Changes

add content
Line 1: Line 1: −
*
+
==Differential Logic 2002==
 +
 
 +
===Diff Log 2002 • Note 1===
 +
 
 +
<pre>
 +
 
 +
One of the first things that you can do, once you
 +
have a really decent calculus for boolean functions
 +
or propositional logic, whatever you want to call it,
 +
is to compute the differentials of these functions or
 +
propositions.
 +
 
 +
Now there are many ways to dance around this idea,
 +
and I feel like I have tried them all, before one
 +
gets down to acting on it, and there many issues
 +
of interpretation and justification that we will
 +
have to clear up after the fact, that is, before
 +
we can be sure that it all really makes any sense,
 +
but I think this time I'll just jump in, and show
 +
you the form in which this idea first came to me.
 +
 
 +
Start with a proposition of the form x & y, which
 +
I graph as two labels attached to a root node, so:
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                  x y                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
|                x and y                |
 +
o---------------------------------------o
 +
 
 +
Written as a string, this is just the concatenation "x y".
 +
 
 +
The proposition xy may be taken as a boolean function f(x, y)
 +
having the abstract type f : B x B -> B, where B = {0, 1} is
 +
read in such a way that 0 means "false" and 1 means "true".
 +
 
 +
In this style of graphical representation,
 +
the value "true" looks like a blank label
 +
and the value "false" looks like an edge.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                                      |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
|                true                  |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                  o                  |
 +
|                  |                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
|                false                |
 +
o---------------------------------------o
 +
 
 +
Back to the proposition xy.  Imagine yourself standing
 +
in a fixed cell of the corresponding venn diagram, say,
 +
the cell where the proposition xy is true, as pictured:
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                o    o                |
 +
|              / \  / \              |
 +
|              /  \ /  \              |
 +
|            /    ·    \            |
 +
|            /    /%\    \            |
 +
|          /    /%%%\    \          |
 +
|          /    /%%%%%\    \          |
 +
|        /    /%%%%%%%\    \        |
 +
|        /    /%%%%%%%%%\    \        |
 +
|      o  x  o%%%%%%%%%%%o  y  o      |
 +
|        \    \%%%%%%%%%/    /        |
 +
|        \    \%%%%%%%/    /        |
 +
|          \    \%%%%%/    /          |
 +
|          \    \%%%/    /          |
 +
|            \    \%/    /            |
 +
|            \    ·    /            |
 +
|              \  / \  /              |
 +
|              \ /  \ /              |
 +
|                o    o                |
 +
|                                      |
 +
o---------------------------------------o
 +
 
 +
Now ask yourself:  What is the value of the
 +
proposition xy at a distance of dx and dy
 +
from the cell xy where you are standing?
 +
 
 +
Don't think about it -- just compute:
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|              dx o  o dy              |
 +
|                / \ / \                |
 +
|            x o---@---o y            |
 +
|                                      |
 +
o---------------------------------------o
 +
|        (x + dx) and (y + dy)        |
 +
o---------------------------------------o
 +
 
 +
To make future graphs easier to draw in Ascii land,
 +
I will use devices like @=@=@ and o=o=o to identify
 +
several nodes into one, as in this next redrawing:
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|              x  dx y  dy              |
 +
|              o---o o---o              |
 +
|              \  | |  /              |
 +
|                \ | | /                |
 +
|                \| |/                |
 +
|                  @=@                  |
 +
|                                      |
 +
o---------------------------------------o
 +
|        (x + dx) and (y + dy)        |
 +
o---------------------------------------o
 +
 
 +
However you draw it, these expressions follow because the
 +
expression x + dx, where the plus sign indicates (mod 2)
 +
addition in B, and thus corresponds to an exclusive-or
 +
in logic, parses to a graph of the following form:
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                x    dx                |
 +
|                o---o                |
 +
|                  \ /                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
|                x + dx                |
 +
o---------------------------------------o
 +
 
 +
Next question:  What is the difference between
 +
the value of the proposition xy "over there" and
 +
the value of the proposition xy where you are, all
 +
expressed as general formula, of course?  Here 'tis:
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|        x  dx y  dy                    |
 +
|        o---o o---o                    |
 +
|        \  | |  /                    |
 +
|          \ | | /                      |
 +
|          \| |/        x y          |
 +
|            o=o-----------o            |
 +
|            \          /            |
 +
|              \        /              |
 +
|              \      /              |
 +
|                \    /                |
 +
|                \  /                |
 +
|                  \ /                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
|      ((x + dx) & (y + dy)) - xy      |
 +
o---------------------------------------o
 +
 
 +
Oh, I forgot to mention:  Computed over B,
 +
plus and minus are the very same operation.
 +
This will make the relationship between the
 +
differential and the integral parts of the
 +
resulting calculus slightly stranger than
 +
usual, but never mind that now.
 +
 
 +
Last question, for now:  What is the value of this expression
 +
from your current standpoint, that is, evaluated at the point
 +
where xy is true?  Well, substituting 1 for x and 1 for y in
 +
the graph amounts to the same thing as erasing those labels:
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|          dx    dy                    |
 +
|        o---o o---o                    |
 +
|        \  | |  /                    |
 +
|          \ | | /                      |
 +
|          \| |/                      |
 +
|            o=o-----------o            |
 +
|            \          /            |
 +
|              \        /              |
 +
|              \      /              |
 +
|                \    /                |
 +
|                \  /                |
 +
|                  \ /                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
|      ((1 + dx) & (1 + dy)) - 1·1      |
 +
o---------------------------------------o
 +
 
 +
And this is equivalent to the following graph:
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                dx  dy                |
 +
|                o  o                |
 +
|                  \ /                  |
 +
|                  o                  |
 +
|                  |                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
|              dx or dy                |
 +
o---------------------------------------o
 +
 
 +
Enough for the moment.
 +
Explanation to follow.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 2===
 +
 
 +
<pre>
 +
 
 +
We have just met with the fact that
 +
the differential of the "and" is
 +
the "or" of the differentials.
 +
 
 +
x and y  --Diff-->  dx or dy.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                            dx  dy  |
 +
|                              o  o    |
 +
|                              \ /    |
 +
|                                o      |
 +
|      x y                      |      |
 +
|      @      --Diff-->        @      |
 +
|                                      |
 +
o---------------------------------------o
 +
|      x y      --Diff-->  ((dx)(dy))  |
 +
o---------------------------------------o
 +
 
 +
It will be necessary to develop a more refined analysis of
 +
this statement directly, but that is roughly the nub of it.
 +
 
 +
If the form of the above statement reminds you of DeMorgan's rule,
 +
it is no accident, as differentiation and negation turn out to be
 +
closely related operations.  Indeed, one can find discussions of
 +
logical difference calculus in the Boole-DeMorgan correspondence
 +
and Peirce also made use of differential operators in a logical
 +
context, but the exploration of these ideas has been hampered
 +
by a number of factors, not the least of which being a syntax
 +
adequate to handle the complexity of expressions that evolve.
 +
 
 +
For my part, it was definitely a case of the calculus being smarter
 +
than the calculator thereof.  The graphical pictures were catalytic
 +
in their power over my thinking process, leading me so quickly past
 +
so many obstructions that I did not have time to think about all of
 +
the difficulties that would otherwise have inhibited the derivation.
 +
It did eventually became necessary to write all this up in a linear
 +
script, and to deal with the various problems of interpretation and
 +
justification that I could imagine, but that took another 120 pages,
 +
and so, if you don't like this intuitive approach, then let that be
 +
your sufficient notice.
 +
 
 +
Let us run through the initial example again, this time attempting
 +
to interpret the formulas that develop at each stage along the way.
 +
 
 +
We begin with a proposition or a boolean function f(x, y) = xy.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                o    o                |
 +
|              / \  / \              |
 +
|              /  \ /  \              |
 +
|            /    ·    \            |
 +
|            /    /`\    \            |
 +
|          /    /```\    \          |
 +
|          /    /`````\    \          |
 +
|        /    /```````\    \        |
 +
|        /    /`````````\    \        |
 +
|      o  x  o`````f`````o  y  o      |
 +
|        \    \`````````/    /        |
 +
|        \    \```````/    /        |
 +
|          \    \`````/    /          |
 +
|          \    \```/    /          |
 +
|            \    \`/    /            |
 +
|            \    ·    /            |
 +
|              \  / \  /              |
 +
|              \ /  \ /              |
 +
|                o    o                |
 +
|                                      |
 +
o---------------------------------------o
 +
|                                      |
 +
|                  x y                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| f =              x y                  |
 +
o---------------------------------------o
 +
 
 +
A function like this has an abstract type and a concrete type.
 +
The abstract type is what we invoke when we write things like
 +
f : B x B -> B or f : B^2 -> B.  The concrete type takes into
 +
account the qualitative dimensions or the "units" of the case,
 +
which can be explained as follows.
 +
 
 +
1.  Let X be the set of values {(x), x} = {not x, x}.
 +
 
 +
2.  Let Y be the set of values {(y), y} = {not y, y}.
 +
 
 +
Then interpret the usual propositions about x, y
 +
as functions of the concrete type f : X x Y -> B.
 +
 
 +
We are going to consider various "operators" on these functions.
 +
Here, an operator F is a function that takes one function f into
 +
another function Ff.
 +
 
 +
The first couple of operators that we need to consider are logical analogues
 +
of those that occur in the classical "finite difference calculus", namely:
 +
 
 +
1.  The "difference" operator [capital Delta], written here as D.
 +
 
 +
2.  The "enlargement" operator [capital Epsilon], written here as E.
 +
 
 +
These days, E is more often called the "shift" operator.
 +
 
 +
In order to describe the universe in which these operators operate,
 +
it will be necessary to enlarge our original universe of discourse.
 +
We mount up from the space U = X x Y to its "differential extension",
 +
EU = U x dU = X x Y x dX x dY, with dX = {(dx), dx} and dY = {(dy), dy}.
 +
The interpretations of these new symbols can be diverse, but the easiest
 +
for now is just to say that dx means "change x" and dy means "change y".
 +
To draw the differential extension EU of our present universe U = X x Y
 +
as a venn diagram, it would take us four logical dimensions X, Y, dX, dY,
 +
but we can project a suggestion of what it's about on the universe X x Y
 +
by drawing arrows that cross designated borders, labeling the arrows as
 +
dx when crossing the border between x and (x) and as dy when crossing
 +
the border between y and (y), in either direction, in either case.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                o    o                |
 +
|              / \  / \              |
 +
|              /  \ /  \              |
 +
|            /    ·    \            |
 +
|            / dy  /`\  dx \            |
 +
|          /  ^ /```\ ^  \          |
 +
|          /    \`````/    \          |
 +
|        /    /`\```/`\    \        |
 +
|        /    /```\`/```\    \        |
 +
|      o  x  o`````o`````o  y  o      |
 +
|        \    \`````````/    /        |
 +
|        \    \```````/    /        |
 +
|          \    \`````/    /          |
 +
|          \    \```/    /          |
 +
|            \    \`/    /            |
 +
|            \    ·    /            |
 +
|              \  / \  /              |
 +
|              \ /  \ /              |
 +
|                o    o                |
 +
|                                      |
 +
o---------------------------------------o
 +
 
 +
We can form propositions from these differential variables in the same way
 +
that we would any other logical variables, for instance, interpreting the
 +
proposition (dx (dy)) to say "dx => dy", in other words, however you wish
 +
to take it, whether indicatively or injunctively, as saying something to
 +
the effect that there is "no change in x without a change in y".
 +
 
 +
Given the proposition f(x, y) in U = X x Y,
 +
the (first order) 'enlargement' of f is the
 +
proposition Ef in EU that is defined by the
 +
formula Ef(x, y, dx, dy) = f(x + dx, y + dy).
 +
 
 +
In the example f(x, y) = xy, we obtain:
 +
 
 +
Ef(x, y, dx, dy)  =  (x + dx)(y + dy).
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|              x  dx y  dy              |
 +
|              o---o o---o              |
 +
|              \  | |  /              |
 +
|                \ | | /                |
 +
|                \| |/                |
 +
|                  @=@                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Ef =      (x, dx) (y, dy)            |
 +
o---------------------------------------o
 +
 
 +
Given the proposition f(x, y) in U = X x Y,
 +
the (first order) 'difference' of f is the
 +
proposition Df in EU that is defined by the
 +
formula Df = Ef - f, or, written out in full,
 +
Df(x, y, dx, dy) = f(x + dx, y + dy) - f(x, y).
 +
 
 +
In the example f(x, y) = xy, the result is:
 +
 
 +
Df(x, y, dx, dy)  =  (x + dx)(y + dy) - xy.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|        x  dx y  dy                    |
 +
|        o---o o---o                    |
 +
|        \  | |  /                    |
 +
|          \ | | /                      |
 +
|          \| |/        x y          |
 +
|            o=o-----------o            |
 +
|            \          /            |
 +
|              \        /              |
 +
|              \      /              |
 +
|                \    /                |
 +
|                \  /                |
 +
|                  \ /                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Df =      ((x, dx)(y, dy), xy)      |
 +
o---------------------------------------o
 +
 
 +
We did not yet go through the trouble to interpret this (first order)
 +
"difference of conjunction" fully, but were happy simply to evaluate
 +
it with respect to a single location in the universe of discourse,
 +
namely, at the point picked out by the singular proposition xy,
 +
in as much as if to say, at the place where x = 1 and y = 1.
 +
This evaluation is written in the form Df|xy or Df|<1, 1>,
 +
and we arrived at the locally applicable law that states
 +
that f = xy = x & y  =>  Df|xy = ((dx)(dy)) = dx or dy.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                dx dy                |
 +
|                  ^                  |
 +
|                o  |  o                |
 +
|              / \ | / \              |
 +
|              /  \|/  \              |
 +
|            /dy  |  dx\            |
 +
|            /(dx) /|\ (dy)\            |
 +
|          /  ^ /`|`\ ^  \          |
 +
|          /    \``|``/    \          |
 +
|        /    /`\`|`/`\    \        |
 +
|        /    /```\|/```\    \        |
 +
|      o  x  o`````o`````o  y  o      |
 +
|        \    \`````````/    /        |
 +
|        \    \```````/    /        |
 +
|          \    \`````/    /          |
 +
|          \    \```/    /          |
 +
|            \    \`/    /            |
 +
|            \    ·    /            |
 +
|              \  / \  /              |
 +
|              \ /  \ /              |
 +
|                o    o                |
 +
|                                      |
 +
o---------------------------------------o
 +
|                                      |
 +
|                dx  dy                |
 +
|                o  o                |
 +
|                  \ /                  |
 +
|                  o                  |
 +
|                  |                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Df|xy =      ((dx)(dy))              |
 +
o---------------------------------------o
 +
 
 +
The picture illustrates the analysis of the inclusive disjunction ((dx)(dy))
 +
into the exclusive disjunction:  dx(dy) + dy(dx) + dx dy, a proposition that
 +
may be interpreted to say "change x or change y or both".  And this can be
 +
recognized as just what you need to do if you happen to find yourself in
 +
the center cell and desire a detailed description of ways to depart it.
 +
 
 +
Jon Awbrey --
 +
 
 +
Formerly Of:
 +
Center Cell,
 +
Chateau Dif.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 3===
 +
 
 +
<pre>
 +
 
 +
Last time we computed what will variously be called
 +
the "difference map", the "difference proposition",
 +
or the "local proposition" Df_p for the proposition
 +
f(x, y) = xy at the point p where x = 1 and y = 1.
 +
 
 +
In the universe U = X x Y, the four propositions
 +
xy, x(y), (x)y, (x)(y) that indicate the "cells",
 +
or the smallest regions of the venn diagram, are
 +
called "singular propositions".  These serve as
 +
an alternative notation for naming the points
 +
<1, 1>, <1, 0>, <0, 1>, <0, 0>, respectively.
 +
 
 +
Thus, we can write Df_p = Df|p = Df|<1, 1> = Df|xy,
 +
so long as we know the frame of reference in force.
 +
 
 +
Sticking with the example f(x, y) = xy, let us compute the
 +
value of the difference proposition Df at all of the points.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|        x  dx y  dy                    |
 +
|        o---o o---o                    |
 +
|        \  | |  /                    |
 +
|          \ | | /                      |
 +
|          \| |/        x y          |
 +
|            o=o-----------o            |
 +
|            \          /            |
 +
|              \        /              |
 +
|              \      /              |
 +
|                \    /                |
 +
|                \  /                |
 +
|                  \ /                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Df =      ((x, dx)(y, dy), xy)        |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|          dx    dy                    |
 +
|        o---o o---o                    |
 +
|        \  | |  /                    |
 +
|          \ | | /                      |
 +
|          \| |/                      |
 +
|            o=o-----------o            |
 +
|            \          /            |
 +
|              \        /              |
 +
|              \      /              |
 +
|                \    /                |
 +
|                \  /                |
 +
|                  \ /                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Df|xy =      ((dx)(dy))              |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|              o                        |
 +
|          dx |  dy                    |
 +
|        o---o o---o                    |
 +
|        \  | |  /                    |
 +
|          \ | | /        o            |
 +
|          \| |/          |            |
 +
|            o=o-----------o            |
 +
|            \          /            |
 +
|              \        /              |
 +
|              \      /              |
 +
|                \    /                |
 +
|                \  /                |
 +
|                  \ /                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Df|x(y) =      (dx) dy                |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|        o                              |
 +
|        |  dx    dy                    |
 +
|        o---o o---o                    |
 +
|        \  | |  /                    |
 +
|          \ | | /        o            |
 +
|          \| |/          |            |
 +
|            o=o-----------o            |
 +
|            \          /            |
 +
|              \        /              |
 +
|              \      /              |
 +
|                \    /                |
 +
|                \  /                |
 +
|                  \ /                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Df|(x)y =      dx (dy)                |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|        o    o                        |
 +
|        |  dx |  dy                    |
 +
|        o---o o---o                    |
 +
|        \  | |  /                    |
 +
|          \ | | /      o  o          |
 +
|          \| |/        \ /          |
 +
|            o=o-----------o            |
 +
|            \          /            |
 +
|              \        /              |
 +
|              \      /              |
 +
|                \    /                |
 +
|                \  /                |
 +
|                  \ /                  |
 +
|                  @                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Df|(x)(y) =    dx dy                |
 +
o---------------------------------------o
 +
 
 +
The easy way to visualize the values of these graphical
 +
expressions is just to notice the following equivalents:
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|  x                                    |
 +
|  o-o-o-...-o-o-o                      |
 +
|  \          /                      |
 +
|    \        /                        |
 +
|    \      /                        |
 +
|      \    /                x        |
 +
|      \  /                o        |
 +
|        \ /                  |        |
 +
|        @        =        @        |
 +
|                                      |
 +
o---------------------------------------o
 +
|  (x, , ... , , )  =        (x)        |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                o                      |
 +
| x_1 x_2  x_k  |                      |
 +
|  o---o-...-o---o                      |
 +
|  \          /                      |
 +
|    \        /                        |
 +
|    \      /                        |
 +
|      \    /                          |
 +
|      \  /                          |
 +
|        \ /            x_1 ... x_k    |
 +
|        @        =        @        |
 +
|                                      |
 +
o---------------------------------------o
 +
| (x_1, ..., x_k, ()) = x_1 · ... · x_k |
 +
o---------------------------------------o
 +
 
 +
Laying out the arrows on the augmented venn diagram,
 +
one gets a picture of a "differential vector field".
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                dx dy                |
 +
|                  ^                  |
 +
|                o  |  o                |
 +
|              / \ | / \              |
 +
|              /  \|/  \              |
 +
|            /dy  |  dx\            |
 +
|            /(dx) /|\ (dy)\            |
 +
|          /  ^ /`|`\ ^  \          |
 +
|          /    \``|``/    \          |
 +
|        /    /`\`|`/`\    \        |
 +
|        /    /```\|/```\    \        |
 +
|      o  x  o`````o`````o  y  o      |
 +
|        \    \`````````/    /        |
 +
|        \  o---->```<----o  /        |
 +
|          \  dy \``^``/ dx  /          |
 +
|          \(dx) \`|`/ (dy)/          |
 +
|            \    \|/    /            |
 +
|            \    |    /            |
 +
|              \  /|\  /              |
 +
|              \ / | \ /              |
 +
|                o  |  o                |
 +
|                  |                  |
 +
|                dx | dy                |
 +
|                  o                  |
 +
|                                      |
 +
o---------------------------------------o
 +
 
 +
This really just constitutes a depiction of
 +
the interpretations in EU = X x Y x dX x dY
 +
that satisfy the difference proposition Df,
 +
namely, these:
 +
 
 +
1.  x  y  dx  dy
 +
2.  x  y  dx (dy)
 +
3.  x  y (dx) dy
 +
4.  x (y)(dx) dy
 +
5.  (x) y  dx (dy)
 +
6.  (x)(y) dx  dy
 +
 
 +
By inspection, it is fairly easy to understand Df
 +
as telling you what you have to do from each point
 +
of U in order to change the value borne by f(x, y).
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 4===
 +
 
 +
<pre>
 +
 
 +
We have been studying the action of the difference operator D,
 +
also known as the "localization operator", on the proposition
 +
f : X x Y -> B that is commonly known as the conjunction x·y.
 +
We described Df as a (first order) differential proposition,
 +
that is, a proposition of the type Df : X x Y x dX x dY -> B.
 +
Abstracting from the augmented venn diagram that illustrates
 +
how the "models", or the "satisfying interpretations", of Df
 +
distribute within the extended universe EU = X x Y x dX x dY,
 +
we can depict Df in the form of a "digraph" or directed graph,
 +
one whose points are labeled with the elements of  U =  X x Y
 +
and whose arrows are labeled with the elements of dU = dX x dY.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                x · y                |
 +
|                                      |
 +
|                  o                  |
 +
|                  ^^^                  |
 +
|                / | \                |
 +
|      (dx)· dy  /  |  \  dx ·(dy)      |
 +
|              /  |  \              |
 +
|              /    |    \              |
 +
|            v    |    v            |
 +
|  x ·(y)  o      |      o  (x)· y  |
 +
|                  |                  |
 +
|                  |                  |
 +
|                dx · dy                |
 +
|                  |                  |
 +
|                  |                  |
 +
|                  v                  |
 +
|                  o                  |
 +
|                                      |
 +
|                (x)·(y)                |
 +
|                                      |
 +
o---------------------------------------o
 +
|                                      |
 +
|  f    =    x  y                      |
 +
|                                      |
 +
| Df    =    x  y  · ((dx)(dy))        |
 +
|                                      |
 +
|      +    x (y) ·  (dx) dy          |
 +
|                                      |
 +
|      +    (x) y  ·  dx (dy)        |
 +
|                                      |
 +
|      +    (x)(y) ·  dx  dy          |
 +
|                                      |
 +
o---------------------------------------o
 +
 
 +
Any proposition worth its salt, as they say,
 +
has many equivalent ways to look at it, any
 +
of which may reveal some unsuspected aspect
 +
of its meaning.  We will encounter more and
 +
more of these alternative readings as we go.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 5===
 +
 
 +
<pre>
 +
 
 +
The enlargement operator E, also known as the "shift operator",
 +
has many interesting and very useful properties in its own right,
 +
so let us not fail to observe a few of the more salient features
 +
that play out on the surface of our simple example, f(x, y) = xy.
 +
 
 +
Introduce a suitably generic definition of the extended universe of discourse:
 +
 
 +
Let U = X_1 x ... x X_k and EU = U x dU = X_1 x ... x X_k x dX_1 x ... x dX_k.
 +
 
 +
For a proposition f : X_1 x ... x X_k -> B,
 +
the (first order) 'enlargement' of f is the
 +
proposition Ef : EU -> B that is defined by:
 +
 
 +
Ef(x_1, ..., x_k, dx_1, ..., dx_k)  =  f(x_1 + dx_1, ..., x_k + dx_k).
 +
 
 +
It should be noted that the so-called "differential variables" dx_j
 +
are really just the same kind of boolean variables as the other x_j.
 +
It is conventional to give the additional variables these brands of
 +
inflected names, but whatever extra connotations we might choose to
 +
attach to these syntactic conveniences are wholly external to their
 +
purely algebraic meanings.
 +
 
 +
For the example f(x, y) = xy, we obtain:
 +
 
 +
Ef(x, y, dx, dy)  =  (x + dx)(y + dy).
 +
 
 +
Given that this expression uses nothing more than the "boolean ring"
 +
operations of addition (+) and multiplication (·), it is permissible
 +
to "multiply things out" in the usual manner to arrive at the result:
 +
 
 +
Ef(x, y, dx, dy)  =  x·y  +  x·dy  +  y·dx  +  dx·dy.
 +
 
 +
To understand what this means in logical terms, for instance, as expressed
 +
in a boolean expansion or a "disjunctive normal form" (DNF), it is perhaps
 +
a little better to go back and analyze the expression the same way that we
 +
did for Df.  Thus, let us compute the value of the enlarged proposition Ef
 +
at each of the points in the universe of discourse U = X x Y.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|              x  dx y  dy              |
 +
|              o---o o---o              |
 +
|              \  | |  /              |
 +
|                \ | | /                |
 +
|                \| |/                |
 +
|                  @=@                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Ef =      (x, dx)·(y, dy)            |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                dx    dy              |
 +
|              o---o o---o              |
 +
|              \  | |  /              |
 +
|                \ | | /                |
 +
|                \| |/                |
 +
|                  @=@                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Ef|xy =      (dx)·(dy)              |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                    o                  |
 +
|                dx |  dy              |
 +
|              o---o o---o              |
 +
|              \  | |  /              |
 +
|                \ | | /                |
 +
|                \| |/                |
 +
|                  @=@                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Ef|x(y) =    (dx)· dy                |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|              o                        |
 +
|              |  dx    dy              |
 +
|              o---o o---o              |
 +
|              \  | |  /              |
 +
|                \ | | /                |
 +
|                \| |/                |
 +
|                  @=@                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Ef|(x)y =      dx ·(dy)              |
 +
o---------------------------------------o
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|              o    o                  |
 +
|              |  dx |  dy              |
 +
|              o---o o---o              |
 +
|              \  | |  /              |
 +
|                \ | | /                |
 +
|                \| |/                |
 +
|                  @=@                  |
 +
|                                      |
 +
o---------------------------------------o
 +
| Ef|(x)(y) =    dx · dy                |
 +
o---------------------------------------o
 +
 
 +
Given the sort of data that arises from this form of analysis,
 +
we can now fold the disjoined ingredients back into a boolean
 +
expansion or a DNF that is equivalent to the proposition Ef.
 +
 
 +
Ef  =  xy · Ef_xy  +  x(y) · Ef_x(y)  +  (x)y · Ef_(x)y  +  (x)(y) · Ef_(x)(y).
 +
 
 +
Here is a summary of the result, illustrated by means of a digraph picture,
 +
where the "no change" element (dx)(dy) is drawn as a loop at the point x·y.
 +
 
 +
o---------------------------------------o
 +
|                                      |
 +
|                x · y                |
 +
|              (dx)·(dy)              |
 +
|                -->--                |
 +
|                \  /                |
 +
|                  \ /                  |
 +
|                  o                  |
 +
|                  ^^^                  |
 +
|                / | \                |
 +
|                /  |  \                |
 +
|    (dx)· dy  /  |  \  dx ·(dy)    |
 +
|              /    |    \              |
 +
|            /    |    \            |
 +
|  x ·(y)  o      |      o  (x)· y  |
 +
|                  |                  |
 +
|                  |                  |
 +
|                dx · dy                |
 +
|                  |                  |
 +
|                  |                  |
 +
|                  o                  |
 +
|                                      |
 +
|                (x)·(y)                |
 +
|                                      |
 +
o---------------------------------------o
 +
|                                      |
 +
|  f    =    x  y                      |
 +
|                                      |
 +
| Ef    =    x  y  · (dx)(dy)          |
 +
|                                      |
 +
|      +    x (y) · (dx) dy          |
 +
|                                      |
 +
|      +    (x) y  ·  dx (dy)          |
 +
|                                      |
 +
|      +    (x)(y) ·  dx  dy          |
 +
|                                      |
 +
o---------------------------------------o
 +
 
 +
We may understand the enlarged proposition Ef
 +
as telling us all the different ways to reach
 +
a model of f from any point of the universe U.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 6===
 +
 
 +
<pre>
 +
 
 +
To broaden our experience with simple examples, let us now contemplate the
 +
sixteen functions of concrete type X x Y -> B and abstract type B x B -> B.
 +
For future reference, I will set here a few tables that detail the actions
 +
of E and D and on each of these functions, allowing us to view the results
 +
in several different ways.
 +
 
 +
By way of initial orientation, Table 0 lists equivalent expressions for the
 +
sixteen functions in a number of different languages for zeroth order logic.
 +
 
 +
Table 0.  Propositional Forms On Two Variables
 +
o---------o---------o---------o----------o------------------o----------o
 +
| L_1    | L_2    | L_3    | L_4      | L_5              | L_6      |
 +
|        |        |        |          |                  |          |
 +
| Decimal | Binary  | Vector  | Cactus  | English          | Vulgate  |
 +
o---------o---------o---------o----------o------------------o----------o
 +
|        |      x = 1 1 0 0 |          |                  |          |
 +
|        |      y = 1 0 1 0 |          |                  |          |
 +
o---------o---------o---------o----------o------------------o----------o
 +
|        |        |        |          |                  |          |
 +
| f_0    | f_0000  | 0 0 0 0 |    ()    | false            |    0    |
 +
|        |        |        |          |                  |          |
 +
| f_1    | f_0001  | 0 0 0 1 |  (x)(y)  | neither x nor y  | ~x & ~y  |
 +
|        |        |        |          |                  |          |
 +
| f_2    | f_0010  | 0 0 1 0 |  (x) y  | y and not x      | ~x &  y  |
 +
|        |        |        |          |                  |          |
 +
| f_3    | f_0011  | 0 0 1 1 |  (x)    | not x            | ~x      |
 +
|        |        |        |          |                  |          |
 +
| f_4    | f_0100  | 0 1 0 0 |  x (y)  | x and not y      |  x & ~y  |
 +
|        |        |        |          |                  |          |
 +
| f_5    | f_0101  | 0 1 0 1 |    (y)  | not y            |      ~y  |
 +
|        |        |        |          |                  |          |
 +
| f_6    | f_0110  | 0 1 1 0 |  (x, y)  | x not equal to y |  x +  y  |
 +
|        |        |        |          |                  |          |
 +
| f_7    | f_0111  | 0 1 1 1 |  (x  y)  | not both x and y | ~x v ~y  |
 +
|        |        |        |          |                  |          |
 +
| f_8    | f_1000  | 1 0 0 0 |  x  y  | x and y          |  x &  y  |
 +
|        |        |        |          |                  |          |
 +
| f_9    | f_1001  | 1 0 0 1 | ((x, y)) | x equal to y    |  x =  y  |
 +
|        |        |        |          |                  |          |
 +
| f_10    | f_1010  | 1 0 1 0 |      y  | y                |      y  |
 +
|        |        |        |          |                  |          |
 +
| f_11    | f_1011  | 1 0 1 1 |  (x (y)) | not x without y  |  x => y  |
 +
|        |        |        |          |                  |          |
 +
| f_12    | f_1100  | 1 1 0 0 |  x      | x                |  x      |
 +
|        |        |        |          |                  |          |
 +
| f_13    | f_1101  | 1 1 0 1 | ((x) y)  | not y without x  |  x <= y  |
 +
|        |        |        |          |                  |          |
 +
| f_14    | f_1110  | 1 1 1 0 | ((x)(y)) | x or y          |  x v  y  |
 +
|        |        |        |          |                  |          |
 +
| f_15    | f_1111  | 1 1 1 1 |  (())  | true            |    1    |
 +
|        |        |        |          |                  |          |
 +
o---------o---------o---------o----------o------------------o----------o
 +
 
 +
The next four Tables expand the expressions of Ef and Df
 +
in two different ways, for each of the sixteen functions.
 +
Notice that the functions are given in a different order,
 +
here being collected into a set of seven natural classes.
 +
 
 +
Table 1.  Ef Expanded Over Ordinary Features {x, y}
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
|      |    f      |  Ef | xy  | Ef | x(y)  | Ef | (x)y  | Ef | (x)(y)|
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_0  |    ()    |    ()    |    ()    |    ()    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_1  |  (x)(y)  |  dx  dy  |  dx (dy)  |  (dx) dy  |  (dx)(dy)  |
 +
|      |            |            |            |            |            |
 +
| f_2  |  (x) y    |  dx (dy)  |  dx  dy  |  (dx)(dy)  |  (dx) dy  |
 +
|      |            |            |            |            |            |
 +
| f_4  |    x (y)  |  (dx) dy  |  (dx)(dy)  |  dx  dy  |  dx (dy)  |
 +
|      |            |            |            |            |            |
 +
| f_8  |    x  y    |  (dx)(dy)  |  (dx) dy  |  dx (dy)  |  dx  dy  |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_3  |  (x)      |  dx      |  dx      |  (dx)      |  (dx)      |
 +
|      |            |            |            |            |            |
 +
| f_12 |    x      |  (dx)      |  (dx)      |  dx      |  dx      |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_6  |  (x, y)  |  (dx, dy)  | ((dx, dy)) | ((dx, dy)) |  (dx, dy)  |
 +
|      |            |            |            |            |            |
 +
| f_9  |  ((x, y))  | ((dx, dy)) |  (dx, dy)  |  (dx, dy)  | ((dx, dy)) |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_5  |      (y)  |      dy  |      (dy)  |      dy  |      (dy)  |
 +
|      |            |            |            |            |            |
 +
| f_10 |      y    |      (dy)  |      dy  |      (dy)  |      dy  |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_7  |  (x  y)  | ((dx)(dy)) | ((dx) dy)  |  (dx (dy)) |  (dx  dy)  |
 +
|      |            |            |            |            |            |
 +
| f_11 |  (x (y))  | ((dx) dy)  | ((dx)(dy)) |  (dx  dy)  |  (dx (dy)) |
 +
|      |            |            |            |            |            |
 +
| f_13 |  ((x) y)  |  (dx (dy)) |  (dx  dy)  | ((dx)(dy)) | ((dx) dy)  |
 +
|      |            |            |            |            |            |
 +
| f_14 |  ((x)(y))  |  (dx  dy)  |  (dx (dy)) | ((dx) dy)  | ((dx)(dy)) |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_15 |    (())    |    (())    |    (())    |    (())    |    (())    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
 
 +
 
 +
Table 2.  Df Expanded Over Ordinary Features {x, y}
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
|      |    f      |  Df | xy  | Df | x(y)  | Df | (x)y  | Df | (x)(y)|
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_0  |    ()    |    ()    |    ()    |    ()    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_1  |  (x)(y)  |  dx  dy  |  dx (dy)  |  (dx) dy  | ((dx)(dy)) |
 +
|      |            |            |            |            |            |
 +
| f_2  |  (x) y    |  dx (dy)  |  dx  dy  | ((dx)(dy)) |  (dx) dy  |
 +
|      |            |            |            |            |            |
 +
| f_4  |    x (y)  |  (dx) dy  | ((dx)(dy)) |  dx  dy  |  dx (dy)  |
 +
|      |            |            |            |            |            |
 +
| f_8  |    x  y    | ((dx)(dy)) |  (dx) dy  |  dx (dy)  |  dx  dy  |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_3  |  (x)      |  dx      |  dx      |  dx      |  dx      |
 +
|      |            |            |            |            |            |
 +
| f_12 |    x      |  dx      |  dx      |  dx      |  dx      |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_6  |  (x, y)  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |
 +
|      |            |            |            |            |            |
 +
| f_9  |  ((x, y))  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_5  |      (y)  |      dy  |      dy  |      dy  |      dy  |
 +
|      |            |            |            |            |            |
 +
| f_10 |      y    |      dy  |      dy  |      dy  |      dy  |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_7  |  (x  y)  | ((dx)(dy)) |  (dx) dy  |  dx (dy)  |  dx  dy  |
 +
|      |            |            |            |            |            |
 +
| f_11 |  (x (y))  |  (dx) dy  | ((dx)(dy)) |  dx  dy  |  dx (dy)  |
 +
|      |            |            |            |            |            |
 +
| f_13 |  ((x) y)  |  dx (dy)  |  dx  dy  | ((dx)(dy)) |  (dx) dy  |
 +
|      |            |            |            |            |            |
 +
| f_14 |  ((x)(y))  |  dx  dy  |  dx (dy)  |  (dx) dy  | ((dx)(dy)) |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_15 |    (())    |    ()    |    ()    |    ()    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
 
 +
 
 +
Table 3.  Ef Expanded Over Differential Features {dx, dy}
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
|      |    f      |  T_11 f  |  T_10 f  |  T_01 f  |  T_00 f  |
 +
|      |            |            |            |            |            |
 +
|      |            | Ef| dx·dy  | Ef| dx(dy) | Ef| (dx)dy | Ef|(dx)(dy)|
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_0  |    ()    |    ()    |    ()    |    ()    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_1  |  (x)(y)  |    x  y    |    x (y)  |  (x) y    |  (x)(y)  |
 +
|      |            |            |            |            |            |
 +
| f_2  |  (x) y    |    x (y)  |    x  y    |  (x)(y)  |  (x) y    |
 +
|      |            |            |            |            |            |
 +
| f_4  |    x (y)  |  (x) y    |  (x)(y)  |    x  y    |    x (y)  |
 +
|      |            |            |            |            |            |
 +
| f_8  |    x  y    |  (x)(y)  |  (x) y    |    x (y)  |    x  y    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_3  |  (x)      |    x      |    x      |  (x)      |  (x)      |
 +
|      |            |            |            |            |            |
 +
| f_12 |    x      |  (x)      |  (x)      |    x      |    x      |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_6  |  (x, y)  |  (x, y)  |  ((x, y))  |  ((x, y))  |  (x, y)  |
 +
|      |            |            |            |            |            |
 +
| f_9  |  ((x, y))  |  ((x, y))  |  (x, y)  |  (x, y)  |  ((x, y))  |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_5  |      (y)  |      y    |      (y)  |      y    |      (y)  |
 +
|      |            |            |            |            |            |
 +
| f_10 |      y    |      (y)  |      y    |      (y)  |      y    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_7  |  (x  y)  |  ((x)(y))  |  ((x) y)  |  (x (y))  |  (x  y)  |
 +
|      |            |            |            |            |            |
 +
| f_11 |  (x (y))  |  ((x) y)  |  ((x)(y))  |  (x  y)  |  (x (y))  |
 +
|      |            |            |            |            |            |
 +
| f_13 |  ((x) y)  |  (x (y))  |  (x  y)  |  ((x)(y))  |  ((x) y)  |
 +
|      |            |            |            |            |            |
 +
| f_14 |  ((x)(y))  |  (x  y)  |  (x (y))  |  ((x) y)  |  ((x)(y))  |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_15 |    (())    |    (())    |    (())    |    (())    |    (())    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|                  |            |            |            |            |
 +
| Fixed Point Total |      4    |      4    |      4    |    16    |
 +
|                  |            |            |            |            |
 +
o-------------------o------------o------------o------------o------------o
 +
 
 +
 
 +
Table 4.  Df Expanded Over Differential Features {dx, dy}
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
|      |    f      | Df| dx·dy  | Df| dx(dy) | Df| (dx)dy | Df|(dx)(dy)|
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_0  |    ()    |    ()    |    ()    |    ()    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_1  |  (x)(y)  |  ((x, y))  |    (y)    |    (x)    |    ()    |
 +
|      |            |            |            |            |            |
 +
| f_2  |  (x) y    |  (x, y)  |    y      |    (x)    |    ()    |
 +
|      |            |            |            |            |            |
 +
| f_4  |    x (y)  |  (x, y)  |    (y)    |    x      |    ()    |
 +
|      |            |            |            |            |            |
 +
| f_8  |    x  y    |  ((x, y))  |    y      |    x      |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_3  |  (x)      |    (())    |    (())    |    ()    |    ()    |
 +
|      |            |            |            |            |            |
 +
| f_12 |    x      |    (())    |    (())    |    ()    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_6  |  (x, y)  |    ()    |    (())    |    (())    |    ()    |
 +
|      |            |            |            |            |            |
 +
| f_9  |  ((x, y))  |    ()    |    (())    |    (())    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_5  |      (y)  |    (())    |    ()    |    (())    |    ()    |
 +
|      |            |            |            |            |            |
 +
| f_10 |      y    |    (())    |    ()    |    (())    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_7  |  (x  y)  |  ((x, y))  |    y      |    x      |    ()    |
 +
|      |            |            |            |            |            |
 +
| f_11 |  (x (y))  |  (x, y)  |    (y)    |    x      |    ()    |
 +
|      |            |            |            |            |            |
 +
| f_13 |  ((x) y)  |  (x, y)  |    y      |    (x)    |    ()    |
 +
|      |            |            |            |            |            |
 +
| f_14 |  ((x)(y))  |  ((x, y))  |    (y)    |    (x)    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_15 |    (())    |    ()    |    ()    |    ()    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
 
 +
If the medium is truly the message,
 +
the blank slate is the innate idea.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 7===
 +
 
 +
<pre>
 +
 
 +
If you think that I linger in the realm of logical difference calculus
 +
out of sheer vacillation about getting down to the differential proper,
 +
it is probably out of a prior expectation that you derive from the art
 +
or the long-engrained practice of real analysis.  But the fact is that
 +
ordinary calculus only rushes on to the sundry orders of approximation
 +
because the strain of comprehending the full import of E and D at once
 +
whelm over its discrete and finite powers to grasp them.  But here, in
 +
the fully serene idylls of ZOL, we find ourselves fit with the compass
 +
of a wit that is all we'd ever wish to explore their effects with care.
 +
 
 +
So let us do just that.
 +
 
 +
I will first rationalize the novel grouping of propositional forms
 +
in the last set of Tables, as that will extend a gentle invitation
 +
to the mathematical subject of "group theory", and demonstrate its
 +
relevance to differential logic in a strikingly apt and useful way.
 +
The data for that account is contained in Table 3.
 +
 
 +
Table 3.  Ef Expanded Over Differential Features {dx, dy}
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
|      |    f      |  T_11 f  |  T_10 f  |  T_01 f  |  T_00 f  |
 +
|      |            |            |            |            |            |
 +
|      |            | Ef| dx·dy  | Ef| dx(dy) | Ef| (dx)dy | Ef|(dx)(dy)|
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_0  |    ()    |    ()    |    ()    |    ()    |    ()    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_1  |  (x)(y)  |    x  y    |    x (y)  |  (x) y    |  (x)(y)  |
 +
|      |            |            |            |            |            |
 +
| f_2  |  (x) y    |    x (y)  |    x  y    |  (x)(y)  |  (x) y    |
 +
|      |            |            |            |            |            |
 +
| f_4  |    x (y)  |  (x) y    |  (x)(y)  |    x  y    |    x (y)  |
 +
|      |            |            |            |            |            |
 +
| f_8  |    x  y    |  (x)(y)  |  (x) y    |    x (y)  |    x  y    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_3  |  (x)      |    x      |    x      |  (x)      |  (x)      |
 +
|      |            |            |            |            |            |
 +
| f_12 |    x      |  (x)      |  (x)      |    x      |    x      |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_6  |  (x, y)  |  (x, y)  |  ((x, y))  |  ((x, y))  |  (x, y)  |
 +
|      |            |            |            |            |            |
 +
| f_9  |  ((x, y))  |  ((x, y))  |  (x, y)  |  (x, y)  |  ((x, y))  |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_5  |      (y)  |      y    |      (y)  |      y    |      (y)  |
 +
|      |            |            |            |            |            |
 +
| f_10 |      y    |      (y)  |      y    |      (y)  |      y    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_7  |  (x  y)  |  ((x)(y))  |  ((x) y)  |  (x (y))  |  (x  y)  |
 +
|      |            |            |            |            |            |
 +
| f_11 |  (x (y))  |  ((x) y)  |  ((x)(y))  |  (x  y)  |  (x (y))  |
 +
|      |            |            |            |            |            |
 +
| f_13 |  ((x) y)  |  (x (y))  |  (x  y)  |  ((x)(y))  |  ((x) y)  |
 +
|      |            |            |            |            |            |
 +
| f_14 |  ((x)(y))  |  (x  y)  |  (x (y))  |  ((x) y)  |  ((x)(y))  |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|      |            |            |            |            |            |
 +
| f_15 |    (())    |    (())    |    (())    |    (())    |    (())    |
 +
|      |            |            |            |            |            |
 +
o------o------------o------------o------------o------------o------------o
 +
|                  |            |            |            |            |
 +
| Fixed Point Total |      4    |      4    |      4    |    16    |
 +
|                  |            |            |            |            |
 +
o-------------------o------------o------------o------------o------------o
 +
 
 +
The shift operator E can be understood as enacting a substitution operation
 +
on the proposition that is given as its argument.  In our immediate example,
 +
we have the following data and definition:
 +
 
 +
E : (U -> B)  ->  (EU -> B),
 +
 
 +
E :  f(x, y)  ->  Ef(x, y, dx, dy),
 +
 
 +
Ef(x, y, dx, dy)  =  f(x + dx, y + dy).
 +
 
 +
Therefore, if we evaluate Ef at particular values of dx and dy,
 +
for example, dx = i and dy = j, where i, j are in B, we obtain:
 +
 
 +
E_ij : (U -> B)  ->  (U -> B),
 +
 
 +
E_ij :    f      ->  E_ij f,
 +
 
 +
E_ij f  =  Ef | <dx = i, dy = j>  =  f(x + i, y + j).
 +
 
 +
The notation is a little bit awkward, but the data of the Table should
 +
make the sense clear.  The important thing to observe is that E_ij has
 +
the effect of transforming each proposition f : U -> B into some other
 +
proposition f' : U -> B.  As it happens, the action is one-to-one and
 +
onto for each E_ij, so the gang of four operators {E_ij : i, j in B}
 +
is an example of what is called a "transformation group" on the set
 +
of sixteen propositions.  Bowing to a longstanding local and linear
 +
tradition, I will therefore redub the four elements of this group
 +
as T_00, T_01, T_10, T_11, to bear in mind their transformative
 +
character, or nature, as the case may be.  Abstractly viewed,
 +
this group of order four has the following operation table:
 +
 
 +
o----------o----------o----------o----------o----------o
 +
|          %          |          |          |          |
 +
|    ·    %  T_00  |  T_01  |  T_10  |  T_11  |
 +
|          %          |          |          |          |
 +
o==========o==========o==========o==========o==========o
 +
|          %          |          |          |          |
 +
|  T_00  %  T_00  |  T_01  |  T_10  |  T_11  |
 +
|          %          |          |          |          |
 +
o----------o----------o----------o----------o----------o
 +
|          %          |          |          |          |
 +
|  T_01  %  T_01  |  T_00  |  T_11  |  T_10  |
 +
|          %          |          |          |          |
 +
o----------o----------o----------o----------o----------o
 +
|          %          |          |          |          |
 +
|  T_10  %  T_10  |  T_11  |  T_00  |  T_01  |
 +
|          %          |          |          |          |
 +
o----------o----------o----------o----------o----------o
 +
|          %          |          |          |          |
 +
|  T_11  %  T_11  |  T_10  |  T_01  |  T_00  |
 +
|          %          |          |          |          |
 +
o----------o----------o----------o----------o----------o
 +
 
 +
It happens that there are just two possible groups of 4 elements.
 +
One is the cyclic group Z_4 (German "Zyklus"), which this is not.
 +
The other is Klein's four-group V_4 (German "Vier"), which it is.
 +
 
 +
More concretely viewed, the group as a whole pushes the set
 +
of sixteen propositions around in such a way that they fall
 +
into seven natural classes, called "orbits".  One says that
 +
the orbits are preserved by the action of the group.  There
 +
is an "Orbit Lemma" of immense utility to "those who count"
 +
which, depending on your upbringing, you may associate with
 +
the names of Burnside, Cauchy, Frobenius, or some subset or
 +
superset of these three, vouching that the number of orbits
 +
is equal to the mean number of fixed points, in other words,
 +
the total number of points (in our case, propositions) that
 +
are left unmoved by the separate operations, divided by the
 +
order of the group.  In this instance, T_00 operates as the
 +
group identity, fixing all 16 propositions, while the other
 +
three group elements fix 4 propositions each, and so we get:
 +
Number of orbits  =  (4 + 4 + 4 + 16) / 4  =  7.  Amazing!
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 8===
 +
 
 +
<pre>
 +
 
 +
We have been contemplating functions of the type f : U -> B
 +
studying the action of the operators E and D on this family.
 +
These functions, that we may identify for our present aims
 +
with propositions, inasmuch as they capture their abstract
 +
forms, are logical analogues of "scalar potential fields".
 +
These are the sorts of fields that are so picturesquely
 +
presented in elementary calculus and physics textbooks
 +
by images of snow-covered hills and parties of skiers
 +
who trek down their slopes like least action heroes.
 +
The analogous scene in propositional logic presents
 +
us with forms more reminiscent of plateaunic idylls,
 +
being all plains at one of two levels, the mesas of
 +
verity and falsity, as it were, with nary a niche
 +
to inhabit between them, restricting our options
 +
for a sporting gradient of downhill dynamics to
 +
just one of two, standing still on level ground
 +
or falling off a bluff.
 +
 
 +
We are still working well within the logical analogue of the
 +
classical finite difference calculus, taking in the novelties
 +
that the logical transmutation of familiar elements is able to
 +
bring to light.  Soon we will take up several different notions
 +
of approximation relationships that may be seen to organize the
 +
space of propositions, and these will allow us to define several
 +
different forms of differential analysis applying to propositions.
 +
In time we will find reason to consider more general types of maps,
 +
having concrete types of the form X_1 x ... x X_k -> Y_1 x ... x Y_n
 +
and abstract types B^k -> B^n.  We will think of these mappings as
 +
transforming universes of discourse into themselves or into others,
 +
in short, as "transformations of discourse".
 +
 
 +
Before we continue with this intinerary, however, I would like to highlight
 +
another sort of "differential aspect" that concerns the "boundary operator"
 +
or the "marked connective" that serves as one of the two basic connectives
 +
in the cactus language for ZOL.
 +
 
 +
For example, consider the proposition f of concrete type f : X x Y x Z -> B
 +
and abstract type f : B^3 -> B that is written "(x, y, z)" in cactus syntax.
 +
Taken as an assertion in what Peirce called the "existential interpretation",
 +
(x, y, z) says that just one of x, y, z is false.  It is useful to consider
 +
this assertion in relation to the conjunction xyz of the features that are
 +
engaged as its arguments.  A venn diagram of (x, y, z) looks like this:
 +
 
 +
o-----------------------------------------------------------o
 +
| U                                                        |
 +
|                                                          |
 +
|                      o-------------o                      |
 +
|                    /              \                    |
 +
|                    /                \                    |
 +
|                  /                  \                  |
 +
|                  /                    \                  |
 +
|                /                      \                |
 +
|                o            x            o                |
 +
|                |                        |                |
 +
|                |                        |                |
 +
|                |                        |                |
 +
|                |                        |                |
 +
|                |                        |                |
 +
|            o--o----------o  o----------o--o            |
 +
|            /    \%%%%%%%%%%\ /%%%%%%%%%%/    \            |
 +
|          /      \%%%%%%%%%%o%%%%%%%%%%/      \          |
 +
|          /        \%%%%%%%%/ \%%%%%%%%/        \          |
 +
|        /          \%%%%%%/  \%%%%%%/          \        |
 +
|        /            \%%%%/    \%%%%/            \        |
 +
|      o              o--o-------o--o              o      |
 +
|      |                |%%%%%%%|                |      |
 +
|      |                |%%%%%%%|                |      |
 +
|      |                |%%%%%%%|                |      |
 +
|      |                |%%%%%%%|                |      |
 +
|      |                |%%%%%%%|                |      |
 +
|      o        y        o%%%%%%%o        z        o      |
 +
|        \                \%%%%%/                /        |
 +
|        \                \%%%/                /        |
 +
|          \                \%/                /          |
 +
|          \                o                /          |
 +
|            \              / \              /            |
 +
|            o-------------o  o-------------o            |
 +
|                                                          |
 +
|                                                          |
 +
o-----------------------------------------------------------o
 +
 
 +
In relation to the center cell indicated by the conjunction xyz,
 +
the region indicated by (x, y, z) is comprised of the "adjacent"
 +
or the "bordering" cells.  Thus they are the cells that are just
 +
across the boundary of the center cell, as if reached by way of
 +
Leibniz's "minimal changes" from the point of origin, here, xyz.
 +
 
 +
The same sort of boundary relationship holds for any cell of origin that
 +
one might elect to indicate, say, by means of the conjunction of positive
 +
or negative basis features u_1 · ... · u_k, with u_j = x_j or u_j = (x_j),
 +
for j = 1 to k.  The proposition (u_1, ..., u_k) indicates the disjunctive
 +
region consisting of the cells that are just next door to u_1 · ... · u_k.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 9===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might conceivably have
 +
| practical bearings you conceive the objects of your
 +
| conception to have.  Then, your conception of those
 +
| effects is the whole of your conception of the object.
 +
|
 +
| Charles Sanders Peirce, "The Maxim of Pragmatism, CP 5.438.
 +
 
 +
One other subject that it would be opportune to mention at this point,
 +
while we have an object example of a mathematical group fresh in mind,
 +
is the relationship between the pragmatic maxim and what are commonly
 +
known in mathematics as "representation principles".  As it turns out,
 +
with regard to its formal characteristics, the pragmatic maxim unites
 +
the aspects of a representation principle with the attributes of what
 +
would ordinarily be known as a "closure principle".  We will consider
 +
the form of closure that is invoked by the pragmatic maxim on another
 +
occasion, focusing here and now on the topic of group representations.
 +
 
 +
Let us return to the example of the so-called "four-group" V_4.
 +
We encountered this group in one of its concrete representations,
 +
namely, as a "transformation group" that acts on a set of objects,
 +
in this particular case a set of sixteen functions or propositions.
 +
Forgetting about the set of objects that the group transforms among
 +
themselves, we may take the abstract view of the group's operational
 +
structure, say, in the form of the group operation table copied here:
 +
 
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    ·    %    e    |    f    |    g    |    h    |
 +
|        %        |        |        |        |
 +
o=========o=========o=========o=========o=========o
 +
|        %        |        |        |        |
 +
|    e    %    e    |    f    |    g    |    h    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    f    %    f    |    e    |    h    |    g    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    g    %    g    |    h    |    e    |    f    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    h    %    h    |    g    |    f    |    e    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
 
 +
This table is abstractly the same as, or isomorphic to, the versions with
 +
the E_ij operators and the T_ij transformations that we discussed earlier.
 +
That is to say, the story is the same -- only the names have been changed.
 +
An abstract group can have a multitude of significantly and superficially
 +
different representations.  Even after we have long forgotten the details
 +
of the particular representation that we may have come in with, there are
 +
species of concrete representations, called the "regular representations",
 +
that are always readily available, as they can be generated from the mere
 +
data of the abstract operation table itself.
 +
 
 +
For example, select a group element from the top margin of the Table,
 +
and "consider its effects" on each of the group elements as they are
 +
listed along the left margin.  We may record these effects as Peirce
 +
usually did, as a logical "aggregate" of elementary dyadic relatives,
 +
that is to say, a disjunction or a logical sum whose terms represent
 +
the ordered pairs of <input : output> transactions that are produced
 +
by each group element in turn.  This yields what is usually known as
 +
one of the "regular representations" of the group, specifically, the
 +
"first", the "post-", or the "right" regular representation.  It has
 +
long been conventional to organize the terms in the form of a matrix:
 +
 
 +
Reading "+" as a logical disjunction:
 +
 
 +
G  =  e  +  f  +  g  + h,
 +
 
 +
And so, by expanding effects, we get:
 +
 
 +
G  =  e:e  +  f:f  +  g:g  +  h:h
 +
 
 +
  +  e:f  +  f:e  +  g:h  +  h:g
 +
 
 +
  +  e:g  +  f:h  +  g:e  +  h:f
 +
 
 +
  +  e:h  +  f:g  +  g:f  +  h:e
 +
 
 +
More on the pragmatic maxim as a representation principle later.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 10===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might conceivably have
 +
| practical bearings you conceive the objects of your
 +
| conception to have.  Then, your conception of those
 +
| effects is the whole of your conception of the object.
 +
|
 +
| Charles Sanders Peirce, "The Maxim of Pragmatism, CP 5.438.
 +
 
 +
The genealogy of this conception of pragmatic representation is very intricate.
 +
I will delineate some details that I presently fancy I remember clearly enough,
 +
subject to later correction.  Without checking historical accounts, I will not
 +
be able to pin down anything like a real chronology, but most of these notions
 +
were standard furnishings of the 19th Century mathematical study, and only the
 +
last few items date as late as the 1920's.
 +
 
 +
The idea about the regular representations of a group is universally known
 +
as "Cayley's Theorem", usually in the form:  "Every group is isomorphic to
 +
a subgroup of Aut(S), the group of automorphisms of an appropriate set S".
 +
There is a considerable generalization of these regular representations to
 +
a broad class of relational algebraic systems in Peirce's earliest papers.
 +
The crux of the whole idea is this:
 +
 
 +
| Consider the effects of the symbol, whose meaning you wish to investigate,
 +
| as they play out on "all" of the different stages of context on which you
 +
| can imagine that symbol playing a role.
 +
 
 +
This idea of contextual definition is basically the same as Jeremy Bentham's
 +
notion of "paraphrasis", a "method of accounting for fictions by explaining
 +
various purported terms away" (Quine, in Van Heijenoort, page 216).  Today
 +
we'd call these constructions "term models".  This, again, is the big idea
 +
behind Schönfinkel's combinators {S, K, I}, and hence of lambda calculus,
 +
and I reckon you know where that leads.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 11===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
Continuing to draw on the reduced example of group representations,
 +
I would like to draw out a few of the finer points and problems of
 +
regarding the maxim of pragmatism as a principle of representation.
 +
 
 +
Let us revisit the example of an abstract group that we had befour:
 +
 
 +
Table 1.  Klein Four-Group V_4
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    ·    %    e    |    f    |    g    |    h    |
 +
|        %        |        |        |        |
 +
o=========o=========o=========o=========o=========o
 +
|        %        |        |        |        |
 +
|    e    %    e    |    f    |    g    |    h    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    f    %    f    |    e    |    h    |    g    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    g    %    g    |    h    |    e    |    f    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    h    %    h    |    g    |    f    |    e    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
 
 +
I presented the regular post-representation
 +
of the four-group V_4 in the following form:
 +
 
 +
Reading "+" as a logical disjunction:
 +
 
 +
  G  =  e  +  f  +  g  + h
 +
 
 +
And so, by expanding effects, we get:
 +
 
 +
  G  =  e:e  +  f:f  +  g:g  +  h:h
 +
 
 +
      +  e:f  +  f:e  +  g:h  +  h:g
 +
 
 +
      +  e:g  +  f:h  +  g:e  +  h:f
 +
 
 +
      +  e:h  +  f:g  +  g:f  +  h:e
 +
 
 +
This presents the group in one big bunch,
 +
and there are occasions when one regards
 +
it this way, but that is not the typical
 +
form of presentation that we'd encounter.
 +
More likely, the story would go a little
 +
bit like this:
 +
 
 +
I cannot remember any of my math teachers
 +
ever invoking the pragmatic maxim by name,
 +
but it would be a very regular occurrence
 +
for such mentors and tutors to set up the
 +
subject in this wise:  Suppose you forget
 +
what a given abstract group element means,
 +
that is, in effect, 'what it is'.  Then a
 +
sure way to jog your sense of 'what it is'
 +
is to build a regular representation from
 +
the formal materials that are necessarily
 +
left lying about on that abstraction site.
 +
 
 +
Working through the construction for each
 +
one of the four group elements, we arrive
 +
at the following exegeses of their senses,
 +
giving their regular post-representations:
 +
 
 +
  e  =  e:e  +  f:f  +  g:g  +  h:h
 +
 
 +
  f  =  e:f  +  f:e  +  g:h  +  h:g
 +
 
 +
  g  =  e:g  +  f:h  +  g:e  +  h:f
 +
 
 +
  h  =  e:h  +  f:g  +  g:f  +  h:e
 +
 
 +
So if somebody asks you, say, "What is g?",
 +
you can say, "I don't know for certain but
 +
in practice its effects go a bit like this:
 +
Converting e to g, f to h, g to e, h to f".
 +
 
 +
I will have to check this out later on, but my impression is
 +
that Peirce tended to lean toward the other brand of regular,
 +
the "second", the "left", or the "ante-representation" of the
 +
groups that he treated in his earliest manuscripts and papers.
 +
I believe that this was because he thought of the actions on
 +
the pattern of dyadic relative terms like the "aftermath of".
 +
 
 +
Working through this alternative for each
 +
one of the four group elements, we arrive
 +
at the following exegeses of their senses,
 +
giving their regular ante-representations:
 +
 
 +
  e  =  e:e  +  f:f  +  g:g  +  h:h
 +
 
 +
  f  =  f:e  +  e:f  +  h:g  +  g:h
 +
 
 +
  g  =  g:e  +  h:f  +  e:g  +  f:h
 +
 
 +
  h  =  h:e  +  g:f  +  f:g  +  e:h
 +
 
 +
Your paraphrastic interpretation of what this all
 +
means would come out precisely the same as before.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 12===
 +
 
 +
<pre>
 +
 
 +
Erratum
 +
 
 +
Oops!  I think that I have just confounded two entirely different issues:
 +
1.  The substantial difference between right and left regular representations.
 +
2.  The inessential difference between two conventions of presenting matrices.
 +
I will sort this out and correct it later, as need be.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 13===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
Let me return to Peirce's early papers on the algebra of relatives
 +
to pick up the conventions that he used there, and then rewrite my
 +
account of regular representations in a way that conforms to those.
 +
 
 +
Peirce expresses the action of an "elementary dual relative" like so:
 +
 
 +
| [Let] A:B be taken to denote
 +
| the elementary relative which
 +
| multiplied into B gives A.
 +
|
 +
| Peirce, 'Collected Papers', CP 3.123.
 +
 
 +
And though he is well aware that it is not at all necessary to arrange
 +
elementary relatives into arrays, matrices, or tables, when he does so
 +
he tends to prefer organizing dyadic relations in the following manner:
 +
 
 +
|  A:A  A:B  A:C  |
 +
|                  |
 +
|  B:A  B:B  B:C  |
 +
|                  |
 +
|  C:A  C:B  C:C  |
 +
 
 +
That conforms to the way that the last school of thought
 +
I matriculated into stipulated that we tabulate material:
 +
 
 +
|  e_11  e_12  e_13  |
 +
|                    |
 +
|  e_21  e_22  e_23  |
 +
|                    |
 +
|  e_31  e_32  e_33  |
 +
 
 +
So, for example, let us suppose that we have the small universe {A, B, C},
 +
and the 2-adic relation m = "mover of" that is represented by this matrix:
 +
 
 +
m  =
 +
 
 +
|  m_AA (A:A)  m_AB (A:B)  m_AC (A:C)  |
 +
|                                        |
 +
|  m_BA (B:A)  m_BB (B:B)  m_BC (B:C)  |
 +
|                                        |
 +
|  m_CA (C:A)  m_CB (C:B)  m_CC (C:C)  |
 +
 
 +
Also, let m be such that
 +
A is a mover of A and B,
 +
B is a mover of B and C,
 +
C is a mover of C and A.
 +
 
 +
In sum:
 +
 
 +
m  =
 +
 
 +
|  1 · (A:A)  1 · (A:B)  0 · (A:C)  |
 +
|                                    |
 +
|  0 · (B:A)  1 · (B:B)  1 · (B:C)  |
 +
|                                    |
 +
|  1 · (C:A)  0 · (C:B)  1 · (C:C)  |
 +
 
 +
For the sake of orientation and motivation,
 +
compare with Peirce's notation in CP 3.329.
 +
 
 +
I think that will serve to fix notation
 +
and set up the remainder of the account.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 14===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
I am beginning to see how I got confused.
 +
It is common in algebra to switch around
 +
between different conventions of display,
 +
as the momentary fancy happens to strike,
 +
and I see that Peirce is no different in
 +
this sort of shiftiness than anyone else.
 +
A changeover appears to occur especially
 +
whenever he shifts from logical contexts
 +
to algebraic contexts of application.
 +
 
 +
In the paper "On the Relative Forms of Quaternions" (CP 3.323),
 +
we observe Peirce providing the following sorts of explanation:
 +
 
 +
| If X, Y, Z denote the three rectangular components of a vector, and W denote
 +
| numerical unity (or a fourth rectangular component, involving space of four
 +
| dimensions), and (Y:Z) denote the operation of converting the Y component
 +
| of a vector into its Z component, then
 +
|
 +
|    1  =  (W:W) + (X:X) + (Y:Y) + (Z:Z)
 +
|
 +
|    i  =  (X:W) - (W:X) - (Y:Z) + (Z:Y)
 +
|
 +
|    j  =  (Y:W) - (W:Y) - (Z:X) + (X:Z)
 +
|
 +
|    k  =  (Z:W) - (W:Z) - (X:Y) + (Y:X)
 +
|
 +
| In the language of logic (Y:Z) is a relative term whose relate is
 +
| a Y component, and whose correlate is a Z component.  The law of
 +
| multiplication is plainly (Y:Z)(Z:X) = (Y:X), (Y:Z)(X:W) = 0,
 +
| and the application of these rules to the above values of
 +
| 1, i, j, k gives the quaternion relations
 +
|
 +
|    i^2  =  j^2  =  k^2  =  -1,
 +
|
 +
|    ijk  =  -1,
 +
|
 +
|    etc.
 +
|
 +
| The symbol a(Y:Z) denotes the changing of Y to Z and the
 +
| multiplication of the result by 'a'.  If the relatives be
 +
| arranged in a block
 +
|
 +
|    W:W    W:X    W:Y    W:Z
 +
|
 +
|    X:W    X:X    X:Y    X:Z
 +
|
 +
|    Y:W    Y:X    Y:Y    Y:Z
 +
|
 +
|    Z:W    Z:X    Z:Y    Z:Z
 +
|
 +
| then the quaternion w + xi + yj + zk
 +
| is represented by the matrix of numbers
 +
|
 +
|    w      -x      -y      -z
 +
|
 +
|    x        w      -z      y
 +
|
 +
|    y        z      w      -x
 +
|
 +
|    z      -y      x      w
 +
|
 +
| The multiplication of such matrices follows the same laws as the
 +
| multiplication of quaternions.  The determinant of the matrix =
 +
| the fourth power of the tensor of the quaternion.
 +
|
 +
| The imaginary x + y(-1)^(1/2) may likewise be represented by the matrix
 +
|
 +
|      x      y
 +
|
 +
|    -y      x
 +
|
 +
| and the determinant of the matrix = the square of the modulus.
 +
|
 +
| Charles Sanders Peirce, 'Collected Papers', CP 3.323.
 +
|'Johns Hopkins University Circulars', No. 13, p. 179, 1882.
 +
 
 +
This way of talking is the mark of a person who opts
 +
to multiply his matrices "on the rignt", as they say.
 +
Yet Peirce still continues to call the first element
 +
of the ordered pair (I:J) its "relate" while calling
 +
the second element of the pair (I:J) its "correlate".
 +
That doesn't comport very well, so far as I can tell,
 +
with his customary reading of relative terms, suited
 +
more to the multiplication of matrices "on the left".
 +
 
 +
So I still have a few wrinkles to iron out before
 +
I can give this story a smooth enough consistency.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 15===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
I have been planning for quite some time now to make my return to Peirce's
 +
skyshaking "Description of a Notation for the Logic of Relatives" (1870),
 +
and I can see that it's just about time to get down tuit, so let this
 +
current bit of rambling inquiry function as the preamble to that.
 +
All we need at the present, though, is a modus vivendi/operandi
 +
for telling what is substantial from what is inessential in
 +
the brook between symbolic conceits and dramatic actions
 +
that we find afforded by means of the pragmatic maxim.
 +
 
 +
Back to our "subinstance", the example in support of our first example.
 +
I will now reconstruct it in a way that may prove to be less confusing.
 +
 
 +
Let us make up the model universe $1$ = A + B + C and the 2-adic relation
 +
n = "noder of", as when "X is a data record that contains a pointer to Y".
 +
That interpretation is not important, it's just for the sake of intuition.
 +
In general terms, the 2-adic relation n can be represented by this matrix:
 +
 
 +
n  =
 +
 
 +
|  n_AA (A:A)  n_AB (A:B)  n_AC (A:C)  |
 +
|                                        |
 +
|  n_BA (B:A)  n_BB (B:B)  n_BC (B:C)  |
 +
|                                        |
 +
|  n_CA (C:A)  n_CB (C:B)  n_CC (C:C)  |
 +
 
 +
Also, let n be such that
 +
A is a noder of A and B,
 +
B is a noder of B and C,
 +
C is a noder of C and A.
 +
 
 +
Filling in the instantial values of the "coefficients" n_ij,
 +
as the indices i and j range over the universe of discourse:
 +
 
 +
n  =
 +
 
 +
|  1 · (A:A)  1 · (A:B)  0 · (A:C)  |
 +
|                                    |
 +
|  0 · (B:A)  1 · (B:B)  1 · (B:C)  |
 +
|                                    |
 +
|  1 · (C:A)  0 · (C:B)  1 · (C:C)  |
 +
 
 +
In Peirce's time, and even in some circles of mathematics today,
 +
the information indicated by the elementary relatives (I:J), as
 +
I, J range over the universe of discourse, would be referred to
 +
as the "umbral elements" of the algebraic operation represented
 +
by the matrix, though I seem to recall that Peirce preferred to
 +
call these terms the "ingredients".  When this ordered basis is
 +
understood well enough, one will tend to drop any mention of it
 +
from the matrix itself, leaving us nothing but these bare bones:
 +
 
 +
n  =
 +
 
 +
|  1  1  0  |
 +
|          |
 +
|  0  1  1  |
 +
|          |
 +
|  1  0  1  |
 +
 
 +
However the specification may come to be written, this
 +
is all just convenient schematics for stipulating that:
 +
 
 +
n  =  A:A  +  B:B  +  C:C  +  A:B  +  B:C  +  C:A
 +
 
 +
Recognizing !1! = A:A + B:B + C:C to be the identity transformation,
 +
the 2-adic relation n = "noder of" may be represented by an element
 +
!1! + A:B + B:C + C:A of the so-called "group ring", all of which
 +
just makes this element a special sort of linear transformation.
 +
 
 +
Up to this point, we are still reading the elementary relatives of
 +
the form I:J in the way that Peirce reads them in logical contexts:
 +
I is the relate, J is the correlate, and in our current example we
 +
read I:J, or more exactly, n_ij = 1, to say that I is a noder of J.
 +
This is the mode of reading that we call "multiplying on the left".
 +
 
 +
In the algebraic, permutational, or transformational contexts of
 +
application, however, Peirce converts to the alternative mode of
 +
reading, although still calling I the relate and J the correlate,
 +
the elementary relative I:J now means that I gets changed into J.
 +
In this scheme of reading, the transformation A:B + B:C + C:A is
 +
a permutation of the aggregate $1$ = A + B + C, or what we would
 +
now call the set {A, B, C}, in particular, it is the permutation
 +
that is otherwise notated as:
 +
 
 +
( A B C )
 +
<      >
 +
( B C A )
 +
 
 +
This is consistent with the convention that Peirce uses in
 +
the paper "On a Class of Multiple Algebras" (CP 3.324-327).
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 16===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
We have been contemplating the virtues and the utilities of
 +
the pragmatic maxim as a hermeneutic heuristic, specifically,
 +
as a principle of interpretation that guides us in finding a
 +
clarifying representation for a problematic corpus of symbols
 +
in terms of their actions on other symbols or their effects on
 +
the syntactic contexts in which we conceive to distribute them.
 +
I started off considering the regular representations of groups
 +
as constituting what appears to be one of the simplest possible
 +
applications of this overall principle of representation.
 +
 
 +
There are a few problems of implementation that have to be worked out
 +
in practice, most of which are cleared up by keeping in mind which of
 +
several possible conventions we have chosen to follow at a given time.
 +
But there does appear to remain this rather more substantial question:
 +
 
 +
Are the effects we seek relates or correlates, or does it even matter?
 +
 
 +
I will have to leave that question as it is for now,
 +
in hopes that a solution will evolve itself in time.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 17===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
There a big reasons and little reasons for caring about this humble example.
 +
The little reasons we find all under our feet.  One big reason I can now
 +
quite blazonly enounce in the fashion of this not so subtle subtitle:
 +
 
 +
Obstacles to Applying the Pragmatic Maxim
 +
 
 +
No sooner do you get a good idea and try to apply it
 +
than you find that a motley array of obstacles arise.
 +
 
 +
It seems as if I am constantly lamenting the fact these days that people,
 +
and even admitted Peircean persons, do not in practice more consistently
 +
apply the maxim of pragmatism to the purpose for which it is purportedly
 +
intended by its author.  That would be the clarification of concepts, or
 +
intellectual symbols, to the point where their inherent senses, or their
 +
lacks thereof, would be rendered manifest to all and sundry interpreters.
 +
 
 +
There are big obstacles and little obstacles to applying the pragmatic maxim.
 +
In good subgoaling fashion, I will merely mention a few of the bigger blocks,
 +
as if in passing, and then get down to the devilish details that immediately
 +
obstruct our way.
 +
 
 +
Obstacle 1.  People do not always read the instructions very carefully.
 +
There is a tendency in readers of particular prior persuasions to blow
 +
the problem all out of proportion, to think that the maxim is meant to
 +
reveal the absolutely positive and the totally unique meaning of every
 +
preconception to which they might deign or elect to apply it.  Reading
 +
the maxim with an even minimal attention, you can see that it promises
 +
no such finality of unindexed sense, but ties what you conceive to you.
 +
I have lately come to wonder at the tenacity of this misinterpretation.
 +
Perhaps people reckon that nothing less would be worth their attention.
 +
I am not sure.  I can only say the achievement of more modest goals is
 +
the sort of thing on which our daily life depends, and there can be no
 +
final end to inquiry nor any ultimate community without a continuation
 +
of life, and that means life on a day to day basis.  All of which only
 +
brings me back to the point of persisting with local meantime examples,
 +
because if we can't apply the maxim there, we can't apply it anywhere.
 +
 
 +
And now I need to go out of doors and weed my garden for a time ...
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 18===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
Obstacles to Applying the Pragmatic Maxim
 +
 
 +
Obstacle 2.  Applying the pragmatic maxim, even with a moderate aim, can be hard.
 +
I think that my present example, deliberately impoverished as it is, affords us
 +
with an embarassing richness of evidence of just how complex the simple can be.
 +
 
 +
All the better reason for me to see if I can finish it up before moving on.
 +
 
 +
Expressed most simply, the idea is to replace the question of "what it is",
 +
which modest people know is far too difficult for them to answer right off,
 +
with the question of "what it does", which most of us know a modicum about.
 +
 
 +
In the case of regular representations of groups we found
 +
a non-plussing surplus of answers to sort our way through.
 +
So let us track back one more time to see if we can learn
 +
any lessons that might carry over to more realistic cases.
 +
 
 +
Here is is the operation table of V_4 once again:
 +
 
 +
Table 1.  Klein Four-Group V_4
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    ·    %    e    |    f    |    g    |    h    |
 +
|        %        |        |        |        |
 +
o=========o=========o=========o=========o=========o
 +
|        %        |        |        |        |
 +
|    e    %    e    |    f    |    g    |    h    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    f    %    f    |    e    |    h    |    g    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    g    %    g    |    h    |    e    |    f    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
|        %        |        |        |        |
 +
|    h    %    h    |    g    |    f    |    e    |
 +
|        %        |        |        |        |
 +
o---------o---------o---------o---------o---------o
 +
 
 +
A group operation table is really just a device for
 +
recording a certain 3-adic relation, to be specific,
 +
the set of triples of the form <x, y, z> satisfying
 +
the equation x·y = z where · is the group operation.
 +
 
 +
In the case of V_4 = (G, ·), where G is the "underlying set"
 +
{e, f, g, h}, we have the 3-adic relation L(V_4) c G x G x G
 +
whose triples are listed below:
 +
 
 +
|  <e, e, e>
 +
|  <e, f, f>
 +
|  <e, g, g>
 +
|  <e, h, h>
 +
|
 +
|  <f, e, f>
 +
|  <f, f, e>
 +
|  <f, g, h>
 +
|  <f, h, g>
 +
|
 +
|  <g, e, g>
 +
|  <g, f, h>
 +
|  <g, g, e>
 +
|  <g, h, f>
 +
|
 +
|  <h, e, h>
 +
|  <h, f, g>
 +
|  <h, g, f>
 +
|  <h, h, e>
 +
 
 +
It is part of the definition of a group that the 3-adic
 +
relation L c G^3 is actually a function L : G x G -> G.
 +
It is from this functional perspective that we can see
 +
an easy way to derive the two regular representations.
 +
Since we have a function of the type L : G x G -> G,
 +
we can define a couple of substitution operators:
 +
 
 +
1.  Sub(x, <_, y>) puts any specified x into
 +
    the empty slot of the rheme <_, y>, with
 +
    the effect of producing the saturated
 +
    rheme <x, y> that evaluates to x·y.
 +
 
 +
2.  Sub(x, <y, _>) puts any specified x into
 +
    the empty slot of the rheme <y, >, with
 +
    the effect of producing the saturated
 +
    rheme <y, x> that evaluates to y·x.
 +
 
 +
In (1), we consider the effects of each x in its
 +
practical bearing on contexts of the form <_, y>,
 +
as y ranges over G, and the effects are such that
 +
x takes <_, y> into x·y, for y in G, all of which
 +
is summarily notated as x = {(y : x·y) : y in G}.
 +
The pairs (y : x·y) can be found by picking an x
 +
from the left margin of the group operation table
 +
and considering its effects on each y in turn as
 +
these run across the top margin.  This aspect of
 +
pragmatic definition we recognize as the regular
 +
ante-representation:
 +
 
 +
    e  =  e:e  +  f:f  +  g:g  +  h:h
 +
 
 +
    f  =  e:f  +  f:e  +  g:h  +  h:g
 +
 
 +
    g  =  e:g  +  f:h  +  g:e  +  h:f
 +
 
 +
    h  =  e:h  +  f:g  +  g:f  +  h:e
 +
 
 +
In (2), we consider the effects of each x in its
 +
practical bearing on contexts of the form <y, _>,
 +
as y ranges over G, and the effects are such that
 +
x takes <y, _> into y·x, for y in G, all of which
 +
is summarily notated as x = {(y : y·x) : y in G}.
 +
The pairs (y : y·x) can be found by picking an x
 +
from the top margin of the group operation table
 +
and considering its effects on each y in turn as
 +
these run down the left margin.  This aspect of
 +
pragmatic definition we recognize as the regular
 +
post-representation:
 +
 
 +
    e  =  e:e  +  f:f  +  g:g  +  h:h
 +
 
 +
    f  =  e:f  +  f:e  +  g:h  +  h:g
 +
 
 +
    g  =  e:g  +  f:h  +  g:e  +  h:f
 +
 
 +
    h  =  e:h  +  f:g  +  g:f  +  h:e
 +
 
 +
If the ante-rep looks the same as the post-rep,
 +
now that I'm writing them in the same dialect,
 +
that is because V_4 is abelian (commutative),
 +
and so the two representations have the very
 +
same effects on each point of their bearing.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 19===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
So long as we're in the neighborhood, we might as well take in
 +
some more of the sights, for instance, the smallest example of
 +
a non-abelian (non-commutative) group.  This is a group of six
 +
elements, say, G = {e, f, g, h, i, j}, with no relation to any
 +
other employment of these six symbols being implied, of course,
 +
and it can most easily be represented as the permutation group
 +
on a set of three letters, say, X = {A, B, C}, usually notated
 +
as G = Sym(X) or more abstractly and briefly, as Sym(3) or S_3.
 +
Here are the permutation (= substitution) operations in Sym(X):
 +
 
 +
Table 1.  Permutations or Substitutions in Sym_{A, B, C}
 +
o---------o---------o---------o---------o---------o---------o
 +
|        |        |        |        |        |        |
 +
|    e    |    f    |    g    |    h    |    i    |    j    |
 +
|        |        |        |        |        |        |
 +
o=========o=========o=========o=========o=========o=========o
 +
|        |        |        |        |        |        |
 +
|  A B C  |  A B C  |  A B C  |  A B C  |  A B C  |  A B C  |
 +
|        |        |        |        |        |        |
 +
|  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |
 +
|  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |
 +
|        |        |        |        |        |        |
 +
|  A B C  |  C A B  |  B C A  |  A C B  |  C B A  |  B A C  |
 +
|        |        |        |        |        |        |
 +
o---------o---------o---------o---------o---------o---------o
 +
 
 +
Here is the operation table for S_3, given in abstract fashion:
 +
 
 +
Table 2.  Symmetric Group S_3
 +
 
 +
|                        ^
 +
|                    e / \ e
 +
|                      /  \
 +
|                    /  e  \
 +
|                  f / \  / \ f
 +
|                  /  \ /  \
 +
|                  /  f  \  f  \
 +
|              g / \  / \  / \ g
 +
|                /  \ /  \ /  \
 +
|              /  g  \  g  \  g  \
 +
|            h / \  / \  / \  / \ h
 +
|            /  \ /  \ /  \ /  \
 +
|            /  h  \  e  \  e  \  h  \
 +
|        i / \  / \  / \  / \  / \ i
 +
|          /  \ /  \ /  \ /  \ /  \
 +
|        /  i  \  i  \  f  \  j  \  i  \
 +
|      j / \  / \  / \  / \  / \  / \ j
 +
|      /  \ /  \ /  \ /  \ /  \ /  \
 +
|      (  j  \  j  \  j  \  i  \  h  \  j  )
 +
|      \  / \  / \  / \  / \  / \  /
 +
|        \ /  \ /  \ /  \ /  \ /  \ /
 +
|        \  h  \  h  \  e  \  j  \  i  /
 +
|          \  / \  / \  / \  / \  /
 +
|          \ /  \ /  \ /  \ /  \ /
 +
|            \  i  \  g  \  f  \  h  /
 +
|            \  / \  / \  / \  /
 +
|              \ /  \ /  \ /  \ /
 +
|              \  f  \  e  \  g  /
 +
|                \  / \  / \  /
 +
|                \ /  \ /  \ /
 +
|                  \  g  \  f  /
 +
|                  \  / \  /
 +
|                    \ /  \ /
 +
|                    \  e  /
 +
|                      \  /
 +
|                      \ /
 +
|                        v
 +
 
 +
By the way, we will meet with the symmetric group S_3 again
 +
when we return to take up the study of Peirce's early paper
 +
"On a Class of Multiple Algebras" (CP 3.324-327), and also
 +
his late unpublished work "The Simplest Mathematics" (1902)
 +
(CP 4.227-323), with particular reference to the section
 +
that treats of "Trichotomic Mathematics" (CP 4.307-323).
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 20===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
By way of collecting a short-term pay-off for all the work --
 +
not to mention the peirce-spiration -- that we sweated out
 +
over the regular representations of the Klein 4-group V_4,
 +
let us write out as quickly as possible in "relative form"
 +
a minimal budget of representations of the symmetric group
 +
on three letters, S_3 = Sym(3).  After doing the usual bit
 +
of compare and contrast among these divers representations,
 +
we will have enough concrete material beneath our abstract
 +
belts to tackle a few of the presently obscur'd details of
 +
Peirce's early "Algebra + Logic" papers.
 +
 
 +
Table 1.  Permutations or Substitutions in Sym {A, B, C}
 +
o---------o---------o---------o---------o---------o---------o
 +
|        |        |        |        |        |        |
 +
|    e    |    f    |    g    |    h    |    i    |    j    |
 +
|        |        |        |        |        |        |
 +
o=========o=========o=========o=========o=========o=========o
 +
|        |        |        |        |        |        |
 +
|  A B C  |  A B C  |  A B C  |  A B C  |  A B C  |  A B C  |
 +
|        |        |        |        |        |        |
 +
|  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |
 +
|  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |
 +
|        |        |        |        |        |        |
 +
|  A B C  |  C A B  |  B C A  |  A C B  |  C B A  |  B A C  |
 +
|        |        |        |        |        |        |
 +
o---------o---------o---------o---------o---------o---------o
 +
 
 +
Writing this table in relative form generates
 +
the following "natural representation" of S_3.
 +
 
 +
    e  =  A:A + B:B + C:C
 +
 
 +
    f  =  A:C + B:A + C:B
 +
 
 +
    g  =  A:B + B:C + C:A
 +
 
 +
    h  =  A:A + B:C + C:B
 +
 
 +
    i  =  A:C + B:B + C:A
 +
 
 +
    j  =  A:B + B:A + C:C
 +
 
 +
I have without stopping to think about it written out this natural
 +
representation of S_3 in the style that comes most naturally to me,
 +
to wit, the "right" way, whereby an ordered pair configured as X:Y
 +
constitutes the turning of X into Y.  It is possible that the next
 +
time we check in with CSP that we will have to adjust our sense of
 +
direction, but that will be an easy enough bridge to cross when we
 +
come to it.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 21===
 +
 
 +
<pre>
 +
 
 +
| Consider what effects that might 'conceivably'
 +
| have practical bearings you 'conceive' the
 +
| objects of your 'conception' to have.  Then,
 +
| your 'conception' of those effects is the
 +
| whole of your 'conception' of the object.
 +
|
 +
| Charles Sanders Peirce,
 +
| "Maxim of Pragmaticism", CP 5.438.
 +
 
 +
To construct the regular representations of S_3,
 +
we pick up from the data of its operation table:
 +
 
 +
Table 1.  Symmetric Group S_3
 +
 
 +
|                        ^
 +
|                    e / \ e
 +
|                      /  \
 +
|                    /  e  \
 +
|                  f / \  / \ f
 +
|                  /  \ /  \
 +
|                  /  f  \  f  \
 +
|              g / \  / \  / \ g
 +
|                /  \ /  \ /  \
 +
|              /  g  \  g  \  g  \
 +
|            h / \  / \  / \  / \ h
 +
|            /  \ /  \ /  \ /  \
 +
|            /  h  \  e  \  e  \  h  \
 +
|        i / \  / \  / \  / \  / \ i
 +
|          /  \ /  \ /  \ /  \ /  \
 +
|        /  i  \  i  \  f  \  j  \  i  \
 +
|      j / \  / \  / \  / \  / \  / \ j
 +
|      /  \ /  \ /  \ /  \ /  \ /  \
 +
|      (  j  \  j  \  j  \  i  \  h  \  j  )
 +
|      \  / \  / \  / \  / \  / \  /
 +
|        \ /  \ /  \ /  \ /  \ /  \ /
 +
|        \  h  \  h  \  e  \  j  \  i  /
 +
|          \  / \  / \  / \  / \  /
 +
|          \ /  \ /  \ /  \ /  \ /
 +
|            \  i  \  g  \  f  \  h  /
 +
|            \  / \  / \  / \  /
 +
|              \ /  \ /  \ /  \ /
 +
|              \  f  \  e  \  g  /
 +
|                \  / \  / \  /
 +
|                \ /  \ /  \ /
 +
|                  \  g  \  f  /
 +
|                  \  / \  /
 +
|                    \ /  \ /
 +
|                    \  e  /
 +
|                      \  /
 +
|                      \ /
 +
|                        v
 +
 
 +
Just by way of staying clear about what we are doing,
 +
let's return to the recipe that we worked out before:
 +
 
 +
It is part of the definition of a group that the 3-adic
 +
relation L c G^3 is actually a function L : G x G -> G.
 +
It is from this functional perspective that we can see
 +
an easy way to derive the two regular representations.
 +
 
 +
Since we have a function of the type L : G x G -> G,
 +
we can define a couple of substitution operators:
 +
 
 +
1.  Sub(x, <_, y>) puts any specified x into
 +
    the empty slot of the rheme <_, y>, with
 +
    the effect of producing the saturated
 +
    rheme <x, y> that evaluates to x·y.
 +
 
 +
2.  Sub(x, <y, _>) puts any specified x into
 +
    the empty slot of the rheme <y, >, with
 +
    the effect of producing the saturated
 +
    rheme <y, x> that evaluates to y·x.
 +
 
 +
In (1), we consider the effects of each x in its
 +
practical bearing on contexts of the form <_, y>,
 +
as y ranges over G, and the effects are such that
 +
x takes <_, y> into x·y, for y in G, all of which
 +
is summarily notated as x = {(y : x·y) : y in G}.
 +
The pairs (y : x·y) can be found by picking an x
 +
from the left margin of the group operation table
 +
and considering its effects on each y in turn as
 +
these run along the right margin.  This produces
 +
the regular ante-representation of S_3, like so:
 +
 
 +
e  =  e:e  +  f:f  +  g:g  +  h:h  +  i:i  +  j:j
 +
 
 +
f  =  e:f  +  f:g  +  g:e  +  h:j  +  i:h  +  j:i
 +
 
 +
g  =  e:g  +  f:e  +  g:f  +  h:i  +  i:j  +  j:h
 +
 
 +
h  =  e:h  +  f:i  +  g:j  +  h:e  +  i:f  +  j:g
 +
 
 +
i  =  e:i  +  f:j  +  g:h  +  h:g  +  i:e  +  j:f
 +
 
 +
j  =  e:j  +  f:h  +  g:i  +  h:f  +  i:g  +  j:e
 +
 
 +
In (2), we consider the effects of each x in its
 +
practical bearing on contexts of the form <y, _>,
 +
as y ranges over G, and the effects are such that
 +
x takes <y, _> into y·x, for y in G, all of which
 +
is summarily notated as x = {(y : y·x) : y in G}.
 +
The pairs (y : y·x) can be found by picking an x
 +
on the right margin of the group operation table
 +
and considering its effects on each y in turn as
 +
these run along the left margin.  This generates
 +
the regular post-representation of S_3, like so:
 +
 
 +
e  =  e:e  +  f:f  +  g:g  +  h:h  +  i:i  +  j:j
 +
 
 +
f  =  e:f  +  f:g  +  g:e  +  h:i  +  i:j  +  j:h
 +
 
 +
g  =  e:g  +  f:e  +  g:f  +  h:j  +  i:h  +  j:i
 +
 
 +
h  =  e:h  +  f:j  +  g:i  +  h:e  +  i:g  +  j:f
 +
 
 +
i  =  e:i  +  f:h  +  g:j  +  h:f  +  i:e  +  j:g
 +
 
 +
j  =  e:j  +  f:i  +  g:h  +  h:g  +  i:f  +  j:e
 +
 
 +
If the ante-rep looks different from the post-rep,
 +
it is just as it should be, as S_3 is non-abelian
 +
(non-commutative), and so the two representations
 +
differ in the details of their practical effects,
 +
though, of course, being representations of the
 +
same abstract group, they must be isomorphic.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 22===
 +
 
 +
<pre>
 +
 
 +
| the way of heaven and earth
 +
| is to be long continued
 +
| in their operation
 +
| without stopping
 +
|
 +
| i ching, hexagram 32
 +
 
 +
You may be wondering what happened to the announced subject
 +
of "Differential Logic", and if you think that we have been
 +
taking a slight "excursion" -- to use my favorite euphemism
 +
for "digression" -- my reply to the charge of a scenic rout
 +
would need to be both "yes and no".  What happened was this.
 +
At the sign-post marked by Sigil 7, we made the observation
 +
that the shift operators E_ij form a transformation group
 +
that acts on the propositions of the form f : B^2 -> B.
 +
Now group theory is a very attractive subject, but it
 +
did not really have the effect of drawing us so far
 +
off our initial course as you may at first think.
 +
For one thing, groups, in particular, the groups
 +
that have come to be named after the Norwegian
 +
mathematician Marius Sophus Lie, have turned
 +
out to be of critical utility in the solution
 +
of differential equations.  For another thing,
 +
group operations afford us examples of triadic
 +
relations that have been extremely well-studied
 +
over the years, and this provides us with quite
 +
a bit of guidance in the study of sign relations,
 +
another class of triadic relations of significance
 +
for logical studies, in our brief acquaintance with
 +
which we have scarcely even started to break the ice.
 +
Finally, I could hardly avoid taking up the connection
 +
between group representations, a very generic class of
 +
logical models, and the all-important pragmatic maxim.
 +
 
 +
Biographical Data for Marius Sophus Lie (1842-1899):
 +
 
 +
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Lie.html
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 23===
 +
 
 +
<pre>
 +
 
 +
| Bein' on the twenty-third of June,
 +
|      As I sat weaving all at my loom,
 +
| Bein' on the twenty-third of June,
 +
|      As I sat weaving all at my loom,
 +
| I heard a thrush, singing on yon bush,
 +
|      And the song she sang was The Jug of Punch.
 +
 
 +
We've seen a couple of groups, V_4 and S_3, represented in various ways, and
 +
we've seen their representations presented in a variety of different manners.
 +
Let us look at one other stylistic variant for presenting a representation
 +
that is frequently seen, the so-called "matrix representation" of a group.
 +
 
 +
Recalling the manner of our acquaintance with the symmetric group S_3,
 +
we began with the "bigraph" (bipartite graph) picture of its natural
 +
representation as the set of all permutations or substitutions on
 +
the set X = {A, B, C}.
 +
 
 +
Table 1.  Permutations or Substitutions in Sym {A, B, C}
 +
o---------o---------o---------o---------o---------o---------o
 +
|        |        |        |        |        |        |
 +
|    e    |    f    |    g    |    h    |    i    |    j    |
 +
|        |        |        |        |        |        |
 +
o=========o=========o=========o=========o=========o=========o
 +
|        |        |        |        |        |        |
 +
|  A B C  |  A B C  |  A B C  |  A B C  |  A B C  |  A B C  |
 +
|        |        |        |        |        |        |
 +
|  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |
 +
|  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |
 +
|        |        |        |        |        |        |
 +
|  A B C  |  C A B  |  B C A  |  A C B  |  C B A  |  B A C  |
 +
|        |        |        |        |        |        |
 +
o---------o---------o---------o---------o---------o---------o
 +
 
 +
Then we rewrote these permutations -- being functions f : X --> X
 +
they can also be recognized as being 2-adic relations f c X  x  X --
 +
in "relative form", in effect, in the manner to which Peirce would
 +
have made us accostumed had he been given a relative half-a-chance:
 +
 
 +
    e  =  A:A + B:B + C:C
 +
 
 +
    f  =  A:C + B:A + C:B
 +
 
 +
    g  =  A:B + B:C + C:A
 +
 
 +
    h  =  A:A + B:C + C:B
 +
 
 +
    i  =  A:C + B:B + C:A
 +
 
 +
    j  =  A:B + B:A + C:C
 +
 
 +
These days one is much more likely to encounter the natural representation
 +
of S_3 in the form of a "linear representation", that is, as a family of
 +
linear transformations that map the elements of a suitable vector space
 +
into each other, all of which would in turn usually be represented by
 +
a set of matrices like these:
 +
 
 +
Table 2.  Matrix Representations of Permutations in Sym(3)
 +
o---------o---------o---------o---------o---------o---------o
 +
|        |        |        |        |        |        |
 +
|    e    |    f    |    g    |    h    |    i    |    j    |
 +
|        |        |        |        |        |        |
 +
o=========o=========o=========o=========o=========o=========o
 +
|        |        |        |        |        |        |
 +
|  1 0 0  |  0 0 1  |  0 1 0  |  1 0 0  |  0 0 1  |  0 1 0  |
 +
|  0 1 0  |  1 0 0  |  0 0 1  |  0 0 1  |  0 1 0  |  1 0 0  |
 +
|  0 0 1  |  0 1 0  |  1 0 0  |  0 1 0  |  1 0 0  |  0 0 1  |
 +
|        |        |        |        |        |        |
 +
o---------o---------o---------o---------o---------o---------o
 +
 
 +
The key to the mysteries of these matrices is revealed by noting that their
 +
coefficient entries are arrayed and overlayed on a place mat marked like so:
 +
 
 +
    | A:A  A:B  A:C |
 +
    | B:A  B:B  B:C |
 +
    | C:A  C:B  C:C |
 +
 
 +
Of course, the place-settings of convenience at different symposia may vary.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 24===
 +
 
 +
<pre>
 +
 
 +
| In the beginning was the three-pointed star,
 +
| One smile of light across the empty face;
 +
| One bough of bone across the rooting air,
 +
| The substance forked that marrowed the first sun;
 +
| And, burning ciphers on the round of space,
 +
| Heaven and hell mixed as they spun.
 +
|
 +
| Dylan Thomas, "In The Beginning", Verse 1
 +
 
 +
I'm afrayed that this thread is just bound to keep
 +
encountering its manifold of tensuous distractions,
 +
but I'd like to try and return now to the topic of
 +
inquiry, espectrally viewed in differential aspect.
 +
 
 +
Here's one picture of how it begins,
 +
one angle on the point of departure:
 +
 
 +
o-----------------------------------------------------------o
 +
|                                                          |
 +
|                                                          |
 +
|                      o-------------o                      |
 +
|                    /              \                    |
 +
|                    /                \                    |
 +
|                  /                  \                  |
 +
|                  /                    \                  |
 +
|                /                      \                |
 +
|                o                        o                |
 +
|                |                        |                |
 +
|                |                        |                |
 +
|                |      Observation      |                |
 +
|                |                        |                |
 +
|                |                        |                |
 +
|            o--o----------o  o----------o--o            |
 +
|            /    \          \ /          /    \            |
 +
|          /      \  d_I ^  o  ^ d_E  /      \          |
 +
|          /        \      \/ \/      /        \          |
 +
|        /          \      /\ /\      /          \        |
 +
|        /            \    /  @  \    /            \        |
 +
|      o              o--o---|---o--o              o      |
 +
|      |                |  |  |                |      |
 +
|      |                |  v  |                |      |
 +
|      |  Expectation  |  d_O  |    Intention    |      |
 +
|      |                |      |                |      |
 +
|      |                |      |                |      |
 +
|      o                o      o                o      |
 +
|        \                \    /                /        |
 +
|        \                \  /                /        |
 +
|          \                \ /                /          |
 +
|          \                o                /          |
 +
|            \              / \              /            |
 +
|            o-------------o  o-------------o            |
 +
|                                                          |
 +
|                                                          |
 +
o-----------------------------------------------------------o
 +
 
 +
From what we must assume was a state of "Unconscious Nirvana" (UN),
 +
since we do not acutely become conscious until after we are exiled
 +
from that garden of our blissful innocence, where our Expectations,
 +
our Intentions, our Observations all subsist in a state of perfect
 +
harmony, one with every barely perceived other, something intrudes
 +
on that scene of paradise to knock us out of that blessed isle and
 +
to trouble our countenance forever after at the retrospect thereof.
 +
 
 +
The least disturbance, it being provident and prudent both to take
 +
that first up, will arise in just one of three ways, in accord with
 +
the mode of discord that importunes on our equanimity, whether it is
 +
Expectation, Intention, Observation that incipiently incites the riot,
 +
departing as it will from congruence with the other two modes of being.
 +
 
 +
In short, we cross just one of the three lines that border on the center,
 +
or perhaps it is better to say that the objective situation transits one
 +
of the chordal bounds of harmony, for the moment marked as d_E, d_I, d_O
 +
to note the fact one's Expectation, Intention, Observation, respectively,
 +
is the mode that we duly indite as the one that's sounding the sour note.
 +
 
 +
A difference between Expectation and Observation is experienced
 +
as a "Surprise", a phenomenon that cries out for an Explanation.
 +
 
 +
A discrepancy between Intention and Observation is experienced
 +
as a "Problem", of the species that calls for a Plan of Action.
 +
 
 +
I can remember that I once thought up what I thought up an apt
 +
name for a gap between Expectation and Intention, but I cannot
 +
recall what it was, nor yet find the notes where I recorded it.
 +
 
 +
At any rate, the modes of experiencing a surprising phenomenon
 +
or a problematic situation, as described just now, are already
 +
complex modalities, and will need to be analyzed further if we
 +
want to relate them to the minimal changes d_E, d_I, d_O.  Let
 +
me think about that for a little while and see what transpires.
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 25===
 +
 
 +
<pre>
 +
 
 +
| In the beginning was the pale signature,
 +
| Three-syllabled and starry as the smile;
 +
| And after came the imprints on the water,
 +
| Stamp of the minted face upon the moon;
 +
| The blood that touched the crosstree and the grail
 +
| Touched the first cloud and left a sign.
 +
|
 +
| Dylan Thomas, "In The Beginning", Verse 2
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Note 26===
 +
 
 +
<pre>
 +
 
 +
| In the beginning was the mounting fire
 +
| That set alight the weathers from a spark,
 +
| A three-eyed, red-eyed spark, blunt as a flower;
 +
| Life rose and spouted from the rolling seas,
 +
| Burst in the roots, pumped from the earth and rock
 +
| The secret oils that drive the grass.
 +
|
 +
| Dylan Thomas, "In The Beginning", Verse 3
 +
 
 +
</pre>
 +
 
 +
==Differential Logic 2002 &bull; Work Area==
 +
 
 +
<pre>
 +
 
 +
problem about writing:
 +
 
 +
e  =  e:e  +  f:f  +  g:g  +  h:h
 +
 
 +
no recursion intended
 +
need for a work-around
 +
ways of explaining away
 +
 
 +
action on signs not objects
 +
 
 +
mathematical definition of representation
 +
 
 +
</pre>
 +
 
 +
==Differential Logic 2002 &bull; Discussion==
 +
 
 +
===Diff Log 2002 &bull; Discussion Note 1===
 +
 
 +
<pre>
 +
 
 +
BU = Benjamin Udell
 +
 
 +
BU: Your exposition of differential logic is over my head, YET --
 +
 
 +
Apologies to all for posting so many notes at once,
 +
but I've found that it's best to break this stuff
 +
up into easy pieces, and I wanted to get to the
 +
part about the pragmatic maxim before everyone
 +
lapsed into a coma.  Too late, most likely.
 +
 
 +
I just thought that it was about time that I supply a concrete example
 +
in support of all those wild claims I've been making about how crucial
 +
Peirce's mathematical way of looking at logic is to the future of both
 +
subjects.  From my perspective, his logic is not some museum curiosity,
 +
but a living force and a working tool, a resource whose full potential
 +
is yet to be fully explored.  By way of illustrating the power of this
 +
approach, I will exposit here the subject of differential logic along
 +
lines that a slight extension of Peirce's Alpha Graphs makes possible.
 +
The basic idea of differential logic was hinted at by Leibniz, exists
 +
in explicit form as far back as the Boole-DeMorgan correspondence, it
 +
was familiar to Babbage, and is well-known to circuit engineers today,
 +
but its full development has been hobbled by the recalcitrant calculus
 +
with which today's logic teachers still shackle today's logic students.
 +
 
 +
BU: I'm wondering whether you could do me (or maybe a few of us) the
 +
    favor of temporarily morphing into E.T. Bell & explaining to a
 +
    mathematically ill educated person like me, what differential
 +
    logic involves.  (E.g., does this have something to do with
 +
    1st- vs. 2nd-order logic?) I also mean analogously as in
 +
    the following examples:
 +
 
 +
Oh gee, could I play John Taine instead?
 +
Bell was a bit notorious for tailoring
 +
the facts as befit the better story.
 +
 
 +
We are building the differential extension of "Zeroth Order Logic" (ZOL),
 +
that is to say, starting with propositional calculus or sentential logic.
 +
 
 +
BU: Ex.: Measure theory is used for probability theory.  The basic thing is
 +
    to find the relative sizes of different portions of the area under the
 +
    curve (the total area is usually set at unity).  (If I've got that right!)
 +
    This is finding the definite integrals representing the portions.
 +
    (Actually I've probably got this wrong.)
 +
 
 +
This is square measure theory in a venn diagram world.
 +
You may find it useful to stroll through this gallery:
 +
 
 +
http://suo.ieee.org/ontology/msg03585.html
 +
 
 +
BU: Ex.: In optimization sometimes one looks for the minimum or maximum
 +
    of a curve.  This amounts to finding the point(s) of the curve where
 +
    the slope is zero.  Sometimes one wants to find the intersections of
 +
    various curves;  in any case sometimes one seeks to find points on
 +
    curves, points which have certain specified properties in terms
 +
    of the curve, such as being a minimum, a maximum, a point of
 +
    intersection, etc.
 +
 
 +
The slope is a derivative, df/dx, which is a number in the relevant field,
 +
being the coefficient that sits next to the differential factor dx in the
 +
appropriate differential expansion.  It turns out to be a bit more useful
 +
to preserve the whole differential term.  Since our field is B = GF(2),
 +
the derivative is either 0 or 1, so the term dx is either there or not.
 +
 
 +
BU: I do see you mentioning finding of differentials, but I don't know
 +
    whether that's the basic point.  Also, I'm a little confused in my
 +
    ignorance, since I thought that if you're talking about discrete
 +
    objects (statements), you'd be talking about differences rather
 +
    than differentials.  In any case I'm not sure how to think about
 +
    a differential or a difference between two statements.
 +
 
 +
We are starting with the logical analogue of "finite difference calculus",
 +
and will work up to the logical analogue of true differentials bit by bit.
 +
 
 +
The definition that you want to keep in mind is the concept of
 +
a differential as a locally linear approximation to a function.
 +
This is a notion that can very often make sense even when all
 +
of the familiar formulas for it fail to carry over by means
 +
of the usual brands of automatic analogues.
 +
 
 +
Think of a proposition, a shaded region in a venn diagram,
 +
as if the shaded region were a mesa of height 1, and view
 +
that as a potential function or a probability density on
 +
the universe of discourse.  Then think about gradients.
 +
 
 +
To be continuous ---
 +
If not exactly
 +
Uniformly ...
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Discussion Note 2===
 +
 
 +
<pre>
 +
 
 +
BU = Benjamin Udell
 +
JA = Jon Awbrey
 +
 
 +
BU: I found this at Semeion, Research Center of Sciences of Communication:
 +
 
 +
http://www.semeion.it/GLOSSTH1.htm
 +
 
 +
| Differential Logic:  is a different logic to build up
 +
| complex systems.  Its inspiration is biology.  According
 +
| to the differential logic, a unit develops dividing itself
 +
| into more units and, in doing so, radically changes the state
 +
| of its information.  This logic is not tautological, because
 +
| during the process the systems increases its quantity of
 +
| organization.
 +
 
 +
| Differential System:  is a system whose development happens in the same
 +
| way as biological systems; that is, through differentiation of its units.
 +
 
 +
BU: Is this the same differential logic that you're talking about?
 +
 
 +
I think that they are speaking of "differentiation" in the sense
 +
of embryology or developmental biology.  That happens to be a big
 +
interest of mine in a remotely related way -- the data structures,
 +
one of whose alternate nicknames is "conifers", that I use in my
 +
"learning and reasoning" program, were partly influenced by the
 +
way that so-called "growth cones" ramify throughout the nervous
 +
system in the development of neural tissue during neurogenesis
 +
and epigenetic learning.  Other than that, there's no terribly
 +
close conscious connection with what I'm doing with diff log
 +
at the moment.
 +
 
 +
JA: We are building the differential extension of "Zeroth Order Logic" (ZOL),
 +
    that is to say, starting with propositional calculus or sentential logic.
 +
 
 +
BU: Ex.: Measure theory is used for probability theory.
 +
    The basic thing is to find the relative sizes of
 +
    different portions of the area under the curve
 +
    (the total area is usually set at unity).
 +
    (If I've got that right!)  This is finding
 +
    the definite integrals representing the
 +
    portions.  (Actually  I've probably got
 +
    this wrong.)
 +
 
 +
JA: This is square measure theory in a venn diagram world.
 +
    You may find it useful to stroll through this gallery:
 +
 
 +
JA: http://suo.ieee.org/ontology/msg03585.html
 +
 
 +
BU: If it's square measure theory, ultimately the interest will be
 +
    in some kind of logical analog of mathematical integration?
 +
 
 +
I just mean that propositions are (modeled as, regarded as) step-functions,
 +
functions having the form f : X -> B, where X is the universe of discourse
 +
and B = {0, 1}.  If B is regarded as a "field", a space with some analogue
 +
of the usual four functions (add, subtract, multiply, divide), then it is
 +
called the "galois field of order 2" and notated as GF(2).  In set theory
 +
these are called "characteristic functions" and in statistics they are
 +
known as "indicator functions" because they characterize or indicate
 +
the subset of X where f evaluates to 1.  This subset is the inverse
 +
image of 1 under f, horribly notated in Asciiland as f^(-1)(1) c X,
 +
and various other folks call it the "antecedent", the "fiber", or
 +
the "pre-image" of 1 under f.  I tend to use the "fiber" language,
 +
and also make use of the "fiber bars" [|...|] that allow of the
 +
more succinct form [| f |] = f^(-1)(1) = {x in X : f(x) = 1}.
 +
 
 +
  B
 +
  ^
 +
1 +    ******    ***********
 +
  |    *    *    *        * 
 +
  |    *    *    *        *
 +
0 o*****----******---------***********> X
 +
 
 +
BU: Ex.: In optimization sometimes one looks for the minimum or maximum of
 +
    a curve.  This amounts to finding the point(s) of the curve where the
 +
    slope is zero.  Sometimes one wants to find the intersections of various
 +
    curves;  in any case sometimes one seeks to find points on curves, points
 +
    which have certain specified properties in terms of the curve, such as being
 +
    a minimum, a maximum, a point of intersection, etc.
 +
 
 +
In mathematics one tends to take spaces and the functions on spaces in tandem,
 +
considering ordered pairs like (X, X -> K), where X is the space of interest,
 +
K is a space with a special relation to X, typically its "field of scalars",
 +
and (X -> K) is the set of all pertinent functions from X to K.
 +
 
 +
In differential logic, we try to exploit what analogies
 +
we can find between real settings like (X, X -> R) and
 +
boolean settings like (Y, Y -> B), where R is the set
 +
of real numbers and B = {0, 1}.  At the entry level
 +
of generality, standard tricks of the trade permit
 +
us to "coordinate" X as a k-dimensional real space
 +
R^k and Y as a k-dimensional boolean space B^k,
 +
and so we begin by cranking the analogy mill
 +
forth and back between (R^k, R^k -> R) and
 +
(B^k, B^k -> B).
 +
 
 +
Starting to nod off ...
 +
will have to get to
 +
the rest tomorrow.
 +
 
 +
JA: The slope is a derivative, df/dx, which is a number in the relevant field,
 +
    being the coefficient that sits next to the differential factor dx in the
 +
    appropriate differential expansion.  It turns out to be a bit more useful
 +
    to preserve the whole differential term.  Since our field is B = GF(2),
 +
    the derivative is either 0 or 1, so the term dx is either there or not.
 +
 
 +
BU: Huh?
 +
 
 +
BU: I do see you mentioning finding of differentials,
 +
    but I don't know whether that's the basic point.
 +
    Also, I'm a little confused in my ignorance,
 +
    since I thought that if you're talking about
 +
    discrete objects (statements), you'd be talking
 +
    about differences rather than differentials.
 +
    In any case I'm not sure how to think about
 +
    a differential or a difference between two
 +
    statements.
 +
 
 +
JA: We are starting with the logical analogue of "finite difference calculus",
 +
    and will work up to the logical analogue of true differentials bit by bit.
 +
 
 +
JA: The definition that you want to keep in mind is the concept of
 +
    a differential as a locally linear approximation to a function.
 +
    This is a notion that can very often makes sense even when all
 +
    of the familiar formulas for it fail to carry over by means of
 +
    the usual brands of automatic analogues.
 +
 
 +
JA: Think of a proposition, a shaded region in a venn diagram,
 +
    as if the shaded region were a mesa of height 1, and view
 +
    that as a potential function or a probability density on
 +
    the universe of discourse.  Then think about gradients.
 +
 
 +
BU: potential function?  gradients?
 +
 
 +
</pre>
 +
 
 +
===Diff Log 2002 &bull; Discussion Note 3===
 +
 
 +
<pre>
 +
 
 +
IS = Inna Semetsky
 +
JA = Jon Awbrey
 +
 
 +
IS: You mentioned circuit engineers in one of your posts.  Computer technology
 +
    is based on designing circuits aiming at information processing.  With this
 +
    in mind, how then Peirce's philosophy differ from the so called computational
 +
    brand of contemporary cognitive science who equate "mind" with the information
 +
    processing device, and posit that there is nothing else to it.
 +
 
 +
That discussion was rendered a hopeless muddle by the fact that
 +
cognitive science folks never read anything beyond a ten-year
 +
window on their own literature, if that much, and so they
 +
fell into using the term "functionalism" in a way that
 +
was almost exactly the opposite of the way that it
 +
had always been used before.
 +
 
 +
At any rate, the interesting part of the Whole Idea
 +
goes back to Aristotle's dictum that "soul is form",
 +
In that form it might be something worth discussing.
 +
 
 +
IS: Indeed difference may be considered as an "error"
 +
    between input and output, and manipulated upon by
 +
    further differentiations to feed into "the process"
 +
    again and again.  I was very impressed with your posts
 +
    on differential logic (I admit that I just skimmed them)
 +
    but couldn't help thinking that all this "and", "or",
 +
    "if ... then", and other functions of Boolean algebra
 +
    indeed can be, and are being, constructed electronically.
 +
    Yet I would hate to think that what cognitivists are doing --
 +
    even unknowingly -- is employing Peirce's semiotics.  They
 +
    use Boolean logic alright.  Is it all that is there in Peirce?
 +
 
 +
There is a differential aspect to inquiry.  Inquiry begins with uncertainty,
 +
a condition of high cognitive entropy, if you will.  Differences generalize
 +
to distributions.  The more uniform the distribution the higher the entropy.
 +
Uncertainties are commonly associated with several categories of difference:
 +
 
 +
1.  A difference between expectation and observation is called a "surprise".
 +
2.  A difference between  intention  and observation is called a "problem".
 +
3.  A difference between expectation and  intention  is called a (I forget).
 +
 
 +
The cybernetic notion of an error-controlled regulator is a special case of this.
 +
These are some of the main reasons that I thought a differential logic was needed.
 +
 
 +
IS: While on the subject:  I mentioned not once that part of my research is a
 +
    peculiar connection between Deleuze philosophy and american pragmatism,
 +
    not the least of which is the notion of difference.  Deleuze has been
 +
    designated as "difference engineer" and his major opus is called
 +
    "Difference and Repetition".
 +
 
 +
Five or six years ago, while taking a bit of a break from my normal routine,
 +
I'd started on a collection of readings along these very lines, mostly just
 +
picking them out by free association:  Deleuze, 'Difference and Repetition',
 +
'The Fold';  Derrida, 'Writing and Difference';  Lyotard, 'The Differend';
 +
Giroux, 'Border Crossings', and so on.  But I have no really clear sense of
 +
what it was all about any more.  A lot of this writing always strikes me as
 +
very insightful and intuitive, while I am reading it, and then the next one
 +
says something radically different, that also strikes me as very insightful
 +
and intuitive, so after a while I tend to become just a little indifferent.
 +
But I see that I have long passages marked in the margins of the 'The Fold',
 +
so perhaps the Leibniz link is something that I will have recourse to again.
 +
Of course, 'Timaeus' and Kierkegaard 'On Repetition' are eternal favorites.
 +
 
 +
</pre>
 +
 
 +
==Differential Logic 2002 &bull; Document History==
 +
 
 +
* http://web.archive.org/web/20110612002240/http://suo.ieee.org/ontology/thrd28.html#04040
 +
# http://web.archive.org/web/20140406040004/http://suo.ieee.org/ontology/msg04040.html
 +
# http://web.archive.org/web/20110612001949/http://suo.ieee.org/ontology/msg04041.html
 +
# http://web.archive.org/web/20110612010502/http://suo.ieee.org/ontology/msg04045.html
 +
# http://web.archive.org/web/20110612005212/http://suo.ieee.org/ontology/msg04046.html
 +
# http://web.archive.org/web/20110612001954/http://suo.ieee.org/ontology/msg04047.html
 +
# http://web.archive.org/web/20110612010620/http://suo.ieee.org/ontology/msg04048.html
 +
# http://web.archive.org/web/20110612010550/http://suo.ieee.org/ontology/msg04052.html
 +
# http://web.archive.org/web/20110612010724/http://suo.ieee.org/ontology/msg04054.html
 +
# http://web.archive.org/web/20110612000847/http://suo.ieee.org/ontology/msg04055.html
 +
# http://web.archive.org/web/20110612001959/http://suo.ieee.org/ontology/msg04067.html
 +
# http://web.archive.org/web/20110612010507/http://suo.ieee.org/ontology/msg04068.html
 +
# http://web.archive.org/web/20110612002014/http://suo.ieee.org/ontology/msg04069.html
 +
# http://web.archive.org/web/20110612010701/http://suo.ieee.org/ontology/msg04070.html
 +
# http://web.archive.org/web/20110612003540/http://suo.ieee.org/ontology/msg04072.html
 +
# http://web.archive.org/web/20110612005229/http://suo.ieee.org/ontology/msg04073.html
 +
# http://web.archive.org/web/20110610153117/http://suo.ieee.org/ontology/msg04074.html
 +
# http://web.archive.org/web/20110612010555/http://suo.ieee.org/ontology/msg04077.html
 +
# http://web.archive.org/web/20110612001918/http://suo.ieee.org/ontology/msg04079.html
 +
# http://web.archive.org/web/20110612005244/http://suo.ieee.org/ontology/msg04080.html
 +
# http://web.archive.org/web/20110612005249/http://suo.ieee.org/ontology/msg04268.html
 +
# http://web.archive.org/web/20110612010626/http://suo.ieee.org/ontology/msg04269.html
 +
# http://web.archive.org/web/20110612000853/http://suo.ieee.org/ontology/msg04272.html
 +
# http://web.archive.org/web/20110612010514/http://suo.ieee.org/ontology/msg04273.html
 +
# http://web.archive.org/web/20110612002235/http://suo.ieee.org/ontology/msg04290.html
12,089

edits