist the prospective exercise with a few hints of what it would take to guarantee that these practices make sense. |
| − | </pre>
| |
| | | | |
| − | ====Partial Markup====
| + | ===Partial Rewrites=== |
| | | | |
| | Table 13 illustrates the ''existential interpretation'' of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. | | Table 13 illustrates the ''existential interpretation'' of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. |
| Line 373: |
Line 400: |
| | The cactus graph and the cactus expression shown here are both described as a ''spike''. | | The cactus graph and the cactus expression shown here are both described as a ''spike''. |
| | | | |
| − | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="6" style="text-align:center; width:90%" |
| − | | align="center" |
| + | | |
| | <pre> | | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| Line 390: |
Line 417: |
| | The rule of reduction for a lobe is: | | The rule of reduction for a lobe is: |
| | | | |
| − | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="6" style="text-align:center; width:90%" |
| − | | align="center" |
| + | | |
| | <pre> | | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| Line 417: |
Line 444: |
| | they parse into a type of graph called a ''painted and rooted cactus'' (PARC): | | they parse into a type of graph called a ''painted and rooted cactus'' (PARC): |
| | | | |
| − | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="6" style="text-align:center; width:90%" |
| − | | align="center" |
| + | | |
| | <pre> | | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| Line 440: |
Line 467: |
| | |} | | |} |
| | | | |
| − | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="6" style="text-align:center; width:90%" |
| − | | align="center" |
| + | | |
| | <pre> | | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| Line 466: |
Line 493: |
| | |} | | |} |
| | | | |
| − | {| align="center" cellpadding="6" width="90%" | + | ===Tables=== |
| − | | align="center" |
| + | |
| − | <pre> | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| − | o-------------------o-------------------o-------------------o
| + | |+ <math>\text{Table 1.}~~\text{Syntax and Semantics of a Calculus for Propositional Logic}</math> |
| − | | Graph | String | Translation | | + | |- style="background:#f0f0ff" |
| − | o-------------------o-------------------o-------------------o
| + | | <math>\text{Graph}\!</math> |
| − | | | | | | + | | <math>\text{Expression}\!</math> |
| − | | @ | " " | true. |
| + | | <math>\text{Interpretation}\!</math> |
| − | o-------------------o-------------------o-------------------o
| + | | <math>\text{Other Notations}\!</math> |
| − | | | | | | + | |- |
| − | | o | | | | + | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] |
| − | | | | | | | + | | <math>~</math> |
| − | | @ | ( ) | untrue. | | + | | <math>\operatorname{true}</math> |
| − | o-------------------o-------------------o-------------------o
| + | | <math>1\!</math> |
| − | | | | | | + | |- |
| − | | r | | | | + | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] |
| − | | @ | r | r. | | + | | <math>\texttt{(~)}</math> |
| − | o-------------------o-------------------o-------------------o
| + | | <math>\operatorname{false}</math> |
| − | | | | | | + | | <math>0\!</math> |
| − | | r | | | | + | |- |
| − | | o | | | | + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] |
| − | | | | | | | + | | <math>a\!</math> |
| − | | @ | (r) | not r. | | + | | <math>a\!</math> |
| − | o-------------------o-------------------o-------------------o
| + | | <math>a\!</math> |
| − | | | | | | + | |- |
| − | | r s t | | | | + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] |
| − | | @ | r s t | r and s and t. | | + | | <math>\texttt{(} a \texttt{)}</math> |
| − | o-------------------o-------------------o-------------------o
| + | | <math>\operatorname{not}~ a</math> |
| − | | | | | | + | | <math>\lnot a \quad \bar{a} \quad \tilde{a} \quad a^\prime</math> |
| − | | r s t | | | | + | |- |
| − | | o o o | | | | + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] |
| − | | \|/ | | | | + | | <math>a ~ b ~ c</math> |
| − | | o | | | | + | | <math>a ~\operatorname{and}~ b ~\operatorname{and}~ c</math> |
| − | | | | | | | + | | <math>a \land b \land c</math> |
| − | | @ | ((r)(s)(t)) | r or s or t. | | + | |- |
| − | o-------------------o-------------------o-------------------o
| + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] |
| − | | | | r implies s. | | + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> |
| − | | r s | | | | + | | <math>a ~\operatorname{or}~ b ~\operatorname{or}~ c</math> |
| − | | o---o | | if r then s. | | + | | <math>a \lor b \lor c</math> |
| − | | | | | | | + | |- |
| − | | @ | (r (s)) | no r sans s. |
| + | | height="120px" | [[Image:Cactus (A(B)) Big.jpg|60px]] |
| − | o-------------------o-------------------o-------------------o
| + | | <math>\texttt{(} a \texttt{(} b \texttt{))}</math> |
| − | | | | |
| + | | |
| − | | r s | | | | + | <math>\begin{matrix} |
| − | | o---o | | r exclusive-or s. | | + | a ~\operatorname{implies}~ b |
| − | | \ / | | | | + | \\[6pt] |
| − | | @ | (r , s) | r not equal to s. |
| + | \operatorname{if}~ a ~\operatorname{then}~ b |
| − | o-------------------o-------------------o-------------------o
| + | \end{matrix}</math> |
| − | | | | |
| + | | <math>a \Rightarrow b</math> |
| − | | r s | | |
| + | |- |
| − | | o---o | | |
| + | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] |
| − | | \ / | | |
| + | | <math>\texttt{(} a \texttt{,} b \texttt{)}</math> |
| − | | o | | r if & only if s. | | + | | |
| − | | | | | | | + | <math>\begin{matrix} |
| − | | @ | ((r , s)) | r equates with s. |
| + | a ~\operatorname{not~equal~to}~ b |
| − | o-------------------o-------------------o-------------------o
| + | \\[6pt] |
| − | | | | |
| + | a ~\operatorname{exclusive~or}~ b |
| − | | r s t | | |
| + | \end{matrix}</math> |
| − | | o--o--o | | |
| + | | |
| − | | \ / | | |
| + | <math>\begin{matrix} |
| − | | \ / | | just one false |
| + | a \neq b |
| − | | @ | (r , s , t) | out of r, s, t. | | + | \\[6pt] |
| − | o-------------------o-------------------o-------------------o
| + | a + b |
| − | | | | |
| + | \end{matrix}</math> |
| − | | r s t | | |
| + | |- |
| − | | o o o | | |
| + | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] |
| − | | | | | | | |
| + | | <math>\texttt{((} a \texttt{,} b \texttt{))}</math> |
| − | | o--o--o | | |
| + | | |
| − | | \ / | | |
| + | <math>\begin{matrix} |
| − | | \ / | | just one true | | + | a ~\operatorname{is~equal~to}~ b |
| − | | @ | ((r),(s),(t)) | among r, s, t. | | + | \\[6pt] |
| − | o-------------------o-------------------o-------------------o
| + | a ~\operatorname{if~and~only~if}~ b |
| − | | | | genus t over |
| + | \end{matrix}</math> |
| − | | r s | | species r, s. |
| + | | |
| − | | o o | | |
| + | <math>\begin{matrix} |
| − | | t | | | | partition t |
| + | a = b |
| − | | o--o--o | | among r & s. | | + | \\[6pt] |
| − | | \ / | | | | + | a \Leftrightarrow b |
| − | | \ / | | whole pie t: |
| + | \end{matrix}</math> |
| − | | @ | ( t ,(r),(s)) | slices r, s. | | + | |- |
| − | o-------------------o-------------------o-------------------o
| + | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] |
| − | </pre> | + | | <math>\texttt{(} a \texttt{,} b \texttt{,} c \texttt{)}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{just~one~of} |
| | + | \\ |
| | + | a, b, c |
| | + | \\ |
| | + | \operatorname{is~false}. |
| | + | \end{matrix}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | & \bar{a} ~ b ~ c |
| | + | \\ |
| | + | \lor & a ~ \bar{b} ~ c |
| | + | \\ |
| | + | \lor & a ~ b ~ \bar{c} |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus ((A),(B),(C)) Big.jpg|65px]] |
| | + | | <math>\texttt{((} a \texttt{),(} b \texttt{),(} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{just~one~of} |
| | + | \\ |
| | + | a, b, c |
| | + | \\ |
| | + | \operatorname{is~true}. |
| | + | \\[6pt] |
| | + | \operatorname{partition~all} |
| | + | \\ |
| | + | \operatorname{into}~ a, b, c. |
| | + | \end{matrix}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | & a ~ \bar{b} ~ \bar{c} |
| | + | \\ |
| | + | \lor & \bar{a} ~ b ~ \bar{c} |
| | + | \\ |
| | + | \lor & \bar{a} ~ \bar{b} ~ c |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus (A,(B,C)) Big.jpg|90px]] |
| | + | | <math>\texttt{(} a \texttt{,(} b \texttt{,} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{oddly~many~of} |
| | + | \\ |
| | + | a, b, c |
| | + | \\ |
| | + | \operatorname{are~true}. |
| | + | \end{matrix}</math> |
| | + | | |
| | + | <p><math>a + b + c\!</math></p> |
| | + | <br> |
| | + | <p><math>\begin{matrix} |
| | + | & a ~ b ~ c |
| | + | \\ |
| | + | \lor & a ~ \bar{b} ~ \bar{c} |
| | + | \\ |
| | + | \lor & \bar{a} ~ b ~ \bar{c} |
| | + | \\ |
| | + | \lor & \bar{a} ~ \bar{b} ~ c |
| | + | \end{matrix}</math></p> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus (X,(A),(B),(C)) Big.jpg|90px]] |
| | + | | <math>\texttt{(} x \texttt{,(} a \texttt{),(} b \texttt{),(} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{partition}~ x |
| | + | \\ |
| | + | \operatorname{into}~ a, b, c. |
| | + | \\[6pt] |
| | + | \operatorname{genus}~ x ~\operatorname{comprises} |
| | + | \\ |
| | + | \operatorname{species}~ a, b, c. |
| | + | \end{matrix}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | & \bar{x} ~ \bar{a} ~ \bar{b} ~ \bar{c} |
| | + | \\ |
| | + | \lor & x ~ a ~ \bar{b} ~ \bar{c} |
| | + | \\ |
| | + | \lor & x ~ \bar{a} ~ b ~ \bar{c} |
| | + | \\ |
| | + | \lor & x ~ \bar{a} ~ \bar{b} ~ c |
| | + | \end{matrix}</math> |
| | |} | | |} |
| | | | |
| − | {| align="center" cellpadding="6" width="90%"
| + | <br> |
| − | | align="center" |
| |
| − | <pre> | |
| − | Table 13. The Existential Interpretation
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | Cactus Graph | Cactus Expression | Existential |
| |
| − | | | | Interpretation |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | @ | " " | true. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | o | | |
| |
| − | | | | | |
| |
| − | | @ | ( ) | untrue. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | a | | |
| |
| − | | @ | a | a. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | a | | |
| |
| − | | o | | |
| |
| − | | | | | |
| |
| − | | @ | (a) | not a. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | a b c | | |
| |
| − | | @ | a b c | a and b and c. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | a b c | | |
| |
| − | | o o o | | |
| |
| − | | \|/ | | |
| |
| − | | o | | |
| |
| − | | | | | |
| |
| − | | @ | ((a)(b)(c)) | a or b or c. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | | | a implies b. |
| |
| − | | a b | | |
| |
| − | | o---o | | if a then b. |
| |
| − | | | | | |
| |
| − | | @ | (a (b)) | no a sans b. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | a b | | |
| |
| − | | o---o | | a exclusive-or b. |
| |
| − | | \ / | | |
| |
| − | | @ | (a , b) | a not equal to b. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | a b | | |
| |
| − | | o---o | | |
| |
| − | | \ / | | |
| |
| − | | o | | a if & only if b. |
| |
| − | | | | | |
| |
| − | | @ | ((a , b)) | a equates with b. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | a b c | | |
| |
| − | | o--o--o | | |
| |
| − | | \ / | | |
| |
| − | | \ / | | just one false |
| |
| − | | @ | (a , b , c) | out of a, b, c. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | a b c | | |
| |
| − | | o o o | | |
| |
| − | | | | | | | |
| |
| − | | o--o--o | | |
| |
| − | | \ / | | |
| |
| − | | \ / | | just one true |
| |
| − | | @ | ((a),(b),(c)) | among a, b, c. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | | | | |
| |
| − | | | | genus a over |
| |
| − | | b c | | species b, c. |
| |
| − | | o o | | |
| |
| − | | a | | | | partition a |
| |
| − | | o--o--o | | among b & c. |
| |
| − | | \ / | | |
| |
| − | | \ / | | whole pie a: |
| |
| − | | @ | ( a ,(b),(c)) | slices b, c. |
| |
| − | | | | |
| |
| − | o-------------------o-------------------o-------------------o
| |
| − | </pre>
| |
| − | |}
| |
| | | | |
| − | {| align="center" cellpadding="6" width="90%" | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| − | | align="center" |
| + | |+ <math>\text{Table C.}~~\text{Dualing Interpretations}</math> |
| − | <pre> | + | |- style="background:#f0f0ff" |
| − | Table 14. The Entitative Interpretation | + | | <math>\text{Graph}\!</math> |
| − | o-------------------o-------------------o-------------------o
| + | | <math>\text{String}\!</math> |
| − | | Cactus Graph | Cactus Expression | Entitative | | + | | <math>\text{Existential}\!</math> |
| − | | | | Interpretation | | + | | <math>\text{Entitative}\!</math> |
| − | o-------------------o-------------------o-------------------o
| + | |- |
| − | | | | | | + | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] |
| − | | @ | " " | untrue. |
| + | | <math>{}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}</math> |
| − | | | | | | + | | <math>\operatorname{true}.</math> |
| − | o-------------------o-------------------o-------------------o
| + | | <math>\operatorname{false}.</math> |
| − | | | | | | + | |- |
| − | | o | | | | + | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] |
| − | | | | | | | + | | <math>\texttt{(~)}</math> |
| − | | @ | ( ) | true. | | + | | <math>\operatorname{false}.</math> |
| − | | | | | | + | | <math>\operatorname{true}.</math> |
| − | o-------------------o-------------------o-------------------o
| + | |- |
| − | | | | | | + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] |
| − | | a | | | | + | | <math>a\!</math> |
| − | | @ | a | a. | | + | | <math>a.\!</math> |
| − | | | | | | + | | <math>a.\!</math> |
| − | o-------------------o-------------------o-------------------o
| + | |- |
| − | | | | | | + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] |
| − | | a | | | | + | | <math>\texttt{(} a \texttt{)}</math> |
| − | | o | | | | + | | <math>\lnot a</math> |
| − | | | | | | | + | | <math>\lnot a</math> |
| − | | @ | (a) | not a. |
| + | |- |
| − | | | | | | + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] |
| − | o-------------------o-------------------o-------------------o
| + | | <math>a~b~c</math> |
| − | | | | | | + | | <math>a \land b \land c</math> |
| − | | a b c | | | | + | | <math>a \lor b \lor c</math> |
| − | | @ | a b c | a or b or c. | | + | |- |
| − | | | | | | + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] |
| − | o-------------------o-------------------o-------------------o
| + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> |
| − | | | | | | + | | <math>a \lor b \lor c</math> |
| − | | a b c | | | | + | | <math>a \land b \land c</math> |
| − | | o o o | | | | + | |- |
| − | | \|/ | | | | + | | height="120px" | [[Image:Cactus (A(B)) Big.jpg|60px]] |
| − | | o | | | | + | | <math>\texttt{(} a \texttt{(} b \texttt{))}</math> |
| − | | | | | | | + | | <math>a \Rightarrow b</math> |
| − | | @ | ((a)(b)(c)) | a and b and c. | | + | | |
| − | | | | | | + | |- |
| − | o-------------------o-------------------o-------------------o
| + | | height="120px" | [[Image:Cactus (A)B Big.jpg|35px]] |
| − | | | | | | + | | <math>\texttt{(} a \texttt{)} b</math> |
| − | | | | a implies b. | | + | | |
| − | | | | | | + | | <math>a \Rightarrow b</math> |
| − | | o a | | if a then b. | | + | |- |
| − | | | | | | | + | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] |
| − | | @ b | (a) b | not a, or b. | | + | | <math>\texttt{(} a \texttt{,} b \texttt{)}</math> |
| − | | | | | | + | | <math>a \neq b</math> |
| − | o-------------------o-------------------o-------------------o
| + | | <math>a = b\!</math> |
| − | | | | | | + | |- |
| − | | a b | | | | + | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] |
| − | | o---o | | a if & only if b. | | + | | <math>\texttt{((} a \texttt{,} b \texttt{))}</math> |
| − | | \ / | | | | + | | <math>a = b\!</math> |
| − | | @ | (a , b) | a equates with b. | | + | | <math>a \neq b\!</math> |
| − | | | | |
| + | |- |
| − | o-------------------o-------------------o-------------------o
| + | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] |
| − | | | | |
| + | | <math>\texttt{(} a \texttt{,} b \texttt{,} c \texttt{)}</math> |
| − | | a b | | |
| + | | |
| − | | o---o | | |
| + | <math>\begin{matrix} |
| − | | \ / | | |
| + | \operatorname{just~one} |
| − | | o | | a exclusive-or b. | | + | \\ |
| − | | | | | | | + | \operatorname{of}~ a, b, c |
| − | | @ | ((a , b)) | a not equal to b. | | + | \\ |
| − | | | | |
| + | \operatorname{is~false}. |
| − | o-------------------o-------------------o-------------------o
| + | \end{matrix}</math> |
| − | | | | |
| + | | |
| − | | a b c | | |
| + | <math>\begin{matrix} |
| − | | o--o--o | | |
| + | \operatorname{not~just~one} |
| − | | \ / | | |
| + | \\ |
| − | | \ / | | not just one true | | + | \operatorname{of}~ a, b, c |
| − | | @ | (a , b , c) | out of a, b, c. | | + | \\ |
| − | | | | |
| + | \operatorname{is~true}. |
| − | o-------------------o-------------------o-------------------o
| + | \end{matrix}</math> |
| − | | | | |
| + | |- |
| − | | a b c | | |
| + | | height="160px" | [[Image:Cactus ((A),(B),(C)) Big.jpg|65px]] |
| − | | o--o--o | | |
| + | | <math>\texttt{((} a \texttt{),(} b \texttt{),(} c \texttt{))}</math> |
| − | | \ / | | |
| + | | |
| − | | \ / | | |
| + | <math>\begin{matrix} |
| − | | o | | | | + | \operatorname{just~one} |
| − | | | | | just one true | | + | \\ |
| − | | @ | ((a , b , c)) | among a, b, c. | | + | \operatorname{of}~ a, b, c |
| − | | | | |
| + | \\ |
| − | o-------------------o-------------------o-------------------o
| + | \operatorname{is~true}. |
| − | | | | |
| + | \end{matrix}</math> |
| − | | a | | |
| + | | |
| − | | o | | genus a over |
| + | <math>\begin{matrix} |
| − | | | b c | | species b, c. |
| + | \operatorname{not~just~one} |
| − | | o--o--o | | | | + | \\ |
| − | | \ / | | partition a | | + | \operatorname{of}~ a, b, c |
| − | | \ / | | among b & c. |
| + | \\ |
| − | | o | | | | + | \operatorname{is~false}. |
| − | | | | | whole pie a: | | + | \end{matrix}</math> |
| − | | @ | ( a ,(b),(c)) | slices b, c. | | + | |- |
| − | | | | |
| + | | height="160px" | [[Image:Cactus ((A,B,C)) Big.jpg|65px]] |
| − | o-------------------o-------------------o-------------------o
| + | | <math>\texttt{((} a \texttt{,} b \texttt{,} c \texttt{))}</math> |
| − | </pre> | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{not~just~one} |
| | + | \\ |
| | + | \operatorname{of}~ a, b, c |
| | + | \\ |
| | + | \operatorname{is~false}. |
| | + | \end{matrix}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{just~one} |
| | + | \\ |
| | + | \operatorname{of}~ a, b, c |
| | + | \\ |
| | + | \operatorname{is~true}. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="200px" | [[Image:Cactus (((A),(B),(C))) Big.jpg|65px]] |
| | + | | <math>\texttt{(((} a \texttt{),(} b \texttt{),(} c \texttt{)))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{not~just~one} |
| | + | \\ |
| | + | \operatorname{of}~ a, b, c |
| | + | \\ |
| | + | \operatorname{is~true}. |
| | + | \end{matrix}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{just~one} |
| | + | \\ |
| | + | \operatorname{of}~ a, b, c |
| | + | \\ |
| | + | \operatorname{is~false}. |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | height="160px" | [[Image:Cactus (A,(B),(C)) Big.jpg|65px]] |
| | + | | <math>\texttt{(} a \texttt{,(} b \texttt{),(} c \texttt{))}</math> |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{partition}~ a |
| | + | \\ |
| | + | \operatorname{into}~ b, c. |
| | + | \end{matrix}</math> |
| | + | | |
| | + | |- |
| | + | | height="200px" | [[Image:Cactus (((A),B,C)) Big.jpg|65px]] |
| | + | | <math>\texttt{(((} a \texttt{),} b \texttt{,} c \texttt{))}</math> |
| | + | | |
| | + | | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{partition}~ a |
| | + | \\ |
| | + | \operatorname{into}~ b, c. |
| | + | \end{matrix}</math> |
| | |} | | |} |
| | | | |
| − | {| align="center" cellpadding="6" width="90%"
| + | <br> |
| − | | align="center" |
| |
| − | <pre> | |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | Graph | String | Entitative | Existential |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | @ | " " | untrue. | true. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | o | | | |
| |
| − | | | | | | |
| |
| − | | @ | ( ) | true. | untrue. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | r | | | |
| |
| − | | @ | r | r. | r. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | r | | | |
| |
| − | | o | | | |
| |
| − | | | | | | |
| |
| − | | @ | (r) | not r. | not r. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | r s t | | | |
| |
| − | | @ | r s t | r or s or t. | r and s and t. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | r s t | | | |
| |
| − | | o o o | | | |
| |
| − | | \|/ | | | |
| |
| − | | o | | | |
| |
| − | | | | | | |
| |
| − | | @ | ((r)(s)(t)) | r and s and t. | r or s or t. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | r implies s. |
| |
| − | | | | | |
| |
| − | | o r | | | if r then s. |
| |
| − | | | | | | |
| |
| − | | @ s | (r) s | not r, or s | no r sans s. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | r implies s. |
| |
| − | | r s | | | |
| |
| − | | o---o | | | if r then s. |
| |
| − | | | | | | |
| |
| − | | @ | (r (s)) | | no r sans s. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | r s | | | |
| |
| − | | o---o | | |r exclusive-or s.|
| |
| − | | \ / | | | |
| |
| − | | @ | (r , s) | |r not equal to s.|
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | r s | | | |
| |
| − | | o---o | | | |
| |
| − | | \ / | | | |
| |
| − | | o | | |r if & only if s.|
| |
| − | | | | | | |
| |
| − | | @ | ((r , s)) | |r equates with s.|
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | r s t | | | |
| |
| − | | o--o--o | | | |
| |
| − | | \ / | | | |
| |
| − | | \ / | | | just one false |
| |
| − | | @ | (r , s , t) | | out of r, s, t. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | |
| |
| − | | r s t | | | |
| |
| − | | o o o | | | |
| |
| − | | | | | | | | |
| |
| − | | o--o--o | | | |
| |
| − | | \ / | | | |
| |
| − | | \ / | | | just one true |
| |
| − | | @ | ((r),(s),(t)) | | among r, s, t. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | | | | | genus t over |
| |
| − | | r s | | | species r, s. |
| |
| − | | o o | | | |
| |
| − | | t | | | | | partition t |
| |
| − | | o--o--o | | | among r & s. |
| |
| − | | \ / | | | |
| |
| − | | \ / | | | whole pie t: |
| |
| − | | @ | ( t ,(r),(s)) | | slices r, s. |
| |
| − | o-----------------o-----------------o-----------------o-----------------o
| |
| − | </pre>
| |
| − | |}
| |