Line 1: |
Line 1: |
| <font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]]. | | <font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]]. |
| | | |
− | A '''truth table''' is a tabular array that illustrates the computation of a [[boolean function]], that is, a function of the form <math>f : \mathbb{B}^k \to \mathbb{B},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{B}</math> is the [[boolean domain]] <math>\{ 0, 1 \}.\!</math> | + | A '''truth table''' is a tabular array that illustrates the computation of a ''logical function'', that is, a function of the form <math>f : \mathbb{A}^k \to \mathbb{A},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{A}</math> is the domain of logical values <math>\{ \operatorname{false}, \operatorname{true} \}.</math> The names of the logical values, or ''truth values'', are commonly abbreviated in accord with the equations <math>\operatorname{F} = \operatorname{false}</math> and <math>\operatorname{T} = \operatorname{true}.</math> |
| + | |
| + | In many applications it is usual to represent a truth function by a [[boolean function]], that is, a function of the form <math>f : \mathbb{B}^k \to \mathbb{B},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{B}</math> is the [[boolean domain]] <math>\{ 0, 1 \}.\!</math> In most applications <math>\operatorname{false}</math> is represented by <math>0\!</math> and <math>\operatorname{true}</math> is represented by <math>1\!</math> but the opposite representation is also possible, depending on the overall representation of truth functions as boolean functions. The remainder of this article assumes the usual representation, taking the equations <math>\operatorname{F} = 0</math> and <math>\operatorname{T} = 1</math> for granted. |
| | | |
| ==Logical negation== | | ==Logical negation== |
| | | |
− | ''[[Logical negation]]'' is an [[logical operation|operation]] on one [[logical value]], typically the value of a [[proposition]], that produces a value of ''true'' when its operand is false and a value of ''false'' when its operand is true. | + | '''[[Logical negation]]''' is an operation on one logical value, typically the value of a proposition, that produces a value of ''true'' when its operand is false and a value of ''false'' when its operand is true. |
| | | |
− | The truth table of '''NOT p''' (also written as '''~p''' or '''¬p''') is as follows: | + | The truth table of <math>\operatorname{NOT}~ p,</math> also written <math>\lnot p,\!</math> appears below: |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:40%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ '''Logical Negation''' | + | |+ style="height:30px" | <math>\text{Logical Negation}\!</math> |
− | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
− | ! style="width:20%" | p
| + | | style="width:50%" | <math>p\!</math> |
− | ! style="width:20%" | ¬p
| + | | style="width:50%" | <math>\lnot p\!</math> |
| |- | | |- |
− | | F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | T || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following: | + | The negation of a proposition <math>p\!</math> may be found notated in various ways in various contexts of application, often merely for typographical convenience. Among these variants are the following: |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; width:40%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" width="45%" |
− | |+ '''Variant Notations''' | + | |+ style="height:30px" | <math>\text{Variant Notations}\!</math> |
− | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
− | ! style="text-align:center" | Notation | + | | width="50%" align="center" | <math>\text{Notation}\!</math> |
− | ! Vocalization | + | | width="50%" | <math>\text{Vocalization}\!</math> |
| + | |- |
| + | | align="center" | <math>\bar{p}\!</math> |
| + | | <math>p\!</math> bar |
| |- | | |- |
− | | style="text-align:center" | <math>\bar{p}</math> | + | | align="center" | <math>\tilde{p}\!</math> |
− | | bar ''p'' | + | | <math>p\!</math> tilde |
| |- | | |- |
− | | style="text-align:center" | <math>p'\!</math> | + | | align="center" | <math>p'\!</math> |
− | | ''p'' prime,<p> ''p'' complement | + | | <math>p\!</math> prime<br> <math>p\!</math> complement |
| |- | | |- |
− | | style="text-align:center" | <math>!p\!</math> | + | | align="center" | <math>!p\!</math> |
− | | bang ''p'' | + | | bang <math>p\!</math> |
| |} | | |} |
| | | |
Line 48: |
Line 53: |
| ==Logical conjunction== | | ==Logical conjunction== |
| | | |
− | ''[[Logical conjunction]]'' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are true. | + | '''[[Logical conjunction]]''' is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' if and only if both of its operands are true. |
| | | |
− | The truth table of '''p AND q''' (also written as '''p ∧ q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows: | + | The truth table of <math>p ~\operatorname{AND}~ q,</math> also written <math>p \land q\!</math> or <math>p \cdot q,\!</math> appears below: |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ '''Logical Conjunction''' | + | |+ style="height:30px" | <math>\text{Logical Conjunction}\!</math> |
− | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
− | ! style="width:15%" | p
| + | | style="width:33%" | <math>p\!</math> |
− | ! style="width:15%" | q
| + | | style="width:33%" | <math>q\!</math> |
− | ! style="width:15%" | p ∧ q
| + | | style="width:33%" | <math>p \land q</math> |
| |- | | |- |
− | | F || F || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | F || T || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | T || F || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | T || T || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |} | | |} |
| | | |
Line 74: |
Line 79: |
| ==Logical disjunction== | | ==Logical disjunction== |
| | | |
− | ''[[Logical disjunction]]'', also called ''logical alternation'', is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are false. | + | '''[[Logical disjunction]]''', also called '''logical alternation''', is an operation on two logical values, typically the values of two propositions, that produces a value of ''false'' if and only if both of its operands are false. |
| | | |
− | The truth table of '''p OR q''' (also written as '''p ∨ q''') is as follows: | + | The truth table of <math>p ~\operatorname{OR}~ q,</math> also written <math>p \lor q,\!</math> appears below: |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ '''Logical Disjunction''' | + | |+ style="height:30px" | <math>\text{Logical Disjunction}\!</math> |
− | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
− | ! style="width:15%" | p
| + | | style="width:33%" | <math>p\!</math> |
− | ! style="width:15%" | q
| + | | style="width:33%" | <math>q\!</math> |
− | ! style="width:15%" | p ∨ q
| + | | style="width:33%" | <math>p \lor q</math> |
| |- | | |- |
− | | F || F || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | F || T || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | T || F || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | T || T || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |} | | |} |
| | | |
Line 100: |
Line 105: |
| ==Logical equality== | | ==Logical equality== |
| | | |
− | ''[[Logical equality]]'' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both operands are false or both operands are true. | + | '''[[Logical equality]]''' is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' if and only if both operands are false or both operands are true. |
| | | |
− | The truth table of '''p EQ q''' (also written as '''p = q''', '''p ↔ q''', or '''p ≡ q''') is as follows: | + | The truth table of <math>p ~\operatorname{EQ}~ q,</math> also written <math>p = q,\!</math> <math>p \Leftrightarrow q,\!</math> or <math>p \equiv q,\!</math> appears below: |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ '''Logical Equality''' | + | |+ style="height:30px" | <math>\text{Logical Equality}\!</math> |
− | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
− | ! style="width:15%" | p
| + | | style="width:33%" | <math>p\!</math> |
− | ! style="width:15%" | q
| + | | style="width:33%" | <math>q\!</math> |
− | ! style="width:15%" | p = q
| + | | style="width:33%" | <math>p = q\!</math> |
| |- | | |- |
− | | F || F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | F || T || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | T || F || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | T || T || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |} | | |} |
| | | |
Line 126: |
Line 131: |
| ==Exclusive disjunction== | | ==Exclusive disjunction== |
| | | |
− | ''[[Exclusive disjunction]]'', also known as ''logical inequality'' or ''symmetric difference'', is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' just in case exactly one of its operands is true. | + | '''[[Exclusive disjunction]]''', also known as '''logical inequality''' or '''symmetric difference''', is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' just in case exactly one of its operands is true. |
| | | |
− | The truth table of '''p XOR q''' (also written as '''p + q''', '''p ⊕ q''', or '''p ≠ q''') is as follows: | + | The truth table of <math>p ~\operatorname{XOR}~ q,</math> also written <math>p + q\!</math> or <math>p \ne q,\!</math> appears below: |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ '''Exclusive Disjunction''' | + | |+ style="height:30px" | <math>\text{Exclusive Disjunction}\!</math> |
− | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
− | ! style="width:15%" | p
| + | | style="width:33%" | <math>p\!</math> |
− | ! style="width:15%" | q
| + | | style="width:33%" | <math>q\!</math> |
− | ! style="width:15%" | p XOR q
| + | | style="width:33%" | <math>p ~\operatorname{XOR}~ q</math> |
| |- | | |- |
− | | F || F || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | F || T || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | T || F || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | T || T || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | The following equivalents can then be deduced: | + | The following equivalents may then be deduced: |
| | | |
− | : <math>\begin{matrix}
| + | {| align="center" cellspacing="10" width="90%" |
− | p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ | + | | |
− | \\ | + | <math>\begin{matrix} |
− | & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\ | + | p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) |
− | \\ | + | \\[6pt] |
| + | & = & (p \lor q) & \land & (\lnot p \lor \lnot q) |
| + | \\[6pt] |
| & = & (p \lor q) & \land & \lnot (p \land q) | | & = & (p \lor q) & \land & \lnot (p \land q) |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| | | |
| ==Logical implication== | | ==Logical implication== |
| | | |
− | The ''[[logical implication]]'' and the ''[[material conditional]]'' are both associated with an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if the first operand is true and the second operand is false. | + | The '''[[logical implication]]''' relation and the '''material conditional''' function are both associated with an operation on two logical values, typically the values of two propositions, that produces a value of ''false'' if and only if the first operand is true and the second operand is false. |
| | | |
− | The truth table associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows: | + | The truth table associated with the material conditional <math>\text{if}~ p ~\text{then}~ q,\!</math> symbolized <math>p \rightarrow q,\!</math> and the logical implication <math>p ~\text{implies}~ q,\!</math> symbolized <math>p \Rightarrow q,\!</math> appears below: |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ '''Logical Implication''' | + | |+ style="height:30px" | <math>\text{Logical Implication}\!</math> |
− | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
− | ! style="width:15%" | p
| + | | style="width:33%" | <math>p\!</math> |
− | ! style="width:15%" | q
| + | | style="width:33%" | <math>q\!</math> |
− | ! style="width:15%" | p ⇒ q
| + | | style="width:33%" | <math>p \Rightarrow q\!</math> |
| |- | | |- |
− | | F || F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | F || T || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | T || F || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | T || T || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |} | | |} |
| | | |
Line 188: |
Line 196: |
| ==Logical NAND== | | ==Logical NAND== |
| | | |
− | The ''[[logical NAND]]'' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are true. In other words, it produces a value of ''true'' if and only if at least one of its operands is false. | + | The '''[[logical NAND]]''' is an operation on two logical values, typically the values of two propositions, that produces a value of ''false'' if and only if both of its operands are true. In other words, it produces a value of ''true'' if and only if at least one of its operands is false. |
| | | |
− | The truth table of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows: | + | The truth table of <math>p ~\operatorname{NAND}~ q,</math> also written <math>p \stackrel{\circ}{\curlywedge} q\!</math> or <math>p \barwedge q,\!</math> appears below: |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ '''Logical NAND''' | + | |+ style="height:30px" | <math>\text{Logical NAND}\!</math> |
− | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
− | ! style="width:15%" | p
| + | | style="width:33%" | <math>p\!</math> |
− | ! style="width:15%" | q
| + | | style="width:33%" | <math>q\!</math> |
− | ! style="width:15%" | p ↑ q
| + | | style="width:33%" | <math>p \stackrel{\circ}{\curlywedge} q\!</math> |
| |- | | |- |
− | | F || F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | F || T || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | T || F || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | T || T || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
| |} | | |} |
| | | |
Line 214: |
Line 222: |
| ==Logical NNOR== | | ==Logical NNOR== |
| | | |
− | The ''[[logical NNOR]]'' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are false. In other words, it produces a value of ''false'' if and only if at least one of its operands is true. | + | The '''[[logical NNOR]]''' (“Neither Nor”) is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' if and only if both of its operands are false. In other words, it produces a value of ''false'' if and only if at least one of its operands is true. |
| | | |
− | The truth table of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows: | + | The truth table of <math>p ~\operatorname{NNOR}~ q,</math> also written <math>p \curlywedge q,\!</math> appears below: |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
− | |+ '''Logical NNOR''' | + | |+ style="height:30px" | <math>\text{Logical NNOR}\!</math> |
− | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
− | ! style="width:15%" | p
| + | | style="width:33%" | <math>p\!</math> |
− | ! style="width:15%" | q
| + | | style="width:33%" | <math>q\!</math> |
− | ! style="width:15%" | p ↓ q
| + | | style="width:33%" | <math>p \curlywedge q\!</math> |
| |- | | |- |
− | | F || F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | F || T || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | T || F || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | T || T || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math> |
| |} | | |} |
| | | |
Line 246: |
Line 254: |
| ===Focal nodes=== | | ===Focal nodes=== |
| | | |
− | {{col-begin}}
| |
− | {{col-break}}
| |
| * [[Inquiry Live]] | | * [[Inquiry Live]] |
− | {{col-break}}
| |
| * [[Logic Live]] | | * [[Logic Live]] |
− | {{col-end}}
| |
| | | |
| ===Peer nodes=== | | ===Peer nodes=== |
| | | |
− | {{col-begin}}
| + | * [http://intersci.ss.uci.edu/wiki/index.php/Truth_table Truth Table @ InterSciWiki] |
− | {{col-break}}
| |
| * [http://mywikibiz.com/Truth_table Truth Table @ MyWikiBiz] | | * [http://mywikibiz.com/Truth_table Truth Table @ MyWikiBiz] |
− | * [http://mathweb.org/wiki/Truth_table Truth Table @ MathWeb Wiki] | + | * [http://ref.subwiki.org/wiki/Truth_table Truth Table @ Subject Wikis] |
− | * [http://netknowledge.org/wiki/Truth_table Truth Table @ NetKnowledge]
| + | * [http://en.wikiversity.org/wiki/Truth_table Truth Table @ Wikiversity] |
− | {{col-break}}
| + | * [http://beta.wikiversity.org/wiki/Truth_table Truth Table @ Wikiversity Beta] |
− | * [http://wiki.oercommons.org/mediawiki/index.php/Truth_table Truth Table @ OER Commons] | |
− | * [http://p2pfoundation.net/Truth_Table Truth Table @ P2P Foundation] | |
− | * [http://semanticweb.org/wiki/Truth_table Truth Table @ SemanticWeb]
| |
− | {{col-end}}
| |
| | | |
| ===Logical operators=== | | ===Logical operators=== |
Line 329: |
Line 328: |
| {{col-break}} | | {{col-break}} |
| * [[Inquiry]] | | * [[Inquiry]] |
| + | * [[Dynamics of inquiry]] |
| + | {{col-break}} |
| + | * [[Semeiotic]] |
| * [[Logic of information]] | | * [[Logic of information]] |
| {{col-break}} | | {{col-break}} |
Line 335: |
Line 337: |
| {{col-break}} | | {{col-break}} |
| * [[Pragmatic maxim]] | | * [[Pragmatic maxim]] |
− | * [[Pragmatic theory of truth]] | + | * [[Truth theory]] |
− | {{col-break}}
| |
− | * [[Semeiotic]]
| |
− | * [[Semiotic information]]
| |
| {{col-end}} | | {{col-end}} |
| | | |
| ===Related articles=== | | ===Related articles=== |
| | | |
− | * [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Introduction_to_Inquiry_Driven_Systems Jon Awbrey, “Introduction To Inquiry Driven Systems”]
| + | {{col-begin}} |
− | | + | {{col-break}} |
− | * [http://mywikibiz.com/Directory:Jon_Awbrey/Essays/Prospects_For_Inquiry_Driven_Systems Jon Awbrey, “Prospects For Inquiry Driven Systems”] | + | * [http://intersci.ss.uci.edu/wiki/index.php/Cactus_Language Cactus Language] |
− | | + | * [http://intersci.ss.uci.edu/wiki/index.php/Futures_Of_Logical_Graphs Futures Of Logical Graphs] |
− | * [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Inquiry_Driven_Systems Jon Awbrey, “Inquiry Driven Systems : Inquiry Into Inquiry”] | + | * [http://intersci.ss.uci.edu/wiki/index.php/Propositional_Equation_Reasoning_Systems Propositional Equation Reasoning Systems] |
− | | + | {{col-break}} |
− | * [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Propositional_Equation_Reasoning_Systems Jon Awbrey, “Propositional Equation Reasoning Systems”] | + | * [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_:_Introduction Differential Logic : Introduction] |
− | | + | * [http://intersci.ss.uci.edu/wiki/index.php/Differential_Propositional_Calculus Differential Propositional Calculus] |
− | * [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_:_Introduction Jon Awbrey, “Differential Logic : Introduction”] | + | * [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_and_Dynamic_Systems_2.0 Differential Logic and Dynamic Systems] |
− | | + | {{col-break}} |
− | * [http://planetmath.org/encyclopedia/DifferentialPropositionalCalculus.html Jon Awbrey, “Differential Propositional Calculus”] | + | * [http://intersci.ss.uci.edu/wiki/index.php/Prospects_for_Inquiry_Driven_Systems Prospects for Inquiry Driven Systems] |
− | | + | * [http://intersci.ss.uci.edu/wiki/index.php/Introduction_to_Inquiry_Driven_Systems Introduction to Inquiry Driven Systems] |
− | * [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_and_Dynamic_Systems_2.0 Jon Awbrey, “Differential Logic and Dynamic Systems”] | + | * [http://intersci.ss.uci.edu/wiki/index.php/Inquiry_Driven_Systems Inquiry Driven Systems : Inquiry Into Inquiry] |
| + | {{col-end}} |
| | | |
| ==Document history== | | ==Document history== |
Line 361: |
Line 361: |
| Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders. | | Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders. |
| | | |
− | {{col-begin}}
| + | * [http://intersci.ss.uci.edu/wiki/index.php/Truth_table Truth Table], [http://intersci.ss.uci.edu/ InterSciWiki] |
− | {{col-break}}
| |
| * [http://mywikibiz.com/Truth_table Truth Table], [http://mywikibiz.com/ MyWikiBiz] | | * [http://mywikibiz.com/Truth_table Truth Table], [http://mywikibiz.com/ MyWikiBiz] |
− | * [http://mathweb.org/wiki/Truth_table Truth Table], [http://mathweb.org/ MathWeb Wiki]
| |
− | * [http://netknowledge.org/wiki/Truth_table Truth Table], [http://netknowledge.org/ NetKnowledge]
| |
− | * [http://wiki.oercommons.org/mediawiki/index.php/Truth_table Truth Table], [http://wiki.oercommons.org/ OER Commons]
| |
− | {{col-break}}
| |
− | * [http://p2pfoundation.net/Truth_Table Truth Table], [http://p2pfoundation.net/ P2P Foundation]
| |
| * [http://semanticweb.org/wiki/Truth_table Truth Table], [http://semanticweb.org/ SemanticWeb] | | * [http://semanticweb.org/wiki/Truth_table Truth Table], [http://semanticweb.org/ SemanticWeb] |
| + | * [http://wikinfo.org/w/index.php/Truth_table Truth Table], [http://wikinfo.org/w/ Wikinfo] |
| + | * [http://en.wikiversity.org/wiki/Truth_table Truth Table], [http://en.wikiversity.org/ Wikiversity] |
| * [http://beta.wikiversity.org/wiki/Truth_table Truth Table], [http://beta.wikiversity.org/ Wikiversity Beta] | | * [http://beta.wikiversity.org/wiki/Truth_table Truth Table], [http://beta.wikiversity.org/ Wikiversity Beta] |
− | * [http://getwiki.net/-Truth_Table Truth Table], [http://getwiki.net/ GetWiki]
| |
− | {{col-break}}
| |
− | * [http://wikinfo.org/index.php/Truth_table Truth Table], [http://wikinfo.org/ Wikinfo]
| |
− | * [http://textop.org/wiki/index.php?title=Truth_table Truth Table], [http://textop.org/wiki/ Textop Wiki]
| |
| * [http://en.wikipedia.org/w/index.php?title=Truth_table&oldid=77110085 Truth Table], [http://en.wikipedia.org/ Wikipedia] | | * [http://en.wikipedia.org/w/index.php?title=Truth_table&oldid=77110085 Truth Table], [http://en.wikipedia.org/ Wikipedia] |
− | {{col-end}}
| |
− |
| |
− | <br><sharethis />
| |
| | | |
| [[Category:Inquiry]] | | [[Category:Inquiry]] |
| [[Category:Open Educational Resource]] | | [[Category:Open Educational Resource]] |
| [[Category:Peer Educational Resource]] | | [[Category:Peer Educational Resource]] |
| + | [[Category:Charles Sanders Peirce]] |
| [[Category:Combinatorics]] | | [[Category:Combinatorics]] |
| [[Category:Computer Science]] | | [[Category:Computer Science]] |