Line 1: |
Line 1: |
| + | <p align="center"><font face="curlz mt" size="7">'''MathJaX SuX ❢❢❢'''</font></p> |
| + | |
| <div class="nonumtoc">__TOC__</div> | | <div class="nonumtoc">__TOC__</div> |
| | | |
− | ==Discussion==
| + | '''NOTE. I am putting the last few Sections of Part 6 here until I can figure out why the article page is not rendering the full amount of edit page text that it used to show.''' |
| | | |
− | ==Fragments== | + | ==6. Reflective Interpretive Frameworks (cont.)== |
| | | |
− | ===6.19. Examples of Self-Reference=== | + | ===6.47. Mutually Intelligible Codes=== |
| | | |
− | In previous work I developed a version of propositional calculus based on C.S. Peirce's ''existential graphs'' and implemented this calculus in computational form as a ''sentential calculus interpreter''. Taking this calculus as a point of departure, I devised a theory of ''differential extensions'' for propositional domains that can be used, figuratively speaking, to put universes of discourse “in motion”, in other words, to provide qualitative descriptions of processes taking place in logical spaces. See (Awbrey, 1989 and 1994) for an account of this calculus, documentation of its computer program, and a detailed treatment of differential extensions.
| + | Before this complex of relationships can be formalized in much detail, I must introduce linguistic devices for generating ''higher order signs'', used to indicate other signs, and ''situated signs'', indexed by the names of their users, their contexts of use, and other types of information incidental to their usage in general. This leads to the consideration of ''systems of interpretation'' (SOIs) that maintain recursive mechanisms for naming everything within their purview. This “nominal generosity” gives them a new order of generative capacity, producing a sufficient number of distinctive signs to name all the objects and then name the names that are needed in a given discussion. |
| | | |
− | In previous work (Awbrey, 1989) I described a system of notation for propositional calculus based on C.S. Peirce's ''existential graphs'', documented a computer implementation of this formalism, and showed how to provide this calculus with a ''differential extension'' that can be used to describe changing universes of discourse. In subsequent work (Awbrey, 1994) the resulting system of ''differential logic'' was applied to give qualitative descriptions of change in discrete dynamical systems. This section draws on that earlier work, summarizing the conceptions that are needed to give logical representations of sign relations and recording a few changes of a minor nature in the typographical conventions used.
| + | Symbolic systems for quoting inscriptions and ascribing quotations are associated in metamathematics with ''gödel numberings'' of formal objects, enumerative functions that provide systematic but ostensibly arbitrary reference numbers for the signs and expressions in a formal language. Assuming these signs and expressions denote anything at all, their formal enumerations become the ''codes'' of formal objects, just as programs taken literally are code names for certain mathematical objects known as computable functions. Partial forms of specification notwithstanding, these codes are the only complete modes of representation that formal objects can have in the medium of mechanical activity. |
| | | |
− | Abstractly, a domain of propositions is known by the axioms it satisfies. Concretely, one thinks of a proposition as applying to the objects it is true of.
| + | In the dialogue of <math>\text{A}\!</math> and <math>\text{B}\!</math> there happens to be an exact coincidence between signs and states. That is, the states of the interpretive systems <math>\text{A}\!</math> and <math>\text{B}\!</math> are not distinguished from the signs in <math>S\!</math> that are imagined to be mediating, moment by moment, the attentions of the interpretive agents <math>\text{A}\!</math> and <math>\text{B}\!</math> toward their respective objects in <math>O.\!</math> So the question arises: Is this identity bound to be a general property of all useful sign relations, or is it only a degenerate feature occurring by chance or unconscious design in the immediate example? |
| | | |
− | Logically, a domain of properties or propositions is known by the axioms it is subject to. Concretely, a property or proposition is known by the things or situations it is true of. Typically, the signs of properties and propositions are called ''terms'' and ''sentences'', respectively.
| + | To move toward a resolution of this question I reason as follows. In one direction, it seems obvious that a ''sign in use'' (SIU) by a particular interpreter constitutes a component of that agent's state. In other words, the very notion of an identifiable SIU refers to numerous instances of a particular interpreter's state that share in the abstract property of being such instances, whether or not anyone can give a more concise or illuminating characterization of the concept under which these momentary states are gathered. Conversely, it is at least conceivable that the whole state of a system, constituting its transitory response to the entirety of its environment, history, and goals, can be interpreted as a sign of something to someone. In sum, there remains an outside chance of signs and states being precisely the same things, since nothing precludes the existence of an ''interpretive framework'' (IF) that could make it so. |
| | | |
− | ===6.23. Intensional Representations of Sign Relations===
| + | Still, if the question about the distinction or coincidence between signs and states is restricted to the domains where existential realizations are conceivable, no matter whether in biological or computational media, then the prerequisites of the task become more severe, due to the narrower scope of materials that are admitted to answer them. In focusing on this arena the problem is threefold: |
| | | |
− | In the formalized examples of IRs to be presented in this work, I will keep to the level of logical reasoning that is usually referred to as ''propositional calculus'' or ''sentential logic''.
| + | # The crucial point is not just whether it is possible to imagine an ideal SOI, an external perspective or an independent POV, for which all states are signs, but whether this is so for the prospective SOI of the very agent that passes through these states. |
| + | # To what extent can the transient states and persistent conduct of each agent in a community of interpretation take on a moderately public and objective aspect in relation to the other participants? |
| + | # How far in this respect, in the common regard for this species of outward demeanor, can each agent's behavior act as a sign of genuine objects in the eyes of other interpreters? |
| | | |
− | The contrast between ERs and IRs is strongly correlated with another dimension of interest in the study of inquiry, namely, the tension between empirical and rational modes of inquiry. | + | The special task of a nuanced hermeneutic approach to computational interpretation is to realize the relativity of all formal codes to their formal coders, and to seek ways of facilitating mutual intelligibility among interpreters whose internal codes can be thoroughly private, synchronistically keyed to external events, and even a bit idiosyncratic. |
| | | |
− | This section begins the explicit discussion of ERs by taking a second look at the sign relations <math>L(\text{A})\!</math> and <math>L(\text{B}).\!</math> Since the form of these examples no longer presents any novelty, this second presentation of <math>L(\text{A})\!</math> and <math>L(\text{B})\!</math> provides a first opportunity to introduce some new material. In the process of reviewing this material, it is useful to anticipate a number of incidental issues that are on the point of becoming critical, and to begin introducing the generic types of technical devices that are needed to deal with them.
| + | Ultimately, working through this maze of “meta” questions, as posed on the tentative grounds of the present project, leads to a question about the ''logical reference frames'' or ''metamathematical coordinate systems'' that are supposed to distinguish “objective” from “symbolic” entities and are imagined to discriminate a range of gradations along their lines. The question is: Whether any gauge of objectivity or scale of virtuality has invariant properties discoverable by all independent interpreters, or whether all is vanity and inane relativism, and everything concerning a subjective point of view is sheer caprice? |
| | | |
− | Therefore, the easiest way to begin an explicit treatment of ERs is by recollecting the Tables of the sign relations <math>L(\text{A})\!</math> and <math>L(\text{B})\!</math> and by finishing the corresponding Tables of their dyadic components. Since the form of the sign relations <math>L(\text{A})\!</math> and <math>L(\text{B})\!</math> no longer presents any novelty, I can use the second presentation of these examples as a first opportunity to examine a selection of their finer points, previously overlooked.
| + | Thus, the problem of mutual intelligibility turns on the question of ''common significance'': How can there be signs that are truly public, when the most natural signs that distinct agents can know, their own internal states, have no guarantee and very little likelihood of being related in systematically fathomable ways? As a partial answer to this, I am willing to contemplate certain forms of pre-established harmony, like the common evolution of a biological species or the shared culture of an interpretive community, but my experience has been that harmony, once established, quickly corrupts unless active means are available to maintain it. So there still remains the task of identifying these means. With or without the benefit of a prior consensus, or the assumption of an initial but possibly fragile equilibrium, an explanation of robust harmony must detail the modes of maintaining communication that enable coordinated action to persist in the meanest of times. |
| | | |
− | Starting from this standpoint, the easiest way to begin developing an explicit treatment of ERs is to gather the relevant materials in the forms already presented, to fill out their missing details and expand the abbreviated contents of these forms, and to review their full structures in a more formal light.
| + | The formal character of these questions, in the potential complexities that can be forced on contemplation in the pursuit of their answers, is independent of the species of interpreters that are chosen for the termini of comparison, whether person to person, person to computer, or computer to computer. As always, the truth of this kind of thesis is formal, all too formal. What it brings is a new refrain of an old motif: Are there meaningful, if necessarily formal series of analogies that can be strung from the patterns of whizzing electrons and humming protons, whose controlled modes of collective excitation form and inform the conducts of computers, all the way to the rather different patterns of wizened electrons and humbled protons, whose deliberate energies of communal striving substantiate the forms of life known to be intelligible? |
| | | |
− | Because of the perfect parallelism that the literal coding contrives between individual signs and grammatical categories, this arrangement illustrates not so much a code transformation as a re-interpretation of the original signs under different headings.
| + | A full consideration of the geometries available for the spaces in which these levels of reflective abstraction are commonly imagined to reside leads to the conclusion that familiar distinctions of “top down” versus “bottom up” are being taken for granted in an arena that has not even been established to be orientable. Thus, it needs to be recognized that the distinction between objects and signs is relative to a definite system of interpretation. The pragmatic theory of signs is designed, in part, precisely to deal with the circumstance that thoroughly objective states of systems can be signs of each other, undermining any pretended distinction between objects and signs that one might propose to draw on essential grounds. |
| | | |
− | ===6.33. Sign Relational Complexes===
| + | From now on, I will reuse the ancient term ''gnomon'' in a technical sense to refer to the gödel numbers or code names of formal objects. In other words, a gnomon is a gödel numbering or enumeration function that maps a domain of objects into a domain of signs, <math>\mathrm{Gno} : O \to S.\!</math> When the syntactic domain <math>S\!</math> is contained within the object domain <math>O,\!</math> then the part of the gnomon that maps <math>S\!</math> into <math>S,\!</math> providing names for signs and expressions, is usually regarded as a ''quoting function''. |
| | | |
− | I would like to record here, in what is topically the appropriate place, notice of a number of open questions that will have to be addressed if anyone desires to make a consistent calculus out of this link notation. Perhaps it is only because the franker forms of liaison involved in the couple <math>a \widehat{~} b\!</math> are more subject to the vagaries of syntactic elision than the corresponding bindings of the anglish ligature <math>(a, b),\!</math> but for some reason or other the circumflex character of these diacritical notices are much more liable to suggest various forms of elaboration, including higher order generalizations and information-theoretic partializations of the very idea of <math>n\!</math>-tuples and sequences.
| + | In the pluralistic contexts that go with pragmatic theories of signs, it is no longer entirely appropriate to refer to ''the'' gnomon of any object. At any moment of discussion, I can only have so-and-so's gnomon or code word for each thing under the sun. Thus, apparent references to a uniquely determined gnomon only make sense if taken as enthymemic invocations of the ordinary context and all that is comprehended to be implied in it, promising to convert tacit common sense into definite articulations of what is understood. Actually achieving this requires each elliptic reference to the gnomon to be explicitly grounded in the context of informal discussion, interpreted with respect to the conventional basis of understanding assumed in it, and relayed to the indexing function taken for granted by all parties to it. |
| | | |
− | One way to deal with the problems of partial information …
| + | In computational terms, this brand of pluralism means that neither the gnomon nor the quoting function that forms a part of it can be viewed as well-defined unless it is indexed, explicitly or implicitly, by the name of a particular interpreter. I will use either one of the equivalent notations <math>{}^{\backprime\backprime} \mathrm{Gno}_i (x) {}^{\prime\prime}\!</math> or <math>{}^{\backprime\backprime\langle} x, i {}^{\rangle\prime\prime}\!</math> to indicate the gnomon of the object <math>x\!</math> with respect to the interpreter <math>i.\!</math> The value <math>\mathrm{Gno}_i (x) = {}^{\langle} x, i {}^{\rangle} \in S\!</math> is the ''nominal sign in use'' or the ''name in use'' (NIU) of the object <math>x\!</math> with respect to the interpreter <math>i,\!</math> and thus it constitutes a component of <math>i\!</math>'s state. |
| | | |
− | '''Relational Complex?'''
| + | In the special case where <math>x\!</math> is a sign or expression in the syntactic domain, then <math>\mathrm{Gno}_i (x) = {}^{\langle} x, i {}^{\rangle}\!</math> is tantamount to the quotation of <math>x\!</math> by and for the use of the interpreter <math>i,\!</math> in short, the nominal sign to <math>i\!</math> that makes <math>x\!</math> an object for <math>i.\!</math> For signs and expressions, it is usually only the quoting function that makes them objects. But nothing is an object in any sense for an interpreter unless it is an object of a sign relation for that interpreter. Therefore, … |
| | | |
− | {| align="center" cellspacing="8" width="90%"
| + | If it is now asked what measure of invariant understanding can be enjoyed by diverse parties of interpretive agents, then the discussion has come upon an issue with a familiar echo in mathematical analysis. The organization of many local coordinate frames into systems capable of supporting communicative references to relatively “objective” objects is usually handled by means of the concept of a ''manifold''. Therefore, the analogous task that is suggested for this project is to arrive at a workable definition of ''sign relational manifolds''. |
− | | <math>L ~=~ L^{(1)} \cup \ldots \cup L^{(k)}\!</math>
| |
− | |}
| |
| | | |
− | '''Sign Relational Complex?'''
| + | The discrete nature of the <math>\text{A}\!</math> and <math>\text{B}\!</math> dialogue renders moot the larger share of issues of interest in continuous and differentiable manifolds. However, it is still possible to get things moving in this direction by looking at simple structural analogies that connect the pragmatic theory of sign relations with the basic notions of analysis on manifolds. |
| | | |
− | {| align="center" cellspacing="8" width="90%"
| + | ===6.48. Discourse Analysis : Ways and Means=== |
− | | <math>L ~=~ L^{(1)} \cup L^{(2)} \cup L^{(3)}\!</math>
| |
− | |}
| |
| | | |
− | Linkages can be chained together to form sequences of indications or <math>n\!</math>-tuples, without worrying too much about the order of collecting terms in the corresponding angle brackets.
| + | Before the discussion of the <math>\text{A}\!</math> and <math>\text{B}\!</math> dialogue can proceed to richer veins of semantic structure it will be necessary to extract the relevant traces of embedded sign relations from their environments of informally interpreted syntax. |
| | | |
− | {| align="center" cellspacing="8" width="90%"
| + | On the substantive front, sign relations serving as raw materials of discourse need to be refined and their content assayed, but first their identifying signatures must be sounded out, carved out, and lifted from their embroiling inclusions in the dense strata of obscure intuitions that sediment ordinary discussion. On the instrumental front, sign relations serving as primitive tools of discourse analysis need to be identified and improved by a deliberate examination of their designs and purposes. |
− | |
| |
− | <math>\begin{matrix}
| |
− | a \widehat{~} b \widehat{~} c
| |
− | & = &
| |
− | (a, b, c)
| |
− | & = &
| |
− | (a, (b, c))
| |
− | & = &
| |
− | ((a, b), c).
| |
− | \end{matrix}</math>
| |
− | |}
| |
| | | |
− | These equivalences depend on the existence of natural isomorphisms between different ways of constructing <math>n\!</math>-place product spaces, that is, on the associativity of pairwise products, a not altogether trivial result (Mac Lane, CatWorkMath, ch. 7).
| + | So far, the models and methods made available to formal treatment were borrowed outright, with little hesitation and less recognition, from the context of casual discussion. Thus, these materials and mechanisms have come to the threshold of critical reflection already in play, devoid of concern for the presuppositions and consequences associated with their use, and only belatedly turned to the effortful work and tedious formalities of self-conscious exposition. |
| | | |
− | Higher Order Indications (HOIs)?
| + | To reflect on the properties of complex and higher order sign relations with any degree of clarity it is necessary to arrange a clearer field of investigation and a less cluttered staging area for analytic work than is commonly provided. Habitual processes of interpretation that typically operate as automatic routines and uncritical defaults in the informal context of discussion have to be selectively inhibited, slowed down, and critically examined as objective possibilities, instead of being taken for granted as absolute necessities. |
| | | |
− | {| align="center" cellspacing="8" width="90%"
| + | In other words, an apparatus for critical reflection does not merely add more mirrors to the kaleidoscopic fun-house of interpretive discourse, but it provides transient moments of equanimity, or balanced neutrality, and a moderately detached perspective on alternative points of view. A scope so limited does not by any means grant a god's eye view, but permits a sufficient quantity of light to consider how the original array of sights and reflections might have been created otherwise. |
− | |
| |
− | <math>\begin{matrix}
| |
− | \widehat{~} x & = & (~, x) & ?
| |
− | \\[4pt]
| |
− | x \widehat{~} & = & (x, ~) & ?
| |
− | \\[4pt]
| |
− | \widehat{~}~\widehat{~} x & = & (~, (~, x)) & ?
| |
− | \\[4pt]
| |
− | x \widehat{~}~\widehat{~} & = & ((x, ~), ~) & ?
| |
− | \end{matrix}</math>
| |
− | |}
| |
| | | |
− | In talking about properties and classes of relations, one would like to refer to ''all relations'' as forming a topic of potential discussion, and then take it as a background for contemplating …
| + | Ordinarily, the extra degree of attention to syntax that is needed for critical reflection on interpretive processes is called into play by means of syntactic operators and diacritical devices acting at the level of individual signs and elementary expressions. For example, quotation marks are used to force one type of “semantic ascent”, causing signs to be treated as objects and marking points of interpretive shift as they occur in the syntactic medium. But these operators and devices must be symbolized, and these symbols must be interpreted. Consequently, there is no way to avoid the invocation of a cohering interpretive framework, one that needs to be specialized for analytic purposes. |
| | | |
− | In talking and thinking, often in just that order, about properties and classes of relations, one is always invoking, explicitly or implicitly, a particular background, a limited field of experience, actual or potential, against which each object of ''discussion and thought'' figures. Expressing the matter in the idiom of logical inquiry, one brings to mind a preconceived universe of discourse <math>U\!</math> or a restricted domain of discussion <math>X,\!</math> and then contemplates …
| + | The best way to achieve the desired type of reflective capacity is by attaching a parameter to the interpretive framework used as an instrument of formal study, specifying certain choices or interpretive presumptions that affect the entire context of discussion. The aesthetic distance needed to arrive at a formal perspective on sign relations is maintained, not by jury-rigging ordinary discussion with locally effective syntactic devices, but by asking the reader to consider certain dimensions of parametric variation in the global interpretive frameworks used to comprehend the sign relations under study. |
| | | |
− | This direction of generalization expands the scope of PIRs by means of an analogical extension, and can be charted in the following manner. If the name of a relation can be taken as a PIR to elementary relations, that is, if the formula of an <math>n\!</math>-place relation can be interpreted as a proposition about <math>n\!</math>-tuples, then a PIR to relations themselves can be formulated as a proposition about relations and thus as a HOPE about elementary relations or <math>n\!</math>-tuples.
| + | The interpretive parameter of paramount importance to this work is one that is critical to reflection. It can be presented as a choice between two alternative conventions, affecting the way one reflexively regards each sign in a text: (1) as a sign provoking interest only in passing, exchanged for the sake of a meaningful object it is always taken for granted to have, or (2) as a sign comprising an interest in and of itself, a state of a system or a modification of a medium that can signify an external value but does not necessarily denote anything else at all. I will name these options for responding to signs according to the aspects of character that are most appreciated in their net effects, whether signs for the sake of objects, or signs for their own sake, respectively. |
| | | |
− | One way to extend the generic brand of partiality among relations in a non-trivial direction can be charted as follows. If the name or formula of a relation is a PIR to elementary relations, that is, if a sign or expression of an <math>n\!</math>-place relation is interpreted as a proposition about <math>n\!</math>-tuples, then a PIR to relations …
| + | The first option I call the ''object convention'', recognizing it as the natural default of informal language use. In the ordinary language context it is the automatic assumption that signs and expressions are intended to denote something external to themselves, and even though it is quite obvious to all interpreters that the medium is filled with the appearances of signs and not with the objects themselves, this fact passes for little more than transitory interest in the rush to cash out tokens for their indicated values. |
| | | |
− | ===6.37. Propositional Types===
| + | The object convention, as appropriate to an introduction that needs to begin in the context of ordinary discussion, is the parametric choice that was left in force throughout the treatment of the A and B example. Doing things this way is like trying to roller skate in a buffalo herd, that is, it attempts to formalize a fragment of discussion on a patchwork of local scales without interrupting the automatic routines and default assumptions that prevail on a global basis in the informal context. Ultimately, one cannot avoid stumbling over the hoofprints <math>( {}^{\backprime\backprime} \, {}^{\prime\prime} )\!</math> of overly cited and opaquely enthymematic textual deposits. |
| | | |
− | Consider a relation <math>L\!</math> of the following type.
| + | The second option I call the ''sign convention'', observing it to be the treatment of choice in programming and formal language studies. In the formal language context it is necessary to consider the possibility that not all signs and expressions are assured to denote or even connote much of anything at all. This danger is amplified in computational frameworks where it resonates with a related theme, that not all programs are guaranteed to terminate normally with a definite result. In order to deal with these eventualities, a more cautious approach to sign relations is demanded to cover the risk of generating nonsense, in other words, to guard against degenerate forms of sign relations that fail to serve any significant purpose in communication or inquiry. |
| | | |
− | {| align="center" cellspacing="8" width="90%"
| + | Whenever a greater degree of care is required, it becomes necessary to replace the object convention with the sign convention, which presumes to take for granted only what can be obvious to all observers, namely, the phenomenal appearances and temporal occurrences of objectified states of systems. To be sure, these modulations of media are still presented as signs, but only potentially as signs of other things. It goes with the territory of the formal language context to constantly check the inveterate impulses of the literate mind, to reflect on its automatic reflex toward meaning, to inhibit its uncontrolled operation, and to pause long enough in the rush to judgment to question whether its constant presumption of a motive is itself innocent. |
− | | <math>L : \texttt{(} S \texttt{(} T \texttt{))}\!</math>
| + | |
− | |}
| + | In order to deal with these issues of discourse analysis in an explicit way, it is necessary to have in place a technical notation for marking the very kinds of interpretive assumptions that normally go unmarked. Thus, I will describe a set of devices for annotating certain kinds of interpretive contingencies, namely, the ''discourse analysis frames'' or the ''global interpretive frames'' that may be operative at any given moment in a particular context of discussion. |
| + | |
| + | To mark a context of discussion where a particular set <math>J\!</math> of interpretive conventions is being maintained, I use labeled brackets of the following two forms: “unitary”, as <math>\{ J | \ldots | J \},\!</math> or “divided”, as <math>\{ J | \ldots | \ldots | J \}.\!</math> The unitary form encloses a context of discussion by delimiting a range of text whose reading is subject to the interpretive constraints <math>J.\!</math> The divided form specifies the objects, signs, and interpretive information in accord with which a species of discussion is generated. Labeled brackets enclosing contexts can be nested in their scopes, with interpretive data on each outer envelope applying to every inclusion. Labeled brackets arranging the ''conversation pieces'' or the ''generators and relations'' of a topic can lead to discussions that spill outside their frames, and thus are permitted to constitute overlapping contexts. |
| | | |
− | [The following piece occurs in § 6.35.]
| + | For the present, I will consider two types of interpretive parameters to be used as indices of labeled brackets. |
| | | |
− | The set of triples of dyadic relations, with pairwise cartesian products chosen in a pre-arranged order from a triple of three sets <math>(X, Y, Z),\!</math> is called the ''dyadic explosion'' of <math>X \times Y \times Z.\!</math> This object is denoted <math>\operatorname{Explo}(X, Y, Z ~|~ 2),\!</math> read as the ''explosion of <math>X \times Y \times Z\!</math> by twos'', or more simply as <math>X, Y, Z ~\operatorname{choose}~ 2,\!</math> and defined as follows:
| + | <ol style="list-style-type:decimal"> |
| | | |
− | {| align="center" cellspacing="8" width="90%"
| + | <li>Names of interpreters or other references to context can be used to indicate the provenance of the objects and signs that make up the assorted contents of brackets. On occasion, I will use the first person singular pronoun to signify the immediate context of informal discussion, as in <math>\{ I | \ldots | I \},\!</math> but more often than not this context goes unmarked.</li> |
− | | <math>\operatorname{Explo}(X, Y, Z ~|~ 2) ~=~ \operatorname{Pow}(X \times Y) \times \operatorname{Pow}(X \times Z) \times \operatorname{Pow}(Y \times Z)\!</math>
| |
− | |}
| |
| | | |
− | This domain is defined well enough to serve the immediate purposes of this section, but later it will become necessary to examine its construction more closely.
| + | <li>Two other modifiers can be used to toggle between the options of the object convention, more common in casual or ordinary contexts, and the sign convention, more useful in formal or sign theoretic contexts.</li> |
| | | |
− | [Maybe the following piece belongs there, too.]
| + | <ol style="list-style-type:lower-alpha"> |
| | | |
− | Just to provide a hint of what's at stake, consider the following suggestive identity:
| + | <li> |
| + | <p>The brackets <math>\{ o | \ldots | o \}\!</math> mark a context of informal language use or ordinary discussion, where the object convention applies. To specify the elements of a sign relation under these conditions, I use a form of presentation like the following:</p> |
| | | |
− | {| align="center" cellspacing="8" width="90%" | + | {| align="center" cellpadding="8" width="90%" |
− | | <math>2^{XY} \times 2^{XZ} \times 2^{YZ} ~=~ 2^{(XY + XY + YZ)}\!</math> | + | | |
| + | <math>\{ o |~ \text{A}, \text{B} ~|||~ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} ~| o \}.\!</math> |
| |} | | |} |
| | | |
− | What sense would have to be found for the sums on the right in order to interpret this equation as a set theoretic isomorphism? Answering this question requires the concept of a ''co-product'', roughly speaking, a “disjointed union” of sets. By the time this discussion has detailed the forms of indexing necessary to maintain these constructions, it should have become patently obvious that the forms of analysis and synthesis that are called on to achieve the putative reductions to and reconstructions from dyadic relations in actual fact never really leave the realm of genuinely triadic relations, but merely reshuffle its contents in various convenient fashions.
| + | <p>Here, the names of objects are placed on the left side and the names of signs on the right side of the central divide, and the outer brackets stipulate that the object convention is in force throughout the discussion of a sign relation that is generated on these elements.</p></li> |
| | | |
− | ==Scrap Area==
| + | <li> |
| + | <p>The brackets <math>\{ s | \ldots | s \}\!</math> mark a context of formal language use or controlled discussion, where the sign convention applies. To specify the elements of a sign relation in this case, I use a form like:</p> |
| | | |
− | ===Edit Buffer=== | + | {| align="center" cellpadding="8" width="90%" |
| + | | |
| + | <math>\{ s |~ [\text{A}], [\text{B}] ~|||~ \text{A}, \text{B}, \text{i}, \text{u} ~| s \}.</math> |
| + | |} |
| | | |
− | When it comes to the subject of systems theory, a particular POV is so widely propagated that it might as well be regarded as the established, received, or traditional POV. The POV in question says that there are dynamic systems and symbolic systems, and never the twain shall meet. I naturally intend to challenge this assumption, preferring to suggest that dynamic …
| + | <p>Again, expressions for objects are placed on the left and expressions of signs on the right, but formal language conventions are now invoked to let the alphabet letters and the lexical items of a formal vocabulary stand for themselves, and denotation brackets <math>{}^{\backprime\backprime} [ \dots ] {}^{\prime\prime}\!</math> are placed around signs to indicate the corresponding objects, when they exist.</p></li> |
| | | |
− | ===Table Scraps===
| + | </ol></ol> |
| | | |
− | <pre> | + | When the information carried by labeled brackets becomes more involved and more extensive, a set of convenient abbreviations and suggestions for “pretty printing” can be followed. When the bracket labels become too long to bother repeating, I will leave the last label blank or use ditto marks, as with <math>\{ a, b, c ~|~ \ldots ~| {}^{\prime\prime} \}.\!</math> When it is necessary to break labeled brackets over several lines, multiple dividers and dittos can be used to fill out corresponding columns, as in the following text: |
− | Table 37.1 Sign Relational Schema C
| |
− | Object Sign Interpretant
| |
− | x "x" "x"
| |
− | "x" "x" "x"
| |
− | </pre> | |
| | | |
− | <pre> | + | {| align="center" cellpadding="8" width="90%" |
− | Table 37.2 Sign Relational Schema D
| + | | |
− | Object Sign Interpretant
| + | <math>\begin{array}{*{12}{c}} |
− | x "x" "x"
| + | \{ & I & , & o & | & \text{A} & , & \text{B} & & & & |
− | </pre> | + | \\ |
| + | | & | & | & | & | & |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} & , & |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} & , & |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} & , & |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | | & {}^{\prime\prime} & {}^{\prime\prime} & {}^{\prime\prime} & \} & & & & & & & |
| + | \end{array}</math> |
| + | |} |
| | | |
− | <pre>
| + | A notation for discourse analysis ought to find a crucial test of its usefulness in whether it can help to disclose structural properties of interpretive frameworks that would otherwise escape the attention due. If the dimensions of interpretive choice that are represented by these devices are to serve a useful function, then … |
− | Table 37.3 Sign Relational Schema E
| |
− | Object Sign Interpretant
| |
− | "x" "x" "x"
| |
− | </pre>
| |
| | | |
− | <pre>
| + | Although these devices for discourse analysis are bound to seem a bit ''ad hoc'' at this point, they have been designed with a sign relational bootstrap in mind, that is, with a view to being formalized and recognized as a species within the domain of sign relations itself, where this is the very domain that is laid out as their field of application. |
− | Table 37.4 Sign Relational Schema D'
| |
− | Object Sign Interpretant
| |
− | x "x" "x"
| |
− | x "x" <x>
| |
− | x <x> "x"
| |
− | x <x> <x>
| |
− | </pre>
| |
| | | |
− | ==Work Area==
| + | One note of caution may help to prevent a common misunderstanding. It is futile to imagine that any system of interpretive markers for discourse can become totally self sufficient, like the Worm Uroboros, determining all aspects of interpretation and eliminating all ambiguity. The ultimate appeal of signs, and signs upon signs, is always to an intelligent interpreter, a reader who knows there are more interpretive choices to make than could ever be surrendered to signs, and whose free responsibility to appropriate interpretations cannot be abdicated to any text or abridged by any gloss on it, no matter how fit or finished. |
| | | |
− | ===Alternate Text===
| + | In a sense, at least at first, nothing is being created that could not have been noticed without signs. It is merely that actions are being articulated that were not articulated before, and hopefully in ways that make transient insights easier to remember and reuse on new occasions. Instead, the requirement here is to devise a language, the marks of which can reflect the ambient light of observation on its own process. It is not unusual to succeed at this in artificial environments crafted especially for the purpose, but to achieve the critical angle ''in vivo'', in the living context of a natural language, takes more art. |
| | | |
− | A '''semigroup''' consists of a nonempty set with an associative LOC on it. On formal occasions, a semigroup is introduced by means a formula like <math>X = (X, *),\!</math> interpreted to mean that a semigroup <math>X\!</math> is specified by giving two pieces of data, a nonempty set that conventionally, if somewhat ambiguously, goes under the same name <math>{}^{\backprime\backprime} X {}^{\prime\prime},\!</math> plus an associative binary operation denoted by <math>{}^{\backprime\backprime} * {}^{\prime\prime}.\!</math> In contexts where there is only one semigroup being discussed, or where the additional structure is otherwise understood, it is common practice to call the semigroup by the name of the underlying set. In contexts where more than one semigroup is formed on the same set, one may use notations like <math>X_i = (X, *_i)\!</math> to distinguish them.
| + | ===6.49. Combinations of Sign Relations=== |
| | | |
− | ===Additive Presentation===
| + | At a point like this in the development of a formal subject matter, it is customary to introduce elements of a logical calculus that can be used to describe relevant aspects of the formal structures involved and to expedite reasoning about their manifold combinations and decompositions. I will hold off from doing this for sign relations in any formal way at present. Instead, I consider the informal requirements and the foreseeable ends that a suitable calculus for sign relations might be expected to meet, and I present as tentative alternatives a few different ways of proceeding to formalize these intentions. |
| | | |
− | ====Version 1====
| + | The first order of business in the “comparative anatomy” and “developmental biology” of sign relations is to undertake a pair of closely related tasks: (1) to examine the structural articulation of highly complex sign relations in terms of the primitive constituents that are found available, and (2) to explain the functional genesis of formal (that is, reflectively considered and critically regarded) sign relations as they naturally arise within the informal context of representational and communicational activities. |
| | | |
− | : The <math>n^\text{th}\!</math> '''multiple''' of an element <math>x\!</math> in a semigroup <math>\underline{X} = (X, +, 0),\!</math> for integer <math>n > 0,\!</math> is notated as <math>nx\!</math> and defined as follows. Proceeding recursively, for <math>n = 1,\!</math> let <math>1x = x,\!</math> and for <math>n > 1,\!</math> let <math>nx = (n-1)x + x.\!</math>
| + | Converting to a political metaphor, how does the “republic” constituted by a sign relation — the representational community of agents invested with a congeries of legislative, executive, and interpretive powers, employing a consensual body of conventional languages, encompassing a commonwealth of comprehensible meanings, diversely but flexibly manifested in the practical administration of abiding and shared representations — how does all of this first come into being? |
| | | |
− | : The <math>n^\text{th}\!</math> '''multiple''' of <math>x\!</math> in a monoid <math>\underline{X} = (X, +, 0),\!</math> for integer <math>n \ge 0,\!</math> is defined the same way for <math>n > 0,\!</math> letting <math>0x = 0\!</math> when <math>n = 0.\!</math>
| + | … and their development from primitive/ rudimentary to highly structured … |
| | | |
− | : The <math>n^\text{th}\!</math> '''multiple''' of <math>x\!</math> in a group <math>\underline{X} = (X, +, 0),\!</math> for any integer <math>n,\!</math> is defined the same way for <math>n \ge 0,\!</math> letting <math>nx = (-n)(-x)\!</math> for <math>n < 0.\!</math>
| + | The grasp of the discussion between <math>\text{A}\!</math> and <math>\text{B}\!</math> that is represented in their separate sign relations can best be described as fragmentary. It fails to capture what everyone knows <math>\text{A}\!</math> and <math>\text{B}\!</math> would know about each other's language use. |
| | | |
− | ====Version 2====
| + | How can the fragmentary system of interpretation (SOI) constituted by the juxtaposition of individual sign relations <math>L(\text{A})\!</math> and <math>L(\text{B})\!</math> be combined or developed into a new SOI that represents what agents like <math>\text{A}\!</math> and <math>\text{B}\!</math> are sure to know about each other's language use? In order to make it clear that this is a non-trivial question, and in the process to illustrate different ways of combining sign relations, I begin by considering a couple of obvious suggestions for their integration that immediate reflection will show to miss the mark. |
| | | |
− | : In a semigroup written additively, the <math>n^\text{th}\!</math> '''multiple''' of an element <math>x\!</math> is notated as <math>nx\!</math> and defined for every positive integer <math>n\!</math> in the following manner. Proceeding recursively, let <math>1x = x\!</math> and let <math>nx = (n-1)x + x\!</math> for all <math>n > 1.\!</math>
| + | The first thing to try is the set-theoretic union of the sign relations. This leads to a “confused” or “confounded” combination of the component sign relations. For example, the sign relation defined as <math>L_\text{C} = L_\text{A} \cup L_\text{B}\!</math> is shown in Table 86. Interpreted as a transition digraph on the four points of the syntactic domain <math>S = \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \},\!</math> the sign relation <math>L_\text{C}\!</math> specifies the following behavior for the conduct of its interpreter: |
| | | |
− | : In a monoid written additively, the multiple <math>nx\!</math> is defined for every non-negative integer <math>n\!</math> by letting <math>0x = 0\!</math> and proceeding the same way for <math>n > 0.\!</math>
| + | # <math>\text{A}\!\cdot\!L_\text{C}\!</math> has a sling at each point of <math>\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!</math> and two-way arcs on the pairs <math>\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \}\!</math> and <math>\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}.\!</math> |
| + | # <math>\text{B}\!\cdot\!L_\text{C}\!</math> has a sling at each point of <math>\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!</math> and two-way arcs on the pairs <math>\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \}\!</math> and <math>\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}.\!</math> |
| | | |
− | : In a group written additively, the multiple <math>nx\!</math> is defined for every integer <math>n\!</math> by letting <math>nx = (-n)(-x)\!</math> for <math>n < 0\!</math> and proceeding the same way for <math>n \ge 0.\!</math>
| + | These sub-relations do not form equivalence relations on the relevant sets of signs. If closed up under transitive compositions, then <math>\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!</math> are all equivalent in the presence of object <math>\text{A},\!</math> but <math>\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!</math> are all equivalent in the presence of object <math>\text{B}.\!</math> This may accurately represent certain types of political thinking, but it does not constitute the kind of sign relation that is wanted here. |
− | | |
− | ==Set Displays==
| |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" cellspacing="8" width="90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | | | + | |+ style="height:30px" | <math>\text{Table 86.} ~~ \text{Confounded Sign Relation} ~ L_\text{C} = L_\text{A} \cup L_\text{B} ~ \!</math> |
− | <math>\begin{smallmatrix} | + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| \text{A} | | \text{A} |
− | & = &
| + | \\ |
− | \{ & | |
− | (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}),
| |
− | & \ldots, &
| |
− | (\text{A}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime})
| |
− | & , &
| |
− | (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}),
| |
− | & \ldots, &
| |
− | (\text{B}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime})
| |
− | & \}
| |
− | \\[10pt]
| |
− | \text{B}
| |
− | & = &
| |
− | \{ &
| |
− | (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}),
| |
− | & \ldots, &
| |
− | (\text{A}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime})
| |
− | & , &
| |
− | (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}),
| |
− | & \ldots, &
| |
− | (\text{B}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime})
| |
− | & \}
| |
− | \end{smallmatrix}</math>
| |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" cellspacing="8" width="90%"
| |
− | |
| |
− | <math>\begin{array}{lllllll}
| |
| \text{A} | | \text{A} |
− | & = & \{ &
| |
− | (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}),
| |
− | & \ldots, &
| |
− | (\text{A}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}),
| |
− | &
| |
| \\ | | \\ |
− | & & &
| + | \text{A} |
− | (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}),
| + | \\ |
− | & \ldots, &
| + | \text{A} |
− | (\text{B}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime})
| + | \\ |
− | & \}
| + | \text{A} |
− | \\[10pt] | |
− | \text{B} | |
− | & = & \{ &
| |
− | (\text{A}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}),
| |
− | & \ldots, &
| |
− | (\text{A}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime}),
| |
− | &
| |
| \\ | | \\ |
− | & & &
| |
− | (\text{B}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}),
| |
− | & \ldots, &
| |
− | (\text{B}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime})
| |
− | & \}
| |
− | \end{array}</math>
| |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" cellspacing="8" width="90%"
| |
− | |
| |
− | <math>\begin{array}{*{15}{c}}
| |
− | W
| |
− | & = &
| |
− | \{ &
| |
| \text{A} | | \text{A} |
− | & , &
| + | \end{matrix}</math> |
− | \text{B} | + | | valign="bottom" | |
− | & , &
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | & , &
| + | \\ |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| |
− | & , &
| |
| {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | & , &
| + | \\ |
| {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | & \}
| |
| \\ | | \\ |
− | & = &
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \{ &
| + | \\ |
− | w_1
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | & , &
| + | \\ |
− | w_2
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | & , &
| + | \\ |
− | w_3
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | & , &
| + | \end{matrix}</math> |
− | w_4
| |
− | & , &
| |
− | w_5
| |
− | & , &
| |
− | w_6
| |
− | & \}
| |
− | \end{array}</math>
| |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | ===1.3.4.2. Sign Relations : A Primer===
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" cellspacing="6" width="90%"
| |
− | |
| |
− | <math>\begin{array}{cclcl}
| |
− | O
| |
− | & = &
| |
− | \{ \text{Ann}, \text{Bob} \} & = & \{ \text{A}, \text{B} \}
| |
− | \\[6pt]
| |
− | S
| |
− | & = &
| |
− | \{ {}^{\backprime\backprime} \text{Ann} {}^{\prime\prime}, {}^{\backprime\backprime} \text{Bob} {}^{\prime\prime}, {}^{\backprime\backprime} \text{I} {}^{\prime\prime}, {}^{\backprime\backprime} \text{you} {}^{\prime\prime} \}
| |
− | & = &
| |
− | \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}
| |
− | \\[6pt] | |
− | I
| |
− | & = &
| |
− | \{ {}^{\backprime\backprime} \text{Ann} {}^{\prime\prime}, {}^{\backprime\backprime} \text{Bob} {}^{\prime\prime}, {}^{\backprime\backprime} \text{I} {}^{\prime\prime}, {}^{\backprime\backprime} \text{you} {}^{\prime\prime} \}
| |
− | & = &
| |
− | \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}
| |
− | \end{array}</math> | |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | ===1.3.4.3. Semiotic Equivalence Relations===
| |
− | | |
− | <br>
| |
− | | |
− | In these terms, the SER for interpreter <math>\text{A}\!</math> yields the semiotic equations:
| |
− | | |
− | {| cellpadding="10"
| |
− | | width="10%" |
| |
− | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime}]_\text{A}\!</math>
| |
− | | <math>=\!</math>
| |
− | | <math>[{}^{\backprime\backprime} \text{i} {}^{\prime\prime}]_\text{A}\!</math>
| |
− | | width="20%" |
| |
− | | <math>[{}^{\backprime\backprime} \text{B} {}^{\prime\prime}]_\text{A}\!</math>
| |
− | | <math>=\!</math>
| |
− | | <math>[{}^{\backprime\backprime} \text{u} {}^{\prime\prime}]_\text{A}\!</math>
| |
| |- | | |- |
− | | width="10%" | or | + | | valign="bottom" | |
− | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime}\!</math>
| + | <math>\begin{matrix} |
− | | <math>=_\text{A}\!</math> | + | \text{B} |
− | | <math>{}^{\backprime\backprime} \text{i} {}^{\prime\prime}\!</math>
| + | \\ |
− | | width="20%" | | + | \text{B} |
− | | <math>{}^{\backprime\backprime} \text{B} {}^{\prime\prime}\!</math>
| + | \\ |
− | | <math>=_\text{A}\!</math>
| + | \text{B} |
− | | <math>{}^{\backprime\backprime} \text{u} {}^{\prime\prime}\!</math>
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| |} | | |} |
| | | |
− | and the semiotic partition: <math>\{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \} , \{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} \}\!</math>.
| + | <br> |
| | | |
− | In contrast, the SER for interpreter <math>\text{B}\!</math> yields the semiotic equations:
| + | Reflecting on this disappointing experience with using simple unions to combine sign relations, it appears that some type of indexed union or categorical co-product might be demanded. Table 87 presents the results of taking the disjoint union <math>\textstyle L_\text{D} = L_\text{A} \coprod L_\text{B}\!</math> to constitute a new sign relation. |
| | | |
− | {| cellpadding="10" | + | <br> |
− | | width="10%" | | + | |
− | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime}]_\text{B}\!</math> | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | | <math>=\!</math> | + | |+ style="height:30px" | <math>\text{Table 87.} ~~ \text{Disjointed Sign Relation} ~ L_\text{D} = L_\text{A} \textstyle\coprod L_\text{B}\!</math> |
− | | <math>[{}^{\backprime\backprime} \text{u} {}^{\prime\prime}]_\text{B}\!</math> | + | |- style="height:40px; background:#f0f0ff" |
− | | width="20%" | | + | | width="33%" | <math>\text{Object}\!</math> |
− | | <math>[{}^{\backprime\backprime} \text{B} {}^{\prime\prime}]_\text{B}\!</math>
| + | | width="33%" | <math>\text{Sign}\!</math> |
− | | <math>=\!</math> | + | | width="33%" | <math>\text{Interpretant}\!</math> |
− | | <math>[{}^{\backprime\backprime} \text{i} {}^{\prime\prime}]_\text{B}\!</math>
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A}_\text{A} |
| + | \\ |
| + | \text{A}_\text{A} |
| + | \\ |
| + | \text{A}_\text{A} |
| + | \\ |
| + | \text{A}_\text{A} |
| + | \end{matrix}\!</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A} |
| + | \end{matrix}\!</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A} |
| + | \end{matrix}\!</math> |
| |- | | |- |
− | | width="10%" | or | + | | valign="bottom" | |
− | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime}\!</math>
| + | <math>\begin{matrix} |
− | | <math>=_\text{B}\!</math>
| + | \text{A}_\text{B} |
− | | <math>{}^{\backprime\backprime} \text{u} {}^{\prime\prime}\!</math>
| + | \\ |
− | | width="20%" |
| + | \text{A}_\text{B} |
− | | <math>{}^{\backprime\backprime} \text{B} {}^{\prime\prime}\!</math>
| + | \\ |
− | | <math>=_\text{B}\!</math>
| + | \text{A}_\text{B} |
− | | <math>{}^{\backprime\backprime} \text{i} {}^{\prime\prime}\!</math>
| + | \\ |
− | |}
| + | \text{A}_\text{B} |
− | | + | \end{matrix}\!</math> |
− | and the semiotic partition: <math>\{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} , \{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \} \}\!</math>.
| + | | valign="bottom" | |
− | | + | <math>\begin{matrix} |
− | <br>
| + | {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B} |
− | | + | \\ |
− | ===6.38. Considering the Source===
| + | {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B} |
− | | + | \\ |
− | <br>
| + | {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B} |
− | | + | \\ |
− | {| align="center" cellspacing="6" width="90%"
| + | {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B} |
− | | | + | \end{matrix}\!</math> |
− | <math>\begin{array}{ccl} | + | | valign="bottom" | |
− | O & = &
| + | <math>\begin{matrix} |
− | \{ \text{A}, \text{B} \}
| + | {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B} |
− | \\[6pt]
| + | \\ |
− | S & = &
| + | {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B} |
− | \{
| + | \\ |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}, | + | {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}},
| + | \\ |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}},
| + | {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B} |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}, | + | \end{matrix}\!</math> |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}, | |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}},
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}, | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} | |
− | \}
| |
− | \\[6pt]
| |
− | I & = &
| |
− | \{
| |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}},
| |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}},
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}, | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}, | |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}},
| |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}},
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}},
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}
| |
− | \}
| |
− | \end{array}</math> | |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | Thus informed, the semiotic equivalence relation for interpreter <math>\text{A}\!</math> yields the following semiotic equations.
| |
− | | |
− | {| cellpadding="10"
| |
− | | width="10%" | | |
− | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}]_\text{A}\!</math>
| |
− | | <math>=\!</math>
| |
− | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}]_\text{A}\!</math>
| |
− | | <math>=\!</math>
| |
− | | <math>[{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}]_\text{A}\!</math>
| |
− | | <math>=\!</math>
| |
− | | <math>[{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}]_\text{A}\!</math>
| |
| |- | | |- |
− | | width="10%" | or | + | | valign="bottom" | |
− | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}\!</math>
| + | <math>\begin{matrix} |
− | | <math>=_\text{A}\!</math>
| + | \text{B}_\text{A} |
− | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}\!</math> | + | \\ |
− | | <math>=_\text{A}\!</math>
| + | \text{B}_\text{A} |
− | | <math>{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}\!</math>
| + | \\ |
− | | <math>=_\text{A}\!</math>
| + | \text{B}_\text{A} |
− | | <math>{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}\!</math>
| + | \\ |
− | |}
| + | \text{B}_\text{A} |
− | | + | \end{matrix}\!</math> |
− | In comparison, the semiotic equivalence relation for interpreter <math>\text{B}\!</math> yields the following semiotic equations.
| + | | valign="bottom" | |
− | | + | <math>\begin{matrix} |
− | {| cellpadding="10"
| + | {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A} |
− | | width="10%" | | + | \\ |
− | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}]_\text{B}\!</math>
| + | {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A} |
− | | <math>=\!</math>
| + | \\ |
− | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}]_\text{B}\!</math>
| + | {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A} |
− | | <math>=\!</math>
| + | \\ |
− | | <math>[{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}]_\text{B}\!</math>
| + | {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A} |
− | | <math>=\!</math>
| + | \end{matrix}\!</math> |
− | | <math>[{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}]_\text{B}\!</math>
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A} |
| + | \end{matrix}\!</math> |
| |- | | |- |
− | | width="10%" | or | + | | valign="bottom" | |
− | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}\!</math>
| + | <math>\begin{matrix} |
− | | <math>=_\text{B}\!</math> | + | \text{B}_\text{B} |
− | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}\!</math>
| + | \\ |
− | | <math>=_\text{B}\!</math> | + | \text{B}_\text{B} |
− | | <math>{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}\!</math>
| + | \\ |
− | | <math>=_\text{B}\!</math>
| + | \text{B}_\text{B} |
− | | <math>{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}\!</math>
| + | \\ |
| + | \text{B}_\text{B} |
| + | \end{matrix}\!</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B} |
| + | \end{matrix}\!</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B} |
| + | \\ |
| + | {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B} |
| + | \end{matrix}\!</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | ==Relations In General== | + | ===6.50. Revisiting the Source=== |
| + | |
| + | '''…''' |
| | | |
− | Next let's re-examine the ''numerical incidence properties'' of relations, concentrating on the definitions of the assorted regularity conditions.
| + | ==Deletions== |
| | | |
− | For example, <math>L\!</math> is said to be <math>^{\backprime\backprime} c\text{-regular at}~ j \, ^{\prime\prime}</math> if and only if the cardinality of the local flag <math>L_{x \,\text{at}\, j}</math> is equal to <math>c\!</math> for all <math>x \in X_j,</math> coded in symbols, if and only if <math>|L_{x \,\text{at}\, j}| = c</math> for all <math>x \in X_j.</math>
| + | ===6.38. Considering the Source=== |
| | | |
− | In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on. For ease of reference, a few of these definitions are recorded below.
| + | There is one remaining form of useful continuity that can be established between these newly formalized inventions and the ordinary conventions of common practice that are customary to apply in the informal context. Conforming to the ascriptions made above, I revive an old usage for framing interjections and enunciate the quotation <math>{}^{\backprime\backprime} \text{X} {}^{\prime\prime\text{I}}\!</math> as <math>{}^{\backprime\backprime} \text{X} {}^{\prime\prime} ~ \text{quotha}.\!</math> Readers who find this custom too curious for words might consider the twofold origins of inquiry and interpretation, one in the virtue of addressing uncertainty and another in the acknowledgment of surprise. |
| | | |
− | {| align="center" cellspacing="8" width="90%"
| + | ==Fragments== |
− | |
| + | |
− | <math>\begin{array}{lll}
| + | ===6.19. Examples of Self-Reference=== |
− | L ~\text{is}~ c\text{-regular at}~ j
| |
− | & \iff &
| |
− | |L_{x \,\text{at}\, j}| = c ~\text{for all}~ x \in X_j.
| |
− | \\[6pt]
| |
− | L ~\text{is}~ (< c)\text{-regular at}~ j
| |
− | & \iff &
| |
− | |L_{x \,\text{at}\, j}| < c ~\text{for all}~ x \in X_j.
| |
− | \\[6pt]
| |
− | L ~\text{is}~ (> c)\text{-regular at}~ j
| |
− | & \iff &
| |
− | |L_{x \,\text{at}\, j}| > c ~\text{for all}~ x \in X_j.
| |
− | \\[6pt]
| |
− | L ~\text{is}~ (\le c)\text{-regular at}~ j
| |
− | & \iff &
| |
− | |L_{x \,\text{at}\, j}| \le c ~\text{for all}~ x \in X_j.
| |
− | \\[6pt]
| |
− | L ~\text{is}~ (\ge c)\text{-regular at}~ j
| |
− | & \iff &
| |
− | |L_{x \,\text{at}\, j}| \ge c ~\text{for all}~ x \in X_j.
| |
− | \end{array}</math>
| |
− | |}
| |
| | | |
− | Clearly, if any relation is <math>(\le c)\text{-regular}</math> on one of its domains <math>X_j\!</math> and also <math>(\ge c)\text{-regular}</math> on the same domain, then it must be <math>(= c)\text{-regular}\!</math> on that domain, in effect, <math>c\text{-regular}\!</math> at <math>j.\!</math>
| + | In previous work I developed a version of propositional calculus based on C.S. Peirce's ''existential graphs'' and implemented this calculus in computational form as a ''sentential calculus interpreter''. Taking this calculus as a point of departure, I devised a theory of ''differential extensions'' for propositional domains that can be used, figuratively speaking, to put universes of discourse “in motion”, in other words, to provide qualitative descriptions of processes taking place in logical spaces. See (Awbrey, 1989 and 1994) for an account of this calculus, documentation of its computer program, and a detailed treatment of differential extensions. |
| | | |
− | Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1.
| + | In previous work (Awbrey, 1989) I described a system of notation for propositional calculus based on C.S. Peirce's ''existential graphs'', documented a computer implementation of this formalism, and showed how to provide this calculus with a ''differential extension'' that can be used to describe changing universes of discourse. In subsequent work (Awbrey, 1994) the resulting system of ''differential logic'' was applied to give qualitative descriptions of change in discrete dynamical systems. This section draws on that earlier work, summarizing the conceptions that are needed to give logical representations of sign relations and recording a few changes of a minor nature in the typographical conventions used. |
| | | |
− | Let <math>L \subseteq X \times Y\!</math> be an arbitrary 2-adic relation. The following properties of <math>L\!</math> can then be defined:
| + | Abstractly, a domain of propositions is known by the axioms it satisfies. Concretely, one thinks of a proposition as applying to the objects it is true of. |
| | | |
− | {| align="center" cellspacing="8" width="90%"
| + | Logically, a domain of properties or propositions is known by the axioms it is subject to. Concretely, a property or proposition is known by the things or situations it is true of. Typically, the signs of properties and propositions are called ''terms'' and ''sentences'', respectively. |
− | |
| |
− | <math>\begin{array}{lll}
| |
− | L ~\text{is total at}~ X
| |
− | & \iff &
| |
− | L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X.
| |
− | \\[6pt]
| |
− | L ~\text{is total at}~ Y
| |
− | & \iff &
| |
− | L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y.
| |
− | \\[6pt]
| |
− | L ~\text{is tubular at}~ X
| |
− | & \iff &
| |
− | L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X.
| |
− | \\[6pt]
| |
− | L ~\text{is tubular at}~ Y
| |
− | & \iff &
| |
− | L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y.
| |
− | \end{array}</math>
| |
− | |}
| |
| | | |
− | We have already looked at 2-adic relations that separately exemplify each of these regularities. We also introduced a few bits of additional terminology and special-purpose notations for working with tubular relations.
| + | ===6.23. Intensional Representations of Sign Relations=== |
| | | |
− | If <math>L\!</math> is tubular at <math>X,\!</math> then <math>L\!</math> is known as a ''partial function'' or a ''prefunction'' from <math>X\!</math> to <math>Y,\!</math> indicated by writing <math>L : X \rightharpoonup Y.\!</math> We have the following definitions and notations.
| + | In the formalized examples of IRs to be presented in this work, I will keep to the level of logical reasoning that is usually referred to as ''propositional calculus'' or ''sentential logic''. |
| | | |
− | {| align="center" cellspacing="8" width="90%"
| + | The contrast between ERs and IRs is strongly correlated with another dimension of interest in the study of inquiry, namely, the tension between empirical and rational modes of inquiry. |
− | |
| + | |
− | <math>\begin{array}{lll} | + | This section begins the explicit discussion of ERs by taking a second look at the sign relations <math>L(\text{A})\!</math> and <math>L(\text{B}).\!</math> Since the form of these examples no longer presents any novelty, this second presentation of <math>L(\text{A})\!</math> and <math>L(\text{B})\!</math> provides a first opportunity to introduce some new material. In the process of reviewing this material, it is useful to anticipate a number of incidental issues that are on the point of becoming critical, and to begin introducing the generic types of technical devices that are needed to deal with them. |
− | L ~\text{is a prefunction}~ L : X \rightharpoonup Y | + | |
− | & \iff &
| + | Therefore, the easiest way to begin an explicit treatment of ERs is by recollecting the Tables of the sign relations <math>L(\text{A})\!</math> and <math>L(\text{B})\!</math> and by finishing the corresponding Tables of their dyadic components. Since the form of the sign relations <math>L(\text{A})\!</math> and <math>L(\text{B})\!</math> no longer presents any novelty, I can use the second presentation of these examples as a first opportunity to examine a selection of their finer points, previously overlooked. |
− | L ~\text{is tubular at}~ X. | + | |
− | \\[6pt] | + | Starting from this standpoint, the easiest way to begin developing an explicit treatment of ERs is to gather the relevant materials in the forms already presented, to fill out their missing details and expand the abbreviated contents of these forms, and to review their full structures in a more formal light. |
− | L ~\text{is a prefunction}~ L : X \leftharpoonup Y | + | |
− | & \iff &
| + | Because of the perfect parallelism that the literal coding contrives between individual signs and grammatical categories, this arrangement illustrates not so much a code transformation as a re-interpretation of the original signs under different headings. |
− | L ~\text{is tubular at}~ Y. | + | |
− | \end{array}</math> | + | ===6.33. Sign Relational Complexes=== |
− | |}
| + | |
| + | I would like to record here, in what is topically the appropriate place, notice of a number of open questions that will have to be addressed if anyone desires to make a consistent calculus out of this link notation. Perhaps it is only because the franker forms of liaison involved in the couple <math>a \widehat{~} b\!</math> are more subject to the vagaries of syntactic elision than the corresponding bindings of the anglish ligature <math>(a, b),\!</math> but for some reason or other the circumflex character of these diacritical notices are much more liable to suggest various forms of elaboration, including higher order generalizations and information-theoretic partializations of the very idea of <math>n\!</math>-tuples and sequences. |
| | | |
− | We arrive by way of this winding stair at the special stamps of 2-adic relations <math>L \subseteq X \times Y\!</math> that are variously described as ''1-regular'', ''total and tubular'', or ''total prefunctions'' on specified domains, either <math>X\!</math> or <math>Y\!</math> or both, and that are more often celebrated as ''functions'' on those domains.
| + | One way to deal with the problems of partial information … |
| | | |
− | If <math>L\!</math> is a prefunction <math>L : X \rightharpoonup Y\!</math> that happens to be total at <math>X,\!</math> then <math>L\!</math> is known as a ''function'' from <math>X\!</math> to <math>Y,\!</math> indicated by writing <math>L : X \to Y.\!</math> To say that a relation <math>L \subseteq X \times Y\!</math> is ''totally tubular'' at <math>X\!</math> is to say that <math>L\!</math> is 1-regular at <math>X.\!</math> Thus, we may formalize the following definitions.
| + | '''Relational Complex?''' |
| | | |
| {| align="center" cellspacing="8" width="90%" | | {| align="center" cellspacing="8" width="90%" |
− | | | + | | <math>L ~=~ L^{(1)} \cup \ldots \cup L^{(k)}\!</math> |
− | <math>\begin{array}{lll} | |
− | L ~\text{is a function}~ L : X \to Y | |
− | & \iff &
| |
− | L ~\text{is}~ 1\text{-regular at}~ X.
| |
− | \\[6pt] | |
− | L ~\text{is a function}~ L : X \leftarrow Y
| |
− | & \iff &
| |
− | L ~\text{is}~ 1\text{-regular at}~ Y.
| |
− | \end{array}</math>
| |
| |} | | |} |
| | | |
− | In the case of a 2-adic relation <math>L \subseteq X \times Y\!</math> that has the qualifications of a function <math>f : X \to Y,\!</math> there are a number of further differentia that arise.
| + | '''Sign Relational Complex?''' |
| | | |
| {| align="center" cellspacing="8" width="90%" | | {| align="center" cellspacing="8" width="90%" |
− | | | + | | <math>L ~=~ L^{(1)} \cup L^{(2)} \cup L^{(3)}\!</math> |
− | <math>\begin{array}{lll} | |
− | f ~\text{is surjective}
| |
− | & \iff &
| |
− | f ~\text{is total at}~ Y.
| |
− | \\[6pt] | |
− | f ~\text{is injective}
| |
− | & \iff &
| |
− | f ~\text{is tubular at}~ Y.
| |
− | \\[6pt] | |
− | f ~\text{is bijective}
| |
− | & \iff &
| |
− | f ~\text{is}~ 1\text{-regular at}~ Y.
| |
− | \end{array}</math>
| |
| |} | | |} |
| | | |
− | ==Table Work==
| + | Linkages can be chained together to form sequences of indications or <math>n\!</math>-tuples, without worrying too much about the order of collecting terms in the corresponding angle brackets. |
| | | |
− | ===Group Operations=== | + | {| align="center" cellspacing="8" width="90%" |
| + | | |
| + | <math>\begin{matrix} |
| + | a \widehat{~} b \widehat{~} c |
| + | & = & |
| + | (a, b, c) |
| + | & = & |
| + | (a, (b, c)) |
| + | & = & |
| + | ((a, b), c). |
| + | \end{matrix}</math> |
| + | |} |
| | | |
− | <br> | + | These equivalences depend on the existence of natural isomorphisms between different ways of constructing <math>n\!</math>-place product spaces, that is, on the associativity of pairwise products, a not altogether trivial result (Mac Lane, CatWorkMath, ch. 7). |
| | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%"
| + | Higher Order Indications (HOIs)? |
− | |+ <math>\text{Table 32.1}~~\text{Scheme of a Group Operation Table}</math>
| |
− | |- style="height:50px"
| |
− | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>*\!</math>
| |
− | | style="border-bottom:1px solid black" | <math>x_0\!</math>
| |
− | | style="border-bottom:1px solid black" | <math>\cdots\!</math>
| |
− | | style="border-bottom:1px solid black" | <math>x_j\!</math>
| |
− | | style="border-bottom:1px solid black" | <math>\cdots\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>x_0\!</math>
| |
− | | <math>x_0 * x_0\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>x_0 * x_j\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>x_i\!</math>
| |
− | | <math>x_i * x_0\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>x_i * x_j\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | |- style="height:50px"
| |
− | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math>
| |
− | | width="22%" | <math>\cdots\!</math>
| |
− | | width="22%" | <math>\cdots\!</math>
| |
− | | width="22%" | <math>\cdots\!</math>
| |
− | | width="22%" | <math>\cdots\!</math>
| |
− | |}
| |
| | | |
− | <br>
| + | {| align="center" cellspacing="8" width="90%" |
− | | + | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | + | <math>\begin{matrix} |
− | |+ <math>\text{Table 32.2}~~\text{Scheme of the Regular Ante-Representation}</math> | + | \widehat{~} x & = & (~, x) & ? |
− | |- style="height:50px"
| + | \\[4pt] |
− | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math>
| + | x \widehat{~} & = & (x, ~) & ? |
− | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math>
| + | \\[4pt] |
− | |- style="height:50px"
| + | \widehat{~}~\widehat{~} x & = & (~, (~, x)) & ? |
− | | style="border-right:1px solid black" | <math>x_0\!</math>
| + | \\[4pt] |
− | | <math>\{\!</math>
| + | x \widehat{~}~\widehat{~} & = & ((x, ~), ~) & ? |
− | | <math>(x_0 ~,~ x_0 * x_0),\!</math>
| + | \end{matrix}</math> |
− | | <math>\cdots\!</math>
| |
− | | <math>(x_j ~,~ x_0 * x_j),\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\}\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\cdots\!</math>
| |
− | | <math>\{\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\}\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>x_i\!</math>
| |
− | | <math>\{\!</math>
| |
− | | <math>(x_0 ~,~ x_i * x_0),\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>(x_j ~,~ x_i * x_j),\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\}\!</math>
| |
− | |- style="height:50px"
| |
− | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math>
| |
− | | width="4%" | <math>\{\!</math>
| |
− | | width="18%" | <math>\cdots\!</math>
| |
− | | width="22%" | <math>\cdots\!</math>
| |
− | | width="22%" | <math>\cdots\!</math>
| |
− | | width="18%" | <math>\cdots\!</math>
| |
− | | width="4%" | <math>\}\!</math>
| |
| |} | | |} |
| | | |
− | <br> | + | In talking about properties and classes of relations, one would like to refer to ''all relations'' as forming a topic of potential discussion, and then take it as a background for contemplating … |
| + | |
| + | In talking and thinking, often in just that order, about properties and classes of relations, one is always invoking, explicitly or implicitly, a particular background, a limited field of experience, actual or potential, against which each object of ''discussion and thought'' figures. Expressing the matter in the idiom of logical inquiry, one brings to mind a preconceived universe of discourse <math>U\!</math> or a restricted domain of discussion <math>X,\!</math> and then contemplates … |
| + | |
| + | This direction of generalization expands the scope of PIRs by means of an analogical extension, and can be charted in the following manner. If the name of a relation can be taken as a PIR to elementary relations, that is, if the formula of an <math>n\!</math>-place relation can be interpreted as a proposition about <math>n\!</math>-tuples, then a PIR to relations themselves can be formulated as a proposition about relations and thus as a HOPE about elementary relations or <math>n\!</math>-tuples. |
| + | |
| + | One way to extend the generic brand of partiality among relations in a non-trivial direction can be charted as follows. If the name or formula of a relation is a PIR to elementary relations, that is, if a sign or expression of an <math>n\!</math>-place relation is interpreted as a proposition about <math>n\!</math>-tuples, then a PIR to relations … |
| + | |
| + | ===6.37. Propositional Types=== |
| | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | + | Consider a relation <math>L\!</math> of the following type. |
− | |+ <math>\text{Table 32.3}~~\text{Scheme of the Regular Post-Representation}</math> | + | |
− | |- style="height:50px"
| + | {| align="center" cellspacing="8" width="90%" |
− | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math>
| + | | <math>L : \texttt{(} S \texttt{(} T \texttt{))}\!</math> |
− | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | + | |} |
− | |- style="height:50px"
| + | |
− | | style="border-right:1px solid black" | <math>x_0\!</math>
| + | [The following piece occurs in § 6.35.] |
− | | <math>\{\!</math>
| + | |
− | | <math>(x_0 ~,~ x_0 * x_0),\!</math>
| + | The set of triples of dyadic relations, with pairwise cartesian products chosen in a pre-arranged order from a triple of three sets <math>(X, Y, Z),\!</math> is called the ''dyadic explosion'' of <math>X \times Y \times Z.\!</math> This object is denoted <math>\operatorname{Explo}(X, Y, Z ~|~ 2),\!</math> read as the ''explosion of <math>X \times Y \times Z\!</math> by twos'', or more simply as <math>X, Y, Z ~\operatorname{choose}~ 2,\!</math> and defined as follows: |
− | | <math>\cdots\!</math>
| + | |
− | | <math>(x_j ~,~ x_j * x_0),\!</math>
| + | {| align="center" cellspacing="8" width="90%" |
− | | <math>\cdots\!</math>
| + | | <math>\operatorname{Explo}(X, Y, Z ~|~ 2) ~=~ \operatorname{Pow}(X \times Y) \times \operatorname{Pow}(X \times Z) \times \operatorname{Pow}(Y \times Z)\!</math> |
− | | <math>\}\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\cdots\!</math>
| |
− | | <math>\{\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\}\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>x_i\!</math>
| |
− | | <math>\{\!</math>
| |
− | | <math>(x_0 ~,~ x_0 * x_i),\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>(x_j ~,~ x_j * x_i),\!</math>
| |
− | | <math>\cdots\!</math>
| |
− | | <math>\}\!</math>
| |
− | |- style="height:50px"
| |
− | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | |
− | | width="4%" | <math>\{\!</math>
| |
− | | width="18%" | <math>\cdots\!</math> | |
− | | width="22%" | <math>\cdots\!</math>
| |
− | | width="22%" | <math>\cdots\!</math>
| |
− | | width="18%" | <math>\cdots\!</math>
| |
− | | width="4%" | <math>\}\!</math>
| |
| |} | | |} |
| | | |
− | <br>
| + | This domain is defined well enough to serve the immediate purposes of this section, but later it will become necessary to examine its construction more closely. |
| + | |
| + | [Maybe the following piece belongs there, too.] |
| | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
| + | Just to provide a hint of what's at stake, consider the following suggestive identity: |
− | |+ <math>\text{Table 33.1}~~\text{Multiplication Operation of the Group}~V_4</math>
| + | |
− | |- style="height:50px"
| + | {| align="center" cellspacing="8" width="90%" |
− | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math>
| + | | <math>2^{XY} \times 2^{XZ} \times 2^{YZ} ~=~ 2^{(XY + XY + YZ)}\!</math> |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{e}</math>
| |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{f}</math> | |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{g}</math>
| |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{h}</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\operatorname{e}</math>
| |
− | | <math>\operatorname{e}</math>
| |
− | | <math>\operatorname{f}</math>
| |
− | | <math>\operatorname{g}</math>
| |
− | | <math>\operatorname{h}</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\operatorname{f}</math>
| |
− | | <math>\operatorname{f}</math>
| |
− | | <math>\operatorname{e}</math>
| |
− | | <math>\operatorname{h}</math>
| |
− | | <math>\operatorname{g}</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\operatorname{g}</math>
| |
− | | <math>\operatorname{g}</math>
| |
− | | <math>\operatorname{h}</math>
| |
− | | <math>\operatorname{e}</math>
| |
− | | <math>\operatorname{f}</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\operatorname{h}</math>
| |
− | | <math>\operatorname{h}</math>
| |
− | | <math>\operatorname{g}</math>
| |
− | | <math>\operatorname{f}</math>
| |
− | | <math>\operatorname{e}</math>
| |
| |} | | |} |
| | | |
− | <br> | + | What sense would have to be found for the sums on the right in order to interpret this equation as a set theoretic isomorphism? Answering this question requires the concept of a ''co-product'', roughly speaking, a “disjointed union” of sets. By the time this discussion has detailed the forms of indexing necessary to maintain these constructions, it should have become patently obvious that the forms of analysis and synthesis that are called on to achieve the putative reductions to and reconstructions from dyadic relations in actual fact never really leave the realm of genuinely triadic relations, but merely reshuffle its contents in various convenient fashions. |
| + | |
| + | ==Scrap Area== |
| + | |
| + | ===Edit Buffer=== |
| + | |
| + | When it comes to the subject of systems theory, a particular POV is so widely propagated that it might as well be regarded as the established, received, or traditional POV. The POV in question says that there are dynamic systems and symbolic systems, and never the twain shall meet. I naturally intend to challenge this assumption, preferring to suggest that dynamic … |
| + | |
| + | ===Table Scraps=== |
| + | |
| + | <pre> |
| + | Table 37.1 Sign Relational Schema C |
| + | Object Sign Interpretant |
| + | x "x" "x" |
| + | "x" "x" "x" |
| + | </pre> |
| | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
| + | <pre> |
− | |+ <math>\text{Table 33.2}~~\text{Regular Representation of the Group}~V_4</math>
| + | Table 37.2 Sign Relational Schema D |
− | |- style="height:50px"
| + | Object Sign Interpretant |
− | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math>
| + | x "x" "x" |
− | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math>
| + | </pre> |
− | |- style="height:50px"
| + | |
− | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math>
| + | <pre> |
− | | width="4%" | <math>\{\!</math>
| + | Table 37.3 Sign Relational Schema E |
− | | width="16%" | <math>(\operatorname{e}, \operatorname{e}),</math>
| + | Object Sign Interpretant |
− | | width="20%" | <math>(\operatorname{f}, \operatorname{f}),</math>
| + | "x" "x" "x" |
− | | width="20%" | <math>(\operatorname{g}, \operatorname{g}),</math>
| + | </pre> |
− | | width="16%" | <math>(\operatorname{h}, \operatorname{h})</math>
| + | |
− | | width="4%" | <math>\}\!</math>
| + | <pre> |
− | |- style="height:50px"
| + | Table 37.4 Sign Relational Schema D' |
− | | style="border-right:1px solid black" | <math>\operatorname{f}</math>
| + | Object Sign Interpretant |
− | | <math>\{\!</math>
| + | x "x" "x" |
− | | <math>(\operatorname{e}, \operatorname{f}),</math>
| + | x "x" <x> |
− | | <math>(\operatorname{f}, \operatorname{e}),</math>
| + | x <x> "x" |
− | | <math>(\operatorname{g}, \operatorname{h}),</math>
| + | x <x> <x> |
− | | <math>(\operatorname{h}, \operatorname{g})</math>
| + | </pre> |
− | | <math>\}\!</math>
| + | |
− | |- style="height:50px"
| + | ==Work Area== |
− | | style="border-right:1px solid black" | <math>\operatorname{g}</math>
| |
− | | <math>\{\!</math>
| |
− | | <math>(\operatorname{e}, \operatorname{g}),</math>
| |
− | | <math>(\operatorname{f}, \operatorname{h}),</math>
| |
− | | <math>(\operatorname{g}, \operatorname{e}),</math>
| |
− | | <math>(\operatorname{h}, \operatorname{f})</math>
| |
− | | <math>\}\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\operatorname{h}</math>
| |
− | | <math>\{\!</math>
| |
− | | <math>(\operatorname{e}, \operatorname{h}),</math>
| |
− | | <math>(\operatorname{f}, \operatorname{g}),</math>
| |
− | | <math>(\operatorname{g}, \operatorname{f}),</math>
| |
− | | <math>(\operatorname{h}, \operatorname{e})</math>
| |
− | | <math>\}\!</math>
| |
− | |}
| |
| | | |
− | <br>
| + | ===Alternate Text=== |
| | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
| + | A '''semigroup''' consists of a nonempty set with an associative LOC on it. On formal occasions, a semigroup is introduced by means a formula like <math>X = (X, *),\!</math> interpreted to mean that a semigroup <math>X\!</math> is specified by giving two pieces of data, a nonempty set that conventionally, if somewhat ambiguously, goes under the same name <math>{}^{\backprime\backprime} X {}^{\prime\prime},\!</math> plus an associative binary operation denoted by <math>{}^{\backprime\backprime} * {}^{\prime\prime}.\!</math> In contexts where there is only one semigroup being discussed, or where the additional structure is otherwise understood, it is common practice to call the semigroup by the name of the underlying set. In contexts where more than one semigroup is formed on the same set, one may use notations like <math>X_i = (X, *_i)\!</math> to distinguish them. |
− | |+ <math>\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4</math>
| + | |
− | |- style="height:50px"
| + | ===Additive Presentation=== |
− | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math>
| + | |
− | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Symbols}\!</math>
| + | ====Version 1==== |
− | |- style="height:50px"
| + | |
− | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math>
| + | : The <math>n^\text{th}\!</math> '''multiple''' of an element <math>x\!</math> in a semigroup <math>\underline{X} = (X, +, 0),\!</math> for integer <math>n > 0,\!</math> is notated as <math>nx\!</math> and defined as follows. Proceeding recursively, for <math>n = 1,\!</math> let <math>1x = x,\!</math> and for <math>n > 1,\!</math> let <math>nx = (n-1)x + x.\!</math> |
− | | width="4%" | <math>\{\!</math>
| + | |
− | | width="16%" | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math>
| + | : The <math>n^\text{th}\!</math> '''multiple''' of <math>x\!</math> in a monoid <math>\underline{X} = (X, +, 0),\!</math> for integer <math>n \ge 0,\!</math> is defined the same way for <math>n > 0,\!</math> letting <math>0x = 0\!</math> when <math>n = 0.\!</math> |
− | | width="20%" | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math>
| + | |
− | | width="20%" | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math>
| + | : The <math>n^\text{th}\!</math> '''multiple''' of <math>x\!</math> in a group <math>\underline{X} = (X, +, 0),\!</math> for any integer <math>n,\!</math> is defined the same way for <math>n \ge 0,\!</math> letting <math>nx = (-n)(-x)\!</math> for <math>n < 0.\!</math> |
− | | width="16%" | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})</math>
| + | |
− | | width="4%" | <math>\}\!</math>
| + | ====Version 2==== |
− | |- style="height:50px"
| + | |
− | | style="border-right:1px solid black" | <math>\operatorname{f}</math>
| + | : In a semigroup written additively, the <math>n^\text{th}\!</math> '''multiple''' of an element <math>x\!</math> is notated as <math>nx\!</math> and defined for every positive integer <math>n\!</math> in the following manner. Proceeding recursively, let <math>1x = x\!</math> and let <math>nx = (n-1)x + x\!</math> for all <math>n > 1.\!</math> |
− | | <math>\{\!</math>
| + | |
− | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math>
| + | : In a monoid written additively, the multiple <math>nx\!</math> is defined for every non-negative integer <math>n\!</math> by letting <math>0x = 0\!</math> and proceeding the same way for <math>n > 0.\!</math> |
− | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math>
| + | |
− | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math>
| + | : In a group written additively, the multiple <math>nx\!</math> is defined for every integer <math>n\!</math> by letting <math>nx = (-n)(-x)\!</math> for <math>n < 0\!</math> and proceeding the same way for <math>n \ge 0.\!</math> |
− | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})</math>
| + | |
− | | <math>\}\!</math>
| + | ==Set Displays== |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\operatorname{g}</math>
| |
− | | <math>\{\!</math>
| |
− | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math>
| |
− | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math>
| |
− | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math>
| |
− | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})</math>
| |
− | | <math>\}\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\operatorname{h}</math>
| |
− | | <math>\{\!</math>
| |
− | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math>
| |
− | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math>
| |
− | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math>
| |
− | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})</math>
| |
− | | <math>\}\!</math>
| |
− | |}
| |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | + | {| align="center" cellspacing="8" width="90%" |
− | |+ <math>\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)</math> | + | | |
− | |- style="height:50px"
| + | <math>\begin{smallmatrix} |
− | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math>
| + | \text{A} |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math>
| + | & = & |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{a}</math>
| + | \{ & |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{b}</math>
| + | (\text{A}, |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{c}</math>
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, |
− | |- style="height:50px"
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), |
− | | style="border-right:1px solid black" | <math>\operatorname{1}</math>
| + | & \ldots, & |
− | | <math>\operatorname{1}</math>
| + | (\text{A}, |
− | | <math>\operatorname{a}</math>
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, |
− | | <math>\operatorname{b}</math>
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) |
− | | <math>\operatorname{c}</math>
| + | & , & |
− | |- style="height:50px"
| + | (\text{B}, |
− | | style="border-right:1px solid black" | <math>\operatorname{a}</math>
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, |
− | | <math>\operatorname{a}</math>
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), |
− | | <math>\operatorname{b}</math>
| + | & \ldots, & |
− | | <math>\operatorname{c}</math>
| + | (\text{B}, |
− | | <math>\operatorname{1}</math>
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, |
− | |- style="height:50px"
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) |
− | | style="border-right:1px solid black" | <math>\operatorname{b}</math>
| + | & \} |
− | | <math>\operatorname{b}</math>
| + | \\[10pt] |
− | | <math>\operatorname{c}</math>
| + | \text{B} |
− | | <math>\operatorname{1}</math>
| + | & = & |
− | | <math>\operatorname{a}</math>
| + | \{ & |
− | |- style="height:50px"
| + | (\text{A}, |
− | | style="border-right:1px solid black" | <math>\operatorname{c}</math>
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, |
− | | <math>\operatorname{c}</math>
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), |
− | | <math>\operatorname{1}</math>
| + | & \ldots, & |
− | | <math>\operatorname{a}</math>
| + | (\text{A}, |
− | | <math>\operatorname{b}</math>
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) |
| + | & , & |
| + | (\text{B}, |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), |
| + | & \ldots, & |
| + | (\text{B}, |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) |
| + | & \} |
| + | \end{smallmatrix}</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | + | {| align="center" cellspacing="8" width="90%" |
− | |+ <math>\text{Table 34.2}~~\text{Regular Representation of the Group}~Z_4(\cdot)</math> | + | | |
− | |- style="height:50px"
| + | <math>\begin{array}{lllllll} |
− | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math>
| + | \text{A} |
− | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math>
| + | & = & \{ & |
− | |- style="height:50px"
| + | (\text{A}, |
− | | width="20%" style="border-right:1px solid black" | <math>\operatorname{1}</math>
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, |
− | | width="4%" | <math>\{\!</math>
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), |
− | | width="16%" | <math>(\operatorname{1}, \operatorname{1}),</math>
| + | & \ldots, & |
− | | width="20%" | <math>(\operatorname{a}, \operatorname{a}),</math>
| + | (\text{A}, |
− | | width="20%" | <math>(\operatorname{b}, \operatorname{b}),</math>
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, |
− | | width="16%" | <math>(\operatorname{c}, \operatorname{c})</math>
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}), |
− | | width="4%" | <math>\}\!</math>
| + | & |
− | |- style="height:50px"
| + | \\ |
− | | style="border-right:1px solid black" | <math>\operatorname{a}</math>
| + | & & & |
− | | <math>\{\!</math>
| + | (\text{B}, |
− | | <math>(\operatorname{1}, \operatorname{a}),</math>
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, |
− | | <math>(\operatorname{a}, \operatorname{b}),</math>
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), |
− | | <math>(\operatorname{b}, \operatorname{c}),</math>
| + | & \ldots, & |
− | | <math>(\operatorname{c}, \operatorname{1})</math>
| + | (\text{B}, |
− | | <math>\}\!</math>
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, |
− | |- style="height:50px"
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}) |
− | | style="border-right:1px solid black" | <math>\operatorname{b}</math>
| + | & \} |
− | | <math>\{\!</math>
| + | \\[10pt] |
− | | <math>(\operatorname{1}, \operatorname{b}),</math>
| + | \text{B} |
− | | <math>(\operatorname{a}, \operatorname{c}),</math>
| + | & = & \{ & |
− | | <math>(\operatorname{b}, \operatorname{1}),</math>
| + | (\text{A}, |
− | | <math>(\operatorname{c}, \operatorname{a})</math>
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, |
− | | <math>\}\!</math>
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}), |
− | |- style="height:50px"
| + | & \ldots, & |
− | | style="border-right:1px solid black" | <math>\operatorname{c}</math>
| + | (\text{A}, |
− | | <math>\{\!</math>
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}, |
− | | <math>(\operatorname{1}, \operatorname{c}),</math>
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}), |
− | | <math>(\operatorname{a}, \operatorname{1}),</math>
| + | & |
− | | <math>(\operatorname{b}, \operatorname{a}),</math>
| + | \\ |
− | | <math>(\operatorname{c}, \operatorname{b})</math>
| + | & & & |
− | | <math>\}\!</math>
| + | (\text{B}, |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}), |
| + | & \ldots, & |
| + | (\text{B}, |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}) |
| + | & \} |
| + | \end{array}</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | + | {| align="center" cellspacing="8" width="90%" |
− | |+ <math>\text{Table 35.1}~~\text{Additive Presentation of the Group}~Z_4(+)</math> | + | | |
− | |- style="height:50px"
| + | <math>\begin{array}{*{15}{c}} |
− | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>+\!</math>
| + | W |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{0}</math>
| + | & = & |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math>
| + | \{ & |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{2}</math>
| + | \text{A} |
− | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{3}</math>
| + | & , & |
− | |- style="height:50px"
| + | \text{B} |
− | | style="border-right:1px solid black" | <math>\operatorname{0}</math>
| + | & , & |
− | | <math>\operatorname{0}</math>
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | | <math>\operatorname{1}</math>
| + | & , & |
− | | <math>\operatorname{2}</math>
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | | <math>\operatorname{3}</math>
| + | & , & |
− | |- style="height:50px"
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | | style="border-right:1px solid black" | <math>\operatorname{1}</math>
| + | & , & |
− | | <math>\operatorname{1}</math>
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | | <math>\operatorname{2}</math>
| + | & \} |
− | | <math>\operatorname{3}</math>
| + | \\ |
− | | <math>\operatorname{0}</math>
| + | & = & |
− | |- style="height:50px"
| + | \{ & |
− | | style="border-right:1px solid black" | <math>\operatorname{2}</math>
| + | w_1 |
− | | <math>\operatorname{2}</math>
| + | & , & |
− | | <math>\operatorname{3}</math>
| + | w_2 |
− | | <math>\operatorname{0}</math>
| + | & , & |
− | | <math>\operatorname{1}</math>
| + | w_3 |
− | |- style="height:50px"
| + | & , & |
− | | style="border-right:1px solid black" | <math>\operatorname{3}</math>
| + | w_4 |
− | | <math>\operatorname{3}</math>
| + | & , & |
− | | <math>\operatorname{0}</math>
| + | w_5 |
− | | <math>\operatorname{1}</math>
| + | & , & |
− | | <math>\operatorname{2}</math>
| + | w_6 |
| + | & \} |
| + | \end{array}</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | + | ===1.3.4.2. Sign Relations : A Primer=== |
− | |+ <math>\text{Table 35.2}~~\text{Regular Representation of the Group}~Z_4(+)</math> | + | |
− | |- style="height:50px"
| + | <br> |
− | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math>
| + | |
− | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math>
| + | {| align="center" cellspacing="6" width="90%" |
− | |- style="height:50px"
| + | | |
− | | width="20%" style="border-right:1px solid black" | <math>\operatorname{0}</math>
| + | <math>\begin{array}{cclcl} |
− | | width="4%" | <math>\{\!</math>
| + | O |
− | | width="16%" | <math>(\operatorname{0}, \operatorname{0}),</math>
| + | & = & |
− | | width="20%" | <math>(\operatorname{1}, \operatorname{1}),</math>
| + | \{ \text{Ann}, \text{Bob} \} & = & \{ \text{A}, \text{B} \} |
− | | width="20%" | <math>(\operatorname{2}, \operatorname{2}),</math>
| + | \\[6pt] |
− | | width="16%" | <math>(\operatorname{3}, \operatorname{3})</math>
| + | S |
− | | width="4%" | <math>\}\!</math>
| + | & = & |
− | |- style="height:50px"
| + | \{ {}^{\backprime\backprime} \text{Ann} {}^{\prime\prime}, {}^{\backprime\backprime} \text{Bob} {}^{\prime\prime}, {}^{\backprime\backprime} \text{I} {}^{\prime\prime}, {}^{\backprime\backprime} \text{you} {}^{\prime\prime} \} |
− | | style="border-right:1px solid black" | <math>\operatorname{1}</math>
| + | & = & |
− | | <math>\{\!</math>
| + | \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} |
− | | <math>(\operatorname{0}, \operatorname{1}),</math>
| + | \\[6pt] |
− | | <math>(\operatorname{1}, \operatorname{2}),</math>
| + | I |
− | | <math>(\operatorname{2}, \operatorname{3}),</math>
| + | & = & |
− | | <math>(\operatorname{3}, \operatorname{0})</math>
| + | \{ {}^{\backprime\backprime} \text{Ann} {}^{\prime\prime}, {}^{\backprime\backprime} \text{Bob} {}^{\prime\prime}, {}^{\backprime\backprime} \text{I} {}^{\prime\prime}, {}^{\backprime\backprime} \text{you} {}^{\prime\prime} \} |
− | | <math>\}\!</math>
| + | & = & |
− | |- style="height:50px"
| + | \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} |
− | | style="border-right:1px solid black" | <math>\operatorname{2}</math>
| + | \end{array}</math> |
− | | <math>\{\!</math>
| |
− | | <math>(\operatorname{0}, \operatorname{2}),</math>
| |
− | | <math>(\operatorname{1}, \operatorname{3}),</math>
| |
− | | <math>(\operatorname{2}, \operatorname{0}),</math>
| |
− | | <math>(\operatorname{3}, \operatorname{1})</math>
| |
− | | <math>\}\!</math>
| |
− | |- style="height:50px"
| |
− | | style="border-right:1px solid black" | <math>\operatorname{3}</math>
| |
− | | <math>\{\!</math>
| |
− | | <math>(\operatorname{0}, \operatorname{3}),</math>
| |
− | | <math>(\operatorname{1}, \operatorname{0}),</math>
| |
− | | <math>(\operatorname{2}, \operatorname{1}),</math>
| |
− | | <math>(\operatorname{3}, \operatorname{2})</math>
| |
− | | <math>\}\!</math>
| |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | ===Sign Relations=== | + | ===1.3.4.3. Semiotic Equivalence Relations=== |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | In these terms, the SER for interpreter <math>\text{A}\!</math> yields the semiotic equations: |
− | |+ style="height:30px" | <math>\text{Table 1.} ~~ \text{Sign Relation of Interpreter A}\!</math> | + | |
− | |- style="height:40px; background:#f0f0ff" | + | {| cellpadding="10" |
− | | width="33%" | <math>\text{Object}\!</math> | + | | width="10%" | |
− | | width="33%" | <math>\text{Sign}\!</math> | + | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime}]_\text{A}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math> | + | | <math>=\!</math> |
| + | | <math>[{}^{\backprime\backprime} \text{i} {}^{\prime\prime}]_\text{A}\!</math> |
| + | | width="20%" | |
| + | | <math>[{}^{\backprime\backprime} \text{B} {}^{\prime\prime}]_\text{A}\!</math> |
| + | | <math>=\!</math> |
| + | | <math>[{}^{\backprime\backprime} \text{u} {}^{\prime\prime}]_\text{A}\!</math> |
| + | |- |
| + | | width="10%" | or |
| + | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime}\!</math> |
| + | | <math>=_\text{A}\!</math> |
| + | | <math>{}^{\backprime\backprime} \text{i} {}^{\prime\prime}\!</math> |
| + | | width="20%" | |
| + | | <math>{}^{\backprime\backprime} \text{B} {}^{\prime\prime}\!</math> |
| + | | <math>=_\text{A}\!</math> |
| + | | <math>{}^{\backprime\backprime} \text{u} {}^{\prime\prime}\!</math> |
| + | |} |
| + | |
| + | and the semiotic partition: <math>\{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \} , \{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} \}.\!</math> |
| + | |
| + | In contrast, the SER for interpreter <math>\text{B}\!</math> yields the semiotic equations: |
| + | |
| + | {| cellpadding="10" |
| + | | width="10%" | |
| + | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime}]_\text{B}\!</math> |
| + | | <math>=\!</math> |
| + | | <math>[{}^{\backprime\backprime} \text{u} {}^{\prime\prime}]_\text{B}\!</math> |
| + | | width="20%" | |
| + | | <math>[{}^{\backprime\backprime} \text{B} {}^{\prime\prime}]_\text{B}\!</math> |
| + | | <math>=\!</math> |
| + | | <math>[{}^{\backprime\backprime} \text{i} {}^{\prime\prime}]_\text{B}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | width="10%" | or |
− | <math>\begin{matrix}
| + | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime}\!</math> |
− | \text{A}
| + | | <math>=_\text{B}\!</math> |
− | \\
| + | | <math>{}^{\backprime\backprime} \text{u} {}^{\prime\prime}\!</math> |
− | \text{A}
| + | | width="20%" | |
− | \\
| + | | <math>{}^{\backprime\backprime} \text{B} {}^{\prime\prime}\!</math> |
− | \text{A}
| + | | <math>=_\text{B}\!</math> |
− | \\
| + | | <math>{}^{\backprime\backprime} \text{i} {}^{\prime\prime}\!</math> |
− | \text{A}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix} | |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | |
− | \\
| |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \end{matrix}</math> | |
− | | valign="bottom" | | |
− | <math>\begin{matrix}
| |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \end{matrix}</math>
| |
− | |-
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | \text{B}
| |
− | \\
| |
− | \text{B} | |
− | \\
| |
− | \text{B} | |
− | \\
| |
− | \text{B}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" | | |
− | <math>\begin{matrix} | |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | |
− | \end{matrix}</math> | |
− | | valign="bottom" | | |
− | <math>\begin{matrix} | |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | |
− | \\
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | |
− | \end{matrix}</math> | |
| |} | | |} |
| + | |
| + | and the semiotic partition: <math>\{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} , \{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \} \}.\!</math> |
| + | |
| + | <br> |
| + | |
| + | ===6.38. Considering the Source=== |
| + | |
| + | <br> |
| + | |
| + | ====Attributed Sign Relation==== |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" cellspacing="6" width="90%" |
− | |+ style="height:30px" | <math>\text{Table 2.} ~~ \text{Sign Relation of Interpreter B}\!</math> | + | | |
− | |- style="height:40px; background:#f0f0ff" | + | <math>\begin{array}{ccl} |
− | | width="33%" | <math>\text{Object}\!</math> | + | O & = & |
− | | width="33%" | <math>\text{Sign}\!</math> | + | \{ \text{A}, \text{B} \} |
− | | width="33%" | <math>\text{Interpretant}\!</math> | + | \\[6pt] |
| + | S & = & |
| + | \{ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}, |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}}, |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}, |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}, |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}, |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}, |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}, |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \} |
| + | \\[6pt] |
| + | I & = & |
| + | \{ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}, |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}}, |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}, |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}, |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}, |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}, |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}, |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | Thus informed, the semiotic equivalence relation for interpreter <math>\text{A}\!</math> yields the following semiotic equations. |
| + | |
| + | {| cellpadding="10" |
| + | | width="10%" | |
| + | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}]_\text{A}\!</math> |
| + | | <math>=\!</math> |
| + | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}]_\text{A}\!</math> |
| + | | <math>=\!</math> |
| + | | <math>[{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}]_\text{A}\!</math> |
| + | | <math>=\!</math> |
| + | | <math>[{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}]_\text{A}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | width="10%" | or |
− | <math>\begin{matrix} | + | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}\!</math> |
− | \text{A}
| + | | valign="bottom" | <math>=_\text{A}\!</math> |
− | \\ | + | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}\!</math> |
− | \text{A} | + | | valign="bottom" | <math>=_\text{A}\!</math> |
− | \\
| + | | <math>{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}\!</math> |
− | \text{A}
| + | | valign="bottom" | <math>=_\text{A}\!</math> |
− | \\ | + | | <math>{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}\!</math> |
− | \text{A} | + | |} |
− | \end{matrix}</math> | + | |
− | | valign="bottom" | | + | In comparison, the semiotic equivalence relation for interpreter <math>\text{B}\!</math> yields the following semiotic equations. |
− | <math>\begin{matrix} | + | |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | {| cellpadding="10" |
− | \\ | + | | width="10%" | |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}]_\text{B}\!</math> |
− | \\ | + | | <math>=\!</math> |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | + | | <math>[{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}]_\text{B}\!</math> |
− | \\
| + | | <math>=\!</math> |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | | <math>[{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}]_\text{B}\!</math> |
− | \end{matrix}</math> | + | | <math>=\!</math> |
− | | valign="bottom" | | + | | <math>[{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}]_\text{B}\!</math> |
− | <math>\begin{matrix} | |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | |
− | \\ | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | |
− | \\ | |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | |
− | \\ | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | |
− | \end{matrix}</math> | |
| |- | | |- |
− | | valign="bottom" | | + | | width="10%" | or |
− | <math>\begin{matrix} | + | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}\!</math> |
− | \text{B} | + | | valign="bottom" | <math>=_\text{B}\!</math> |
− | \\
| + | | <math>{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}\!</math> |
− | \text{B} | + | | valign="bottom" | <math>=_\text{B}\!</math> |
− | \\ | + | | <math>{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}\!</math> |
− | \text{B} | + | | valign="bottom" | <math>=_\text{B}\!</math> |
− | \\ | + | | <math>{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}\!</math> |
− | \text{B} | + | |} |
− | \end{matrix}</math> | + | |
− | | valign="bottom" | | + | Consequently, the semiotic equivalence relations for <math>\text{A}\!</math> and <math>\text{B}\!</math> both induce the same semiotic partition on <math>S,\!</math> namely, the following. |
− | <math>\begin{matrix} | + | |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | {| align="center" cellspacing="6" width="90%" |
− | \\ | + | | |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | <math> |
− | \\ | + | \{ \{ |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}, |
− | \\ | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}, |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}, |
− | \end{matrix}</math> | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
− | | valign="bottom" |
| + | \}~,~\{ |
− | <math>\begin{matrix}
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}}, |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}, |
− | \\ | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}, |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} |
− | \\
| + | \} \}.\! |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | </math> |
− | \\ | |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | |
− | \end{matrix}</math> | |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | ====Augmented Sign Relation==== |
− | |+ style="height:30px" | <math>\text{Table 36.} ~~ \text{Semantics for Higher Order Signs}\!</math> | + | |
− | |- style="height:40px; background:#f0f0ff"
| + | <br> |
− | | <math>\text{Object Denoted}\!</math>
| + | |
− | | <math>\text{Equivalent Signs}\!</math>
| + | {| align="center" cellspacing="6" width="90%" |
− | |-
| + | | |
− | | width="50%" |
| + | <math>\begin{array}{ccl} |
− | <math>\begin{matrix}
| + | O & = & |
− | \text{A}
| + | \{ \text{A}, \text{B} \} |
− | \\ | + | \\[8pt] |
− | \text{B}
| + | S & = & |
− | \end{matrix}</math> | + | \{ |
− | | width="33%" |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | <math>\begin{matrix}
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | & = &
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
− | \\ | + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
− | & = &
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | \} |
− | \end{matrix}</math>
| + | \\[8pt] |
− | |-
| + | I & = & |
− | | width="50%" |
| + | \{ |
− | <math>\begin{matrix}
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | \\
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | \\
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
− | \\
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
− | \end{matrix}</math> | + | \} |
− | | width="33%" |
| + | \end{array}</math> |
− | <math>\begin{matrix}
| |
− | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} | |
− | & = &
| |
− | {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle}
| |
− | & = &
| |
− | {}^{\backprime\backprime\langle} \text{A} {}^{\rangle\prime\prime} | |
− | \\
| |
− | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} | |
− | & = &
| |
− | {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} | |
− | & = &
| |
− | {}^{\backprime\backprime\langle} \text{B} {}^{\rangle\prime\prime} | |
− | \\
| |
− | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} | |
− | & = &
| |
− | {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} | |
− | & = &
| |
− | {}^{\backprime\backprime\langle} \text{i} {}^{\rangle\prime\prime} | |
− | \\
| |
− | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} | |
− | & = &
| |
− | {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} | |
− | & = &
| |
− | {}^{\backprime\backprime\langle} \text{u} {}^{\rangle\prime\prime} | |
− | \end{matrix}</math> | |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" cellspacing="8" width="90%" |
− | |+ style="height:30px" | <math>\text{Table 37.} ~~ \text{Sign Relation Containing a Higher Order Sign}\!</math> | + | | |
− | |- style="height:40px; background:#f0f0ff"
| + | <math>\begin{array}{lll} |
− | | <math>\text{Object}\!</math>
| + | O & = & \{ \text{A}, \text{B} \} |
− | | <math>\text{Sign}\!</math>
| + | \end{array}</math> |
− | | <math>\text{Interpretant}\!</math>
| + | |} |
− | |- | + | |
− | | valign="bottom" width="33%" | | + | {| align="center" cellspacing="8" width="90%" |
− | <math>\begin{matrix} | + | | |
− | \ldots | + | <math>\begin{array}{lllllll} |
− | \\[2pt] | + | S |
− | \ldots | + | & = & |
− | \\[2pt] | + | \{ & |
− | \text{s} | + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | \end{matrix}</math> | + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | | valign="bottom" width="33%" |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | <math>\begin{matrix}
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | \text{s} | + | & |
− | \\[2pt] | + | \\[4pt] |
− | \ldots | + | & & & |
− | \\[2pt] | + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
− | \text{t} | + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
− | \end{matrix}</math> | + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
− | | valign="bottom" width="33%" |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
− | <math>\begin{matrix}
| + | & \} |
− | \ldots | + | \\[10pt] |
− | \\[2pt] | + | I |
− | \ldots | + | & = & |
− | \\[2pt] | + | \{ & |
− | \ldots | + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
− | \end{matrix}</math> | + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}, |
| + | & |
| + | \\[4pt] |
| + | & & & |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}, |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | & \} |
| + | \end{array}</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| + | ==Relations In General== |
− | |+ style="height:30px" | <math>\text{Table 38.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (1)}\!</math>
| + | |
− | |- style="height:40px; background:#f0f0ff"
| + | Next let's re-examine the ''numerical incidence properties'' of relations, concentrating on the definitions of the assorted regularity conditions. |
− | | <math>\text{Object}\!</math>
| + | |
− | | <math>\text{Sign}\!</math>
| + | For example, <math>L\!</math> is said to be <math>^{\backprime\backprime} c\text{-regular at}~ j \, ^{\prime\prime}</math> if and only if the cardinality of the local flag <math>L_{x \,\text{at}\, j}</math> is equal to <math>c\!</math> for all <math>x \in X_j,</math> coded in symbols, if and only if <math>|L_{x \,\text{at}\, j}| = c</math> for all <math>x \in X_j.</math> |
− | | <math>\text{Interpretant}\!</math>
| + | |
− | |-
| + | In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on. For ease of reference, a few of these definitions are recorded below. |
− | | valign="bottom" width="33%" |
| + | |
− | <math>\begin{matrix} | + | {| align="center" cellspacing="8" width="90%" |
− | x | + | | |
− | \\[2pt] | + | <math>\begin{array}{lll} |
− | {}^{\langle} x {}^{\rangle} | + | L ~\text{is}~ c\text{-regular at}~ j |
− | \\[2pt] | + | & \iff & |
− | {}^{\langle\langle} x {}^{\rangle\rangle} | + | |L_{x \,\text{at}\, j}| = c ~\text{for all}~ x \in X_j. |
− | \\[2pt] | + | \\[6pt] |
− | \ldots | + | L ~\text{is}~ (< c)\text{-regular at}~ j |
− | \end{matrix}</math> | + | & \iff & |
− | | valign="bottom" width="33%" | | + | |L_{x \,\text{at}\, j}| < c ~\text{for all}~ x \in X_j. |
− | <math>\begin{matrix} | + | \\[6pt] |
− | {}^{\langle} x {}^{\rangle} | + | L ~\text{is}~ (> c)\text{-regular at}~ j |
− | \\[2pt] | + | & \iff & |
− | {}^{\langle\langle} x {}^{\rangle\rangle} | + | |L_{x \,\text{at}\, j}| > c ~\text{for all}~ x \in X_j. |
− | \\[2pt] | + | \\[6pt] |
− | {}^{\langle\langle\langle} x {}^{\rangle\rangle\rangle} | + | L ~\text{is}~ (\le c)\text{-regular at}~ j |
− | \\[2pt] | + | & \iff & |
− | \ldots | + | |L_{x \,\text{at}\, j}| \le c ~\text{for all}~ x \in X_j. |
− | \end{matrix}</math> | + | \\[6pt] |
− | | valign="bottom" width="33%" | | + | L ~\text{is}~ (\ge c)\text{-regular at}~ j |
− | <math>\begin{matrix}
| + | & \iff & |
− | \ldots | + | |L_{x \,\text{at}\, j}| \ge c ~\text{for all}~ x \in X_j. |
− | \\[2pt] | + | \end{array}</math> |
− | \ldots | |
− | \\[2pt] | |
− | \ldots | |
− | \\[2pt] | |
− | \ldots | |
− | \end{matrix}</math> | |
| |} | | |} |
| | | |
− | <br> | + | Clearly, if any relation is <math>(\le c)\text{-regular}</math> on one of its domains <math>X_j\!</math> and also <math>(\ge c)\text{-regular}</math> on the same domain, then it must be <math>(= c)\text{-regular}\!</math> on that domain, in effect, <math>c\text{-regular}\!</math> at <math>j.\!</math> |
| + | |
| + | Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1. |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| + | Let <math>L \subseteq X \times Y\!</math> be an arbitrary 2-adic relation. The following properties of <math>L\!</math> can then be defined: |
− | |+ style="height:30px" | <math>\text{Table 39.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (2)}\!</math>
| + | |
− | |- style="height:40px; background:#f0f0ff"
| + | {| align="center" cellspacing="8" width="90%" |
− | | <math>\text{Object}\!</math>
| + | | |
− | | <math>\text{Sign}\!</math>
| + | <math>\begin{array}{lll} |
− | | <math>\text{Interpretant}\!</math>
| + | L ~\text{is total at}~ X |
− | |- | + | & \iff & |
− | | valign="bottom" width="33%" |
| + | L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X. |
− | <math>\begin{matrix} | + | \\[6pt] |
− | x
| + | L ~\text{is total at}~ Y |
− | \\[2pt] | + | & \iff & |
− | s_1
| + | L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y. |
− | \\[2pt] | + | \\[6pt] |
− | s_2
| + | L ~\text{is tubular at}~ X |
− | \\[2pt] | + | & \iff & |
− | \ldots | + | L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X. |
− | \end{matrix}</math>
| + | \\[6pt] |
− | | valign="bottom" width="33%" |
| + | L ~\text{is tubular at}~ Y |
− | <math>\begin{matrix}
| + | & \iff & |
− | s_1
| + | L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y. |
− | \\[2pt] | + | \end{array}</math> |
− | s_2
| |
− | \\[2pt] | |
− | s_3
| |
− | \\[2pt] | |
− | \ldots | |
− | \end{matrix}</math> | |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix}
| |
− | \ldots | |
− | \\[2pt] | |
− | \ldots | |
− | \\[2pt] | |
− | \ldots | |
− | \\[2pt] | |
− | \ldots | |
− | \end{matrix}</math> | |
| |} | | |} |
| | | |
− | <br>
| + | We have already looked at 2-adic relations that separately exemplify each of these regularities. We also introduced a few bits of additional terminology and special-purpose notations for working with tubular relations. |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| + | If <math>L\!</math> is tubular at <math>X,\!</math> then <math>L\!</math> is known as a ''partial function'' or a ''prefunction'' from <math>X\!</math> to <math>Y,\!</math> indicated by writing <math>L : X \rightharpoonup Y.\!</math> We have the following definitions and notations. |
− | |+ style="height:30px" | <math>\text{Table 40.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{A})\!</math>
| + | |
− | |- style="height:40px; background:#f0f0ff"
| + | {| align="center" cellspacing="8" width="90%" |
− | | <math>\text{Object}\!</math>
| + | | |
− | | <math>\text{Sign}\!</math>
| + | <math>\begin{array}{lll} |
− | | <math>\text{Interpretant}\!</math>
| + | L ~\text{is a prefunction}~ L : X \rightharpoonup Y |
− | |-
| + | & \iff & |
− | | valign="bottom" width="33%" |
| + | L ~\text{is tubular at}~ X. |
− | <math>\begin{matrix} | + | \\[6pt] |
− | \text{A} | + | L ~\text{is a prefunction}~ L : X \leftharpoonup Y |
− | \\
| + | & \iff & |
− | \text{A}
| + | L ~\text{is tubular at}~ Y. |
− | \\
| + | \end{array}</math> |
− | \text{A}
| + | |} |
− | \\
| + | |
− | \text{A}
| + | We arrive by way of this winding stair at the special stamps of 2-adic relations <math>L \subseteq X \times Y\!</math> that are variously described as ''1-regular'', ''total and tubular'', or ''total prefunctions'' on specified domains, either <math>X\!</math> or <math>Y\!</math> or both, and that are more often celebrated as ''functions'' on those domains. |
− | \end{matrix}</math>
| + | |
− | | valign="bottom" width="33%" | | + | If <math>L\!</math> is a prefunction <math>L : X \rightharpoonup Y\!</math> that happens to be total at <math>X,\!</math> then <math>L\!</math> is known as a ''function'' from <math>X\!</math> to <math>Y,\!</math> indicated by writing <math>L : X \to Y.\!</math> To say that a relation <math>L \subseteq X \times Y\!</math> is ''totally tubular'' at <math>X\!</math> is to say that <math>L\!</math> is 1-regular at <math>X.\!</math> Thus, we may formalize the following definitions. |
− | <math>\begin{matrix} | + | |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {| align="center" cellspacing="8" width="90%" |
− | \\ | + | | |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | <math>\begin{array}{lll} |
− | \\ | + | L ~\text{is a function}~ L : X \to Y |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | & \iff & |
− | \\ | + | L ~\text{is}~ 1\text{-regular at}~ X. |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | \\[6pt] |
− | \end{matrix}</math> | + | L ~\text{is a function}~ L : X \leftarrow Y |
− | | valign="bottom" width="33%" | | + | & \iff & |
− | <math>\begin{matrix} | + | L ~\text{is}~ 1\text{-regular at}~ Y. |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | \end{array}</math> |
− | \\
| |
− | {}^{\langle} \text{i} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{i} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
− | |-
| |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix} | |
− | \text{B} | |
− | \\
| |
− | \text{B} | |
− | \\ | |
− | \text{B} | |
− | \\ | |
− | \text{B} | |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix} | |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\ | |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{u} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{u} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" | | |
− | <math>\begin{matrix} | |
− | {}^{\langle} \text{B} {}^{\rangle} | |
− | \\ | |
− | {}^{\langle} \text{u} {}^{\rangle} | |
− | \\ | |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\ | |
− | {}^{\langle} \text{u} {}^{\rangle} | |
− | \end{matrix}</math> | |
| |} | | |} |
| | | |
− | <br> | + | In the case of a 2-adic relation <math>L \subseteq X \times Y\!</math> that has the qualifications of a function <math>f : X \to Y,\!</math> there are a number of further differentia that arise. |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" cellspacing="8" width="90%" |
− | |+ style="height:30px" | <math>\text{Table 41.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{B})\!</math> | + | | |
− | |- style="height:40px; background:#f0f0ff" | + | <math>\begin{array}{lll} |
− | | <math>\text{Object}\!</math> | + | f ~\text{is surjective} |
− | | <math>\text{Sign}\!</math> | + | & \iff & |
− | | <math>\text{Interpretant}\!</math> | + | f ~\text{is total at}~ Y. |
− | |- | + | \\[6pt] |
− | | valign="bottom" width="33%" | | + | f ~\text{is injective} |
− | <math>\begin{matrix} | + | & \iff & |
− | \text{A} | + | f ~\text{is tubular at}~ Y. |
− | \\
| + | \\[6pt] |
− | \text{A}
| + | f ~\text{is bijective} |
− | \\
| + | & \iff & |
− | \text{A}
| + | f ~\text{is}~ 1\text{-regular at}~ Y. |
− | \\
| + | \end{array}</math> |
− | \text{A}
| + | |} |
− | \end{matrix}</math>
| + | |
− | | valign="bottom" width="33%" | | + | ==Table Work== |
− | <math>\begin{matrix} | + | |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | ===Group Operations=== |
− | \\ | + | |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | <br> |
− | \\ | + | |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" |
− | \\
| + | |+ <math>\text{Table 32.1}~~\text{Scheme of a Group Operation Table}</math> |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | |- style="height:50px" |
− | \end{matrix}</math>
| + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>*\!</math> |
− | | valign="bottom" width="33%" | | + | | style="border-bottom:1px solid black" | <math>x_0\!</math> |
− | <math>\begin{matrix} | + | | style="border-bottom:1px solid black" | <math>\cdots\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | style="border-bottom:1px solid black" | <math>x_j\!</math> |
− | \\ | + | | style="border-bottom:1px solid black" | <math>\cdots\!</math> |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | |- style="height:50px" |
− | \\ | + | | style="border-right:1px solid black" | <math>x_0\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | <math>x_0 * x_0\!</math> |
− | \\
| + | | <math>\cdots\!</math> |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | | <math>x_0 * x_j\!</math> |
− | \end{matrix}</math>
| + | | <math>\cdots\!</math> |
− | |- | + | |- style="height:50px" |
− | | valign="bottom" width="33%" |
| + | | style="border-right:1px solid black" | <math>\cdots\!</math> |
− | <math>\begin{matrix} | + | | <math>\cdots\!</math> |
− | \text{B} | + | | <math>\cdots\!</math> |
− | \\ | + | | <math>\cdots\!</math> |
− | \text{B} | + | | <math>\cdots\!</math> |
− | \\ | + | |- style="height:50px" |
− | \text{B}
| + | | style="border-right:1px solid black" | <math>x_i\!</math> |
− | \\
| + | | <math>x_i * x_0\!</math> |
− | \text{B}
| + | | <math>\cdots\!</math> |
− | \end{matrix}</math>
| + | | <math>x_i * x_j\!</math> |
− | | valign="bottom" width="33%" | | + | | <math>\cdots\!</math> |
− | <math>\begin{matrix} | + | |- style="height:50px" |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> |
− | \\ | + | | width="22%" | <math>\cdots\!</math> |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | width="22%" | <math>\cdots\!</math> |
− | \\ | + | | width="22%" | <math>\cdots\!</math> |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | | width="22%" | <math>\cdots\!</math> |
− | \\
| |
− | {}^{\langle} \text{i} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" | | |
− | <math>\begin{matrix} | |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{i} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{i} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 42.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{A})\!</math> | + | |+ <math>\text{Table 32.2}~~\text{Scheme of the Regular Ante-Representation}</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="height:50px" |
− | | <math>\text{Object}\!</math> | + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> |
− | | <math>\text{Sign}\!</math> | + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> |
− | | <math>\text{Interpretant}\!</math> | + | |- style="height:50px" |
− | |- | + | | style="border-right:1px solid black" | <math>x_0\!</math> |
− | | valign="bottom" width="33%" |
| + | | <math>\{\!</math> |
− | <math>\begin{matrix} | + | | <math>(x_0 ~,~ x_0 * x_0),\!</math> |
− | \text{A} | + | | <math>\cdots\!</math> |
− | \\ | + | | <math>(x_j ~,~ x_0 * x_j),\!</math> |
− | \text{A}
| + | | <math>\cdots\!</math> |
− | \\ | + | | <math>\}\!</math> |
− | \text{A} | + | |- style="height:50px" |
− | \\ | + | | style="border-right:1px solid black" | <math>\cdots\!</math> |
− | \text{A} | + | | <math>\{\!</math> |
− | \end{matrix}</math> | + | | <math>\cdots\!</math> |
− | | valign="bottom" width="33%" | | + | | <math>\cdots\!</math> |
− | <math>\begin{matrix} | + | | <math>\cdots\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | <math>\cdots\!</math> |
− | \\ | + | | <math>\}\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | |- style="height:50px" |
− | \\ | + | | style="border-right:1px solid black" | <math>x_i\!</math> |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | | <math>\{\!</math> |
− | \\ | + | | <math>(x_0 ~,~ x_i * x_0),\!</math> |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | | <math>\cdots\!</math> |
− | \end{matrix}</math>
| + | | <math>(x_j ~,~ x_i * x_j),\!</math> |
− | | valign="bottom" width="33%" | | + | | <math>\cdots\!</math> |
− | <math>\begin{matrix} | + | | <math>\}\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | |- style="height:50px" |
− | \\ | + | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | | width="4%" | <math>\{\!</math> |
− | \\ | + | | width="18%" | <math>\cdots\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | width="22%" | <math>\cdots\!</math> |
− | \\ | + | | width="22%" | <math>\cdots\!</math> |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | | width="18%" | <math>\cdots\!</math> |
− | \end{matrix}</math>
| + | | width="4%" | <math>\}\!</math> |
− | |- | + | |} |
− | | valign="bottom" width="33%" | | + | |
− | <math>\begin{matrix} | + | <br> |
− | \text{B} | + | |
− | \\ | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" |
− | \text{B} | + | |+ <math>\text{Table 32.3}~~\text{Scheme of the Regular Post-Representation}</math> |
− | \\
| + | |- style="height:50px" |
− | \text{B} | + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> |
− | \\
| + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> |
− | \text{B} | + | |- style="height:50px" |
− | \end{matrix}</math> | + | | style="border-right:1px solid black" | <math>x_0\!</math> |
− | | valign="bottom" width="33%" | | + | | <math>\{\!</math> |
− | <math>\begin{matrix} | + | | <math>(x_0 ~,~ x_0 * x_0),\!</math> |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | <math>\cdots\!</math> |
− | \\
| + | | <math>(x_j ~,~ x_j * x_0),\!</math> |
− | {}^{\langle} \text{B} {}^{\rangle} | + | | <math>\cdots\!</math> |
− | \\ | + | | <math>\}\!</math> |
− | {}^{\langle} \text{u} {}^{\rangle} | + | |- style="height:50px" |
− | \\
| + | | style="border-right:1px solid black" | <math>\cdots\!</math> |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | | <math>\{\!</math> |
− | \end{matrix}</math>
| + | | <math>\cdots\!</math> |
− | | valign="bottom" width="33%" | | + | | <math>\cdots\!</math> |
− | <math>\begin{matrix} | + | | <math>\cdots\!</math> |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | <math>\cdots\!</math> |
− | \\ | + | | <math>\}\!</math> |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | |- style="height:50px" |
− | \\ | + | | style="border-right:1px solid black" | <math>x_i\!</math> |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | <math>\{\!</math> |
− | \\ | + | | <math>(x_0 ~,~ x_0 * x_i),\!</math> |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | | <math>\cdots\!</math> |
− | \end{matrix}</math>
| + | | <math>(x_j ~,~ x_j * x_i),\!</math> |
− | |- | + | | <math>\cdots\!</math> |
− | | valign="bottom" width="33%" |
| + | | <math>\}\!</math> |
− | <math>\begin{matrix} | + | |- style="height:50px" |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> |
− | \\ | + | | width="4%" | <math>\{\!</math> |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | width="18%" | <math>\cdots\!</math> |
− | \\ | + | | width="22%" | <math>\cdots\!</math> |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | | width="22%" | <math>\cdots\!</math> |
− | \\ | + | | width="18%" | <math>\cdots\!</math> |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | | width="4%" | <math>\}\!</math> |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" | | |
− | <math>\begin{matrix} | |
− | {}^{\langle\langle} \text{A} {}^{\rangle\rangle}
| |
− | \\ | |
− | {}^{\langle\langle} \text{B} {}^{\rangle\rangle}
| |
− | \\ | |
− | {}^{\langle\langle} \text{i} {}^{\rangle\rangle}
| |
− | \\ | |
− | {}^{\langle\langle} \text{u} {}^{\rangle\rangle}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" | | |
− | <math>\begin{matrix} | |
− | {}^{\langle\langle} \text{A} {}^{\rangle\rangle}
| |
− | \\ | |
− | {}^{\langle\langle} \text{B} {}^{\rangle\rangle}
| |
− | \\ | |
− | {}^{\langle\langle} \text{i} {}^{\rangle\rangle}
| |
− | \\ | |
− | {}^{\langle\langle} \text{u} {}^{\rangle\rangle}
| |
− | \end{matrix}</math>
| |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | |+ style="height:30px" | <math>\text{Table 43.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{B})\!</math> | + | |+ <math>\text{Table 33.1}~~\text{Multiplication Operation of the Group}~V_4</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="height:50px" |
− | | <math>\text{Object}\!</math> | + | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> |
− | | <math>\text{Sign}\!</math> | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{e}</math> |
− | | <math>\text{Interpretant}\!</math> | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{f}</math> |
− | |- | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{g}</math> |
− | | valign="bottom" width="33%" | | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{h}</math> |
− | <math>\begin{matrix} | + | |- style="height:50px" |
− | \text{A} | + | | style="border-right:1px solid black" | <math>\operatorname{e}</math> |
− | \\ | + | | <math>\operatorname{e}</math> |
− | \text{A}
| + | | <math>\operatorname{f}</math> |
− | \\ | + | | <math>\operatorname{g}</math> |
− | \text{A}
| + | | <math>\operatorname{h}</math> |
− | \\ | + | |- style="height:50px" |
− | \text{A}
| + | | style="border-right:1px solid black" | <math>\operatorname{f}</math> |
− | \end{matrix}</math> | + | | <math>\operatorname{f}</math> |
− | | valign="bottom" width="33%" | | + | | <math>\operatorname{e}</math> |
− | <math>\begin{matrix} | + | | <math>\operatorname{h}</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | <math>\operatorname{g}</math> |
− | \\ | + | |- style="height:50px" |
− | {}^{\langle} \text{A} {}^{\rangle} | + | | style="border-right:1px solid black" | <math>\operatorname{g}</math> |
− | \\ | + | | <math>\operatorname{g}</math> |
− | {}^{\langle} \text{u} {}^{\rangle} | + | | <math>\operatorname{h}</math> |
− | \\ | + | | <math>\operatorname{e}</math> |
− | {}^{\langle} \text{u} {}^{\rangle} | + | | <math>\operatorname{f}</math> |
− | \end{matrix}</math>
| + | |- style="height:50px" |
− | | valign="bottom" width="33%" | | + | | style="border-right:1px solid black" | <math>\operatorname{h}</math> |
− | <math>\begin{matrix} | + | | <math>\operatorname{h}</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | <math>\operatorname{g}</math> |
− | \\ | + | | <math>\operatorname{f}</math> |
− | {}^{\langle} \text{u} {}^{\rangle} | + | | <math>\operatorname{e}</math> |
− | \\ | + | |} |
− | {}^{\langle} \text{A} {}^{\rangle} | + | |
− | \\ | + | <br> |
− | {}^{\langle} \text{u} {}^{\rangle} | + | |
− | \end{matrix}</math>
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | |- | + | |+ <math>\text{Table 33.2}~~\text{Regular Representation of the Group}~V_4</math> |
− | | valign="bottom" width="33%" |
| + | |- style="height:50px" |
− | <math>\begin{matrix} | + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> |
− | \text{B} | + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> |
− | \\ | + | |- style="height:50px" |
− | \text{B}
| + | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math> |
− | \\ | + | | width="4%" | <math>\{\!</math> |
− | \text{B}
| + | | width="16%" | <math>(\operatorname{e}, \operatorname{e}),</math> |
− | \\ | + | | width="20%" | <math>(\operatorname{f}, \operatorname{f}),</math> |
− | \text{B}
| + | | width="20%" | <math>(\operatorname{g}, \operatorname{g}),</math> |
− | \end{matrix}</math>
| + | | width="16%" | <math>(\operatorname{h}, \operatorname{h})</math> |
− | | valign="bottom" width="33%" | | + | | width="4%" | <math>\}\!</math> |
− | <math>\begin{matrix} | + | |- style="height:50px" |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | style="border-right:1px solid black" | <math>\operatorname{f}</math> |
− | \\
| + | | <math>\{\!</math> |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | <math>(\operatorname{e}, \operatorname{f}),</math> |
− | \\
| + | | <math>(\operatorname{f}, \operatorname{e}),</math> |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | | <math>(\operatorname{g}, \operatorname{h}),</math> |
− | \\
| + | | <math>(\operatorname{h}, \operatorname{g})</math> |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | | <math>\}\!</math> |
− | \end{matrix}</math>
| + | |- style="height:50px" |
− | | valign="bottom" width="33%" | | + | | style="border-right:1px solid black" | <math>\operatorname{g}</math> |
− | <math>\begin{matrix} | + | | <math>\{\!</math> |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | <math>(\operatorname{e}, \operatorname{g}),</math> |
− | \\ | + | | <math>(\operatorname{f}, \operatorname{h}),</math> |
− | {}^{\langle} \text{i} {}^{\rangle} | + | | <math>(\operatorname{g}, \operatorname{e}),</math> |
− | \\ | + | | <math>(\operatorname{h}, \operatorname{f})</math> |
− | {}^{\langle} \text{B} {}^{\rangle} | + | | <math>\}\!</math> |
− | \\ | + | |- style="height:50px" |
− | {}^{\langle} \text{i} {}^{\rangle} | + | | style="border-right:1px solid black" | <math>\operatorname{h}</math> |
− | \end{matrix}</math> | + | | <math>\{\!</math> |
− | |- | + | | <math>(\operatorname{e}, \operatorname{h}),</math> |
− | | valign="bottom" width="33%" |
| + | | <math>(\operatorname{f}, \operatorname{g}),</math> |
− | <math>\begin{matrix} | + | | <math>(\operatorname{g}, \operatorname{f}),</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | <math>(\operatorname{h}, \operatorname{e})</math> |
− | \\ | + | | <math>\}\!</math> |
− | {}^{\langle} \text{B} {}^{\rangle} | |
− | \\ | |
− | {}^{\langle} \text{i} {}^{\rangle} | |
− | \\ | |
− | {}^{\langle} \text{u} {}^{\rangle} | |
− | \end{matrix}</math> | |
− | | valign="bottom" width="33%" | | |
− | <math>\begin{matrix} | |
− | {}^{\langle\langle} \text{A} {}^{\rangle\rangle}
| |
− | \\ | |
− | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} | |
− | \\ | |
− | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} | |
− | \\ | |
− | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} | |
− | \end{matrix}</math> | |
− | | valign="bottom" width="33%" | | |
− | <math>\begin{matrix} | |
− | {}^{\langle\langle} \text{A} {}^{\rangle\rangle}
| |
− | \\ | |
− | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} | |
− | \\ | |
− | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} | |
− | \\ | |
− | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} | |
− | \end{matrix}</math> | |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | |+ style="height:30px" | <math>\text{Table 44.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{A})\!</math> | + | |+ <math>\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="height:50px" |
− | | <math>\text{Object}\!</math> | + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> |
− | | <math>\text{Sign}\!</math> | + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Symbols}\!</math> |
− | | <math>\text{Interpretant}\!</math> | + | |- style="height:50px" |
− | |- | + | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math> |
− | | valign="bottom" width="33%" |
| + | | width="4%" | <math>\{\!</math> |
− | <math>\begin{matrix}
| + | | width="16%" | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> |
− | \text{A} | + | | width="20%" | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> |
− | \\
| + | | width="20%" | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> |
− | \text{A}
| + | | width="16%" | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})</math> |
− | \\ | + | | width="4%" | <math>\}\!</math> |
− | \text{A} | + | |- style="height:50px" |
− | \\ | + | | style="border-right:1px solid black" | <math>\operatorname{f}</math> |
− | \text{A} | + | | <math>\{\!</math> |
− | \end{matrix}</math>
| + | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> |
− | | valign="bottom" width="33%" | | + | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> |
− | <math>\begin{matrix} | + | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})</math> |
− | \\
| + | | <math>\}\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | |- style="height:50px" |
− | \\
| + | | style="border-right:1px solid black" | <math>\operatorname{g}</math> |
− | {}^{\langle} \text{i} {}^{\rangle}
| + | | <math>\{\!</math> |
− | \\
| + | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> |
− | {}^{\langle} \text{i} {}^{\rangle} | + | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> |
− | \end{matrix}</math> | + | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> |
− | | valign="bottom" width="33%" | | + | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})</math> |
− | <math>\begin{matrix} | + | | <math>\}\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | |- style="height:50px" |
− | \\
| + | | style="border-right:1px solid black" | <math>\operatorname{h}</math> |
− | {}^{\langle} \text{i} {}^{\rangle} | + | | <math>\{\!</math> |
− | \\ | + | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> |
− | \\ | + | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> |
− | {}^{\langle} \text{i} {}^{\rangle} | + | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})</math> |
− | \end{matrix}</math>
| + | | <math>\}\!</math> |
− | |-
| + | |} |
− | | valign="bottom" width="33%" |
| + | |
− | <math>\begin{matrix}
| + | <br> |
− | \text{B} | + | |
− | \\
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | \text{B}
| + | |+ <math>\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)</math> |
− | \\ | + | |- style="height:50px" |
− | \text{B}
| + | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> |
− | \\ | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math> |
− | \text{B} | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{a}</math> |
− | \end{matrix}</math> | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{b}</math> |
− | | valign="bottom" width="33%" |
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{c}</math> |
− | <math>\begin{matrix}
| + | |- style="height:50px" |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | style="border-right:1px solid black" | <math>\operatorname{1}</math> |
− | \\
| + | | <math>\operatorname{1}</math> |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | | <math>\operatorname{a}</math> |
− | \\
| + | | <math>\operatorname{b}</math> |
− | {}^{\langle} \text{u} {}^{\rangle} | + | | <math>\operatorname{c}</math> |
− | \\
| + | |- style="height:50px" |
− | {}^{\langle} \text{u} {}^{\rangle} | + | | style="border-right:1px solid black" | <math>\operatorname{a}</math> |
− | \end{matrix}</math> | + | | <math>\operatorname{a}</math> |
− | | valign="bottom" width="33%" |
| + | | <math>\operatorname{b}</math> |
− | <math>\begin{matrix}
| + | | <math>\operatorname{c}</math> |
− | {}^{\langle} \text{B} {}^{\rangle} | + | | <math>\operatorname{1}</math> |
− | \\ | + | |- style="height:50px" |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | | style="border-right:1px solid black" | <math>\operatorname{b}</math> |
− | \\
| + | | <math>\operatorname{b}</math> |
− | {}^{\langle} \text{B} {}^{\rangle} | + | | <math>\operatorname{c}</math> |
− | \\
| + | | <math>\operatorname{1}</math> |
− | {}^{\langle} \text{u} {}^{\rangle} | + | | <math>\operatorname{a}</math> |
− | \end{matrix}</math> | + | |- style="height:50px" |
− | |- | + | | style="border-right:1px solid black" | <math>\operatorname{c}</math> |
− | | valign="bottom" width="33%" |
| + | | <math>\operatorname{c}</math> |
− | <math>\begin{matrix}
| + | | <math>\operatorname{1}</math> |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) | + | | <math>\operatorname{a}</math> |
− | \\
| + | | <math>\operatorname{b}</math> |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) | + | |} |
− | \\
| + | |
− | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) | + | <br> |
− | \\ | + | |
− | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | \end{matrix}</math> | + | |+ <math>\text{Table 34.2}~~\text{Regular Representation of the Group}~Z_4(\cdot)</math> |
− | | valign="bottom" width="33%" | | + | |- style="height:50px" |
− | <math>\begin{matrix}
| + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> |
− | \\
| + | |- style="height:50px" |
− | {}^{\langle} \text{A} {}^{\rangle} | + | | width="20%" style="border-right:1px solid black" | <math>\operatorname{1}</math> |
− | \\
| + | | width="4%" | <math>\{\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | width="16%" | <math>(\operatorname{1}, \operatorname{1}),</math> |
− | \\
| + | | width="20%" | <math>(\operatorname{a}, \operatorname{a}),</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | | width="20%" | <math>(\operatorname{b}, \operatorname{b}),</math> |
− | \end{matrix}</math> | + | | width="16%" | <math>(\operatorname{c}, \operatorname{c})</math> |
− | | valign="bottom" width="33%" | | + | | width="4%" | <math>\}\!</math> |
− | <math>\begin{matrix}
| + | |- style="height:50px" |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | style="border-right:1px solid black" | <math>\operatorname{a}</math> |
− | \\
| + | | <math>\{\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | | <math>(\operatorname{1}, \operatorname{a}),</math> |
− | \\ | + | | <math>(\operatorname{a}, \operatorname{b}),</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | <math>(\operatorname{b}, \operatorname{c}),</math> |
− | \\
| + | | <math>(\operatorname{c}, \operatorname{1})</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | | <math>\}\!</math> |
− | \end{matrix}</math>
| + | |- style="height:50px" |
− | |-
| + | | style="border-right:1px solid black" | <math>\operatorname{b}</math> |
− | | valign="bottom" width="33%" |
| + | | <math>\{\!</math> |
− | <math>\begin{matrix} | + | | <math>(\operatorname{1}, \operatorname{b}),</math> |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| + | | <math>(\operatorname{a}, \operatorname{c}),</math> |
− | \\ | + | | <math>(\operatorname{b}, \operatorname{1}),</math> |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | | <math>(\operatorname{c}, \operatorname{a})</math> |
− | \\ | + | | <math>\}\!</math> |
− | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| + | |- style="height:50px" |
− | \\ | + | | style="border-right:1px solid black" | <math>\operatorname{c}</math> |
− | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | | <math>\{\!</math> |
− | \end{matrix}</math> | + | | <math>(\operatorname{1}, \operatorname{c}),</math> |
− | | valign="bottom" width="33%" | | + | | <math>(\operatorname{a}, \operatorname{1}),</math> |
− | <math>\begin{matrix} | + | | <math>(\operatorname{b}, \operatorname{a}),</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | <math>(\operatorname{c}, \operatorname{b})</math> |
− | \\ | + | | <math>\}\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | |} |
− | \\
| + | |
− | {}^{\langle} \text{A} {}^{\rangle} | + | <br> |
− | \\
| + | |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | \end{matrix}</math> | + | |+ <math>\text{Table 35.1}~~\text{Additive Presentation of the Group}~Z_4(+)</math> |
− | | valign="bottom" width="33%" | | + | |- style="height:50px" |
− | <math>\begin{matrix} | + | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>+\!</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{0}</math> |
− | \\ | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{2}</math> |
− | \\ | + | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{3}</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | |- style="height:50px" |
− | \\
| + | | style="border-right:1px solid black" | <math>\operatorname{0}</math> |
− | {}^{\langle} \text{A} {}^{\rangle} | + | | <math>\operatorname{0}</math> |
− | \end{matrix}</math>
| + | | <math>\operatorname{1}</math> |
− | |- | + | | <math>\operatorname{2}</math> |
− | | valign="bottom" width="33%" |
| + | | <math>\operatorname{3}</math> |
− | <math>\begin{matrix} | + | |- style="height:50px" |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & )
| + | | style="border-right:1px solid black" | <math>\operatorname{1}</math> |
− | \\ | + | | <math>\operatorname{1}</math> |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | | <math>\operatorname{2}</math> |
− | \\
| + | | <math>\operatorname{3}</math> |
− | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) | + | | <math>\operatorname{0}</math> |
− | \\ | + | |- style="height:50px" |
− | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | | style="border-right:1px solid black" | <math>\operatorname{2}</math> |
− | \end{matrix}</math>
| + | | <math>\operatorname{2}</math> |
− | | valign="bottom" width="33%" | | + | | <math>\operatorname{3}</math> |
− | <math>\begin{matrix} | + | | <math>\operatorname{0}</math> |
− | {}^{\langle} \text{B} {}^{\rangle} | + | | <math>\operatorname{1}</math> |
− | \\
| + | |- style="height:50px" |
− | {}^{\langle} \text{B} {}^{\rangle} | + | | style="border-right:1px solid black" | <math>\operatorname{3}</math> |
− | \\ | + | | <math>\operatorname{3}</math> |
− | {}^{\langle} \text{B} {}^{\rangle} | + | | <math>\operatorname{0}</math> |
− | \\ | + | | <math>\operatorname{1}</math> |
− | {}^{\langle} \text{B} {}^{\rangle} | + | | <math>\operatorname{2}</math> |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" | | |
− | <math>\begin{matrix} | |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle} | |
− | \\ | |
− | {}^{\langle} \text{B} {}^{\rangle} | |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
− | |- | |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix} | |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| |
− | \\ | |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| |
− | \\ | |
− | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| |
− | \\ | |
− | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| |
− | \end{matrix}</math> | |
− | | valign="bottom" width="33%" | | |
− | <math>\begin{matrix} | |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle} | |
− | \\ | |
− | {}^{\langle} \text{B} {}^{\rangle} | |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" | | |
− | <math>\begin{matrix}
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | |+ style="height:30px" | <math>\text{Table 45.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{B})\!</math> | + | |+ <math>\text{Table 35.2}~~\text{Regular Representation of the Group}~Z_4(+)</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="height:50px" |
− | | <math>\text{Object}\!</math> | + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> |
− | | <math>\text{Sign}\!</math> | + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> |
− | | <math>\text{Interpretant}\!</math> | + | |- style="height:50px" |
− | |- | + | | width="20%" style="border-right:1px solid black" | <math>\operatorname{0}</math> |
− | | valign="bottom" width="33%" | | + | | width="4%" | <math>\{\!</math> |
| + | | width="16%" | <math>(\operatorname{0}, \operatorname{0}),</math> |
| + | | width="20%" | <math>(\operatorname{1}, \operatorname{1}),</math> |
| + | | width="20%" | <math>(\operatorname{2}, \operatorname{2}),</math> |
| + | | width="16%" | <math>(\operatorname{3}, \operatorname{3})</math> |
| + | | width="4%" | <math>\}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{1}</math> |
| + | | <math>\{\!</math> |
| + | | <math>(\operatorname{0}, \operatorname{1}),</math> |
| + | | <math>(\operatorname{1}, \operatorname{2}),</math> |
| + | | <math>(\operatorname{2}, \operatorname{3}),</math> |
| + | | <math>(\operatorname{3}, \operatorname{0})</math> |
| + | | <math>\}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{2}</math> |
| + | | <math>\{\!</math> |
| + | | <math>(\operatorname{0}, \operatorname{2}),</math> |
| + | | <math>(\operatorname{1}, \operatorname{3}),</math> |
| + | | <math>(\operatorname{2}, \operatorname{0}),</math> |
| + | | <math>(\operatorname{3}, \operatorname{1})</math> |
| + | | <math>\}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\operatorname{3}</math> |
| + | | <math>\{\!</math> |
| + | | <math>(\operatorname{0}, \operatorname{3}),</math> |
| + | | <math>(\operatorname{1}, \operatorname{0}),</math> |
| + | | <math>(\operatorname{2}, \operatorname{1}),</math> |
| + | | <math>(\operatorname{3}, \operatorname{2})</math> |
| + | | <math>\}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ===Sign Relations=== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 1.} ~~ \text{Sign Relation of Interpreter A}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \text{A} | | \text{A} |
Line 1,846: |
Line 1,523: |
| \text{A} | | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \text{B} | | \text{B} |
Line 1,877: |
Line 1,554: |
| \text{B} | | \text{B} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 2.} ~~ \text{Sign Relation of Interpreter B}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| |- | | |- |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & )
| + | \text{A} |
| \\ | | \\ |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| + | \text{A} |
| \\ | | \\ |
− | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & )
| + | \text{A} |
| \\ | | \\ |
− | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| + | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| + | \text{B} |
| \\ | | \\ |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | \text{B} |
| \\ | | \\ |
− | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| + | \text{B} |
| \\ | | \\ |
− | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | \text{B} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 36.} ~~ \text{Semantics for Higher Order Signs}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | <math>\text{Object Denoted}\!</math> |
| + | | <math>\text{Equivalent Signs}\!</math> |
| |- | | |- |
− | | valign="bottom" width="33%" | | + | | width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & )
| + | \text{A} |
| \\ | | \\ |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | \text{B} |
− | \\
| |
− | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & )
| |
− | \\
| |
− | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | | width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\
| + | & = & |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle} | |
| \\ | | \\ |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| + | & = & |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" | | + | |- |
| + | | width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |- | + | | width="33%" | |
− | | valign="bottom" width="33%" |
| |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} |
| + | & = & |
| + | {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle} |
| + | & = & |
| + | {}^{\backprime\backprime\langle} \text{A} {}^{\rangle\prime\prime} |
| \\ | | \\ |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} |
| + | & = & |
| + | {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} |
| + | & = & |
| + | {}^{\backprime\backprime\langle} \text{B} {}^{\rangle\prime\prime} |
| \\ | | \\ |
− | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} |
| + | & = & |
| + | {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} |
| + | & = & |
| + | {}^{\backprime\backprime\langle} \text{i} {}^{\rangle\prime\prime} |
| \\ | | \\ |
− | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| + | & = & |
| + | {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} |
| + | & = & |
| + | {}^{\backprime\backprime\langle} \text{u} {}^{\rangle\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="33%" |
| + | |} |
− | <math>\begin{matrix}
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix}
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
− | |} | |
| | | |
| <br> | | <br> |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 46.} ~~ \text{Higher Order Sign Relation for} ~ Q(\text{A}, \text{B})\!</math> | + | |+ style="height:30px" | <math>\text{Table 37.} ~~ \text{Sign Relation Containing a Higher Order Sign}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | <math>\text{Object}\!</math> | | | <math>\text{Object}\!</math> |
Line 2,034: |
Line 1,722: |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | \ldots |
− | \\ | + | \\[2pt] |
− | \text{B} | + | \ldots |
| + | \\[2pt] |
| + | \text{s} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} L {}^{\rangle} | + | \text{s} |
− | \\ | + | \\[2pt] |
− | {}^{\langle} L {}^{\rangle}
| + | \ldots |
| + | \\[2pt] |
| + | \text{t} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} L {}^{\rangle}
| + | \ldots |
− | \\ | + | \\[2pt] |
− | {}^{\langle} L {}^{\rangle}
| + | \ldots |
| + | \\[2pt] |
| + | \ldots |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 38.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (1)}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | <math>\text{Object}\!</math> |
| + | | <math>\text{Sign}\!</math> |
| + | | <math>\text{Interpretant}\!</math> |
| |- | | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{A} {}^{\rangle}
| + | x |
− | \\ | + | \\[2pt] |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\langle} x {}^{\rangle} |
− | \\ | + | \\[2pt] |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle\langle} x {}^{\rangle\rangle} |
− | \\ | + | \\[2pt] |
− | {}^{\langle} \text{u} {}^{\rangle}
| + | \ldots |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} q {}^{\rangle} | + | {}^{\langle} x {}^{\rangle} |
− | \\ | + | \\[2pt] |
− | {}^{\langle} q {}^{\rangle} | + | {}^{\langle\langle} x {}^{\rangle\rangle} |
− | \\ | + | \\[2pt] |
− | {}^{\langle} q {}^{\rangle} | + | {}^{\langle\langle\langle} x {}^{\rangle\rangle\rangle} |
− | \\ | + | \\[2pt] |
− | {}^{\langle} q {}^{\rangle}
| + | \ldots |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} q {}^{\rangle}
| + | \ldots |
− | \\ | + | \\[2pt] |
− | {}^{\langle} q {}^{\rangle}
| + | \ldots |
− | \\ | + | \\[2pt] |
− | {}^{\langle} q {}^{\rangle}
| + | \ldots |
− | \\ | + | \\[2pt] |
− | {}^{\langle} q {}^{\rangle}
| + | \ldots |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 39.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (2)}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | <math>\text{Object}\!</math> |
| + | | <math>\text{Sign}\!</math> |
| + | | <math>\text{Interpretant}\!</math> |
| |- | | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & )
| + | x |
− | \\ | + | \\[2pt] |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| + | s_1 |
− | \\
| + | \\[2pt] |
− | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & )
| + | s_2 |
| + | \\[2pt] |
| + | \ldots |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | s_1 |
| + | \\[2pt] |
| + | s_2 |
| + | \\[2pt] |
| + | s_3 |
| + | \\[2pt] |
| + | \ldots |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | \ldots |
| + | \\[2pt] |
| + | \ldots |
| + | \\[2pt] |
| + | \ldots |
| + | \\[2pt] |
| + | \ldots |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 40.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{A})\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | <math>\text{Object}\!</math> |
| + | | <math>\text{Sign}\!</math> |
| + | | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| \\ | | \\ |
− | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| + | \text{A} |
| \\ | | \\ |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| + | \text{A} |
| \\ | | \\ |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | \text{A} |
− | \\
| |
− | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| |
− | \\
| |
− | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
Line 2,106: |
Line 1,853: |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \\ | | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \\ | | \\ |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{A} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\
| + | \end{matrix}</math> |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix}
| |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{A} {}^{\rangle}
| |
− | \end{matrix}</math> | |
| |- | | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & )
| + | \text{B} |
| \\ | | \\ |
− | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | \text{B} |
| \\ | | \\ |
− | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & )
| + | \text{B} |
| \\ | | \\ |
− | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & )
| + | \text{B} |
− | \\
| |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| |
− | \\
| |
− | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| |
− | \\
| |
− | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & )
| |
− | \\
| |
− | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & )
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
Line 2,161: |
Line 1,884: |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \text{B} {}^{\rangle}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
Line 2,177: |
Line 1,892: |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \\ | | \\ |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\ | + | \end{matrix}</math> |
− | {}^{\langle} \text{B} {}^{\rangle} | + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 41.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{B})\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | <math>\text{Object}\!</math> |
| + | | <math>\text{Sign}\!</math> |
| + | | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | \text{A} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | \text{A} |
| \\ | | \\ |
− | {}^{\langle} \text{B} {}^{\rangle}
| + | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{A} & ), & \text{A} & )
| + | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{B} & ), & \text{A} & )
| + | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{A} & ), & \text{B} & )
| + | {}^{\langle} \text{u} {}^{\rangle} |
| \\ | | \\ |
− | (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{B} & ), & \text{B} & )
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{A} & ), & \text{A} & )
| + | {}^{\langle} \text{u} {}^{\rangle} |
| \\ | | \\ |
− | (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{B} & ), & \text{B} & )
| + | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{A} & ), & \text{B} & )
| + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\
| |
− | (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{B} & ), & \text{A} & )
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \operatorname{De} {}^{\rangle}
| + | \text{B} |
| \\ | | \\ |
− | {}^{\langle} \operatorname{De} {}^{\rangle}
| + | \text{B} |
| \\ | | \\ |
− | {}^{\langle} \operatorname{De} {}^{\rangle}
| + | \text{B} |
| \\ | | \\ |
− | {}^{\langle} \operatorname{De} {}^{\rangle}
| + | \text{B} |
− | \\
| |
− | {}^{\langle} \operatorname{De} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \operatorname{De} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \operatorname{De} {}^{\rangle}
| |
− | \\
| |
− | {}^{\langle} \operatorname{De} {}^{\rangle}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \operatorname{De} {}^{\rangle} | + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \operatorname{De} {}^{\rangle} | + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \operatorname{De} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \operatorname{De} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \operatorname{De} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \operatorname{De} {}^{\rangle} | + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \operatorname{De} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\
| |
− | {}^{\langle} \operatorname{De} {}^{\rangle}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 2,251: |
Line 1,975: |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | | + | |+ style="height:30px" | <math>\text{Table 42.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{A})\!</math> |
− | <math>\text{Table 48.1} ~~ \operatorname{ER}(L_\text{A}) : \text{Extensional Representation of} ~ L_\text{A}\!</math> | |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | <math>\text{Object}\!</math> | | | <math>\text{Object}\!</math> |
Line 2,319: |
Line 2,042: |
| {}^{\langle} \text{u} {}^{\rangle} | | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 48.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | <math>\text{Object}\!</math>
| |
− | | <math>\text{Sign}\!</math>
| |
− | | <math>\text{Transition}\!</math>
| |
| |- | | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | \text{A}
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix}
| |
− | {}^{\langle} \text{A} {}^{\rangle} | |
| \\ | | \\ |
| {}^{\langle} \text{i} {}^{\rangle} | | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({}^{\langle} \text{A} {}^{\rangle}, \text{A})
| + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} |
| \\ | | \\ |
− | ({}^{\langle} \text{i} {}^{\rangle}, \text{A})
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} |
− | \end{matrix}</math>
| |
− | |-
| |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix}
| |
− | \text{B}
| |
| \\ | | \\ |
− | \text{B} | + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{B} {}^{\rangle} | + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} |
− | \end{matrix}</math> | + | \\ |
− | | valign="bottom" width="33%" |
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} |
− | <math>\begin{matrix}
| |
− | ({}^{\langle} \text{B} {}^{\rangle}, \text{B})
| |
| \\ | | \\ |
− | ({}^{\langle} \text{u} {}^{\rangle}, \text{B})
| + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 2,373: |
Line 2,078: |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | | + | |+ style="height:30px" | <math>\text{Table 43.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{B})\!</math> |
− | <math>\text{Table 48.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> | |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| + | | <math>\text{Object}\!</math> |
| | <math>\text{Sign}\!</math> | | | <math>\text{Sign}\!</math> |
| | <math>\text{Interpretant}\!</math> | | | <math>\text{Interpretant}\!</math> |
− | | <math>\text{Transition}\!</math>
| |
| |- | | |- |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 2,386: |
Line 2,100: |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
Line 2,394: |
Line 2,108: |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \\ | | \\ |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle})
| + | \text{B} |
| \\ | | \\ |
− | ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle})
| + | \text{B} |
| \\ | | \\ |
− | ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle})
| + | \text{B} |
| \\ | | \\ |
− | ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle})
| + | \text{B} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 2,417: |
Line 2,131: |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
Line 2,425: |
Line 2,139: |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \\ | | \\ |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle})
| + | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle})
| + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle})
| + | {}^{\langle} \text{i} {}^{\rangle} |
| \\ | | \\ |
− | ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle})
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 2,446: |
Line 2,181: |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | | + | |+ style="height:30px" | <math>\text{Table 44.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{A})\!</math> |
− | <math>\text{Table 49.1} ~~ \operatorname{ER}(L_\text{B}) : \text{Extensional Representation of} ~ L_\text{B}\!</math> | |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | <math>\text{Object}\!</math> | | | <math>\text{Object}\!</math> |
Line 2,469: |
Line 2,203: |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
Line 2,477: |
Line 2,211: |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \\ | | \\ |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{i} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
Line 2,500: |
Line 2,234: |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
Line 2,508: |
Line 2,242: |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \\ | | \\ |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 49.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | <math>\text{Object}\!</math>
| |
− | | <math>\text{Sign}\!</math>
| |
− | | <math>\text{Transition}\!</math>
| |
| |- | | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
| + | \\ |
| + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
| \\ | | \\ |
− | \text{A} | + | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
− | \end{matrix}</math> | + | \\ |
| + | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
| + | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({}^{\langle} \text{A} {}^{\rangle}, \text{A})
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | ({}^{\langle} \text{u} {}^{\rangle}, \text{A})
| + | {}^{\langle} \text{A} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
| \\ | | \\ |
− | \text{B} | + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
− | \end{matrix}</math> | |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix}
| |
− | {}^{\langle} \text{B} {}^{\rangle} | |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="33%" |
| |
− | <math>\begin{matrix}
| |
− | ({}^{\langle} \text{B} {}^{\rangle}, \text{B})
| |
| \\ | | \\ |
− | ({}^{\langle} \text{i} {}^{\rangle}, \text{B}) | + | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 49.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | <math>\text{Sign}\!</math>
| |
− | | <math>\text{Interpretant}\!</math>
| |
− | | <math>\text{Transition}\!</math>
| |
− | |-
| |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 2,581: |
Line 2,296: |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{A} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
Line 2,589: |
Line 2,304: |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
| {}^{\langle} \text{A} {}^{\rangle} | | {}^{\langle} \text{A} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{u} {}^{\rangle} | + | {}^{\langle} \text{A} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) | + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
| \\ | | \\ |
− | ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) | + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
| \\ | | \\ |
− | ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) | + | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
| + | \\ |
| + | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle})
| + | {}^{\langle} \text{B} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 2,612: |
Line 2,337: |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
| + | \\ |
| + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
| + | \\ |
| + | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
Line 2,620: |
Line 2,356: |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
| {}^{\langle} \text{B} {}^{\rangle} | | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | {}^{\langle} \text{i} {}^{\rangle} | + | {}^{\langle} \text{B} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle})
| + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle})
| + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle})
| + | {}^{\langle} \text{B} {}^{\rangle} |
| \\ | | \\ |
− | ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle})
| + | {}^{\langle} \text{B} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
− |
| |
− | <br>
| |
− |
| |
− | ===Type Tables===
| |
| | | |
| <br> | | <br> |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | | + | |+ style="height:30px" | <math>\text{Table 45.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{B})\!</math> |
− | <math>\text{Table 47.1} ~~ \text{Basic Types for ERs and IRs of Sign Relations}\!</math> | |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | <math>\text{Type}\!</math> || <math>\text{Symbol}\!</math> | + | | <math>\text{Object}\!</math> |
| + | | <math>\text{Sign}\!</math> |
| + | | <math>\text{Interpretant}\!</math> |
| |- | | |- |
− | | width="50%" | | + | | valign="bottom" width="33%" | |
− | <math>\begin{array}{l} | + | <math>\begin{matrix} |
− | \text{Property} \\ \text{Sign} \\ \text{Set} \\ \text{Triple}\\ \text{Underlying Element} | + | \text{A} |
− | \end{array}</math> | + | \\ |
− | | width="50%" | | + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | P \\ \underline{S} \\ S \\ T \\ U
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 47.2} ~~ \text{Derived Types for ERs of Sign Relations}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | width="33%" | <math>\text{Type}\!</math>
| |
− | | width="33%" | <math>\text{Symbol}\!</math>
| |
− | | width="33%" | <math>\text{Construction}\!</math>
| |
| |- | | |- |
− | | <math>\text{Relation}\!</math> | + | | valign="bottom" width="33%" | |
− | | <math>R\!</math>
| + | <math>\begin{matrix} |
− | | <math>S(T(U))\!</math>
| + | \text{B} |
− | |}
| + | \\ |
− | | + | \text{B} |
− | <br> | + | \\ |
− | | + | \text{B} |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| + | \\ |
− | |+ style="height:30px" |
| + | \text{B} |
− | <math>\text{Table 47.3} ~~ \text{Derived Types for IRs of Sign Relations}\!</math> | + | \end{matrix}</math> |
− | |- style="height:40px; background:#f0f0ff" | + | | valign="bottom" width="33%" | |
− | | width="33%" | <math>\text{Type}\!</math>
| + | <math>\begin{matrix} |
− | | width="33%" | <math>\text{Symbol}\!</math>
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | | width="33%" | <math>\text{Construction}\!</math>
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| |- | | |- |
− | | <math>\text{Relation}\!</math>
| + | | valign="bottom" width="33%" | |
− | | <math>P(R)\!</math>
| |
− | | <math>P(S(T(U)))\!</math>
| |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | ==Completed Work==
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 50.} ~~ \text{Notations for Objects and Their Signs}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | <math>\text{Object}\!</math>
| |
− | | <math>\text{Sign of Object}\!</math>
| |
− | |-
| |
− | | valign="bottom" width="50%" | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} &
| + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
− | \text{A} & | + | \\ |
− | w_1
| + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
− | \\[6pt]
| + | \\ |
− | \text{B} &
| + | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
− | \text{B} &
| + | \\ |
− | w_2
| + | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
− | \\[12pt]
| |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} & | |
− | {}^{\langle} \text{A} {}^{\rangle} & | |
− | w_3
| |
− | \\[6pt] | |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} & | |
− | {}^{\langle} \text{B} {}^{\rangle} & | |
− | w_4
| |
− | \\[6pt] | |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} & | |
− | {}^{\langle} \text{i} {}^{\rangle} & | |
− | w_5
| |
− | \\[6pt] | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} & | |
− | {}^{\langle} \text{u} {}^{\rangle} & | |
− | w_6
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \text{A} {}^{\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle} \text{A} {}^{\rangle} & | + | \\ |
− | {}^{\langle} w_1 {}^{\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | {}^{\langle} \text{B} {}^{\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle} \text{B} {}^{\rangle} & | + | \\ |
− | {}^{\langle} w_2 {}^{\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[12pt]
| + | \end{matrix}</math> |
− | {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle} &
| + | | valign="bottom" width="33%" | |
− | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} & | + | <math>\begin{matrix} |
− | {}^{\langle} w_3 {}^{\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} &
| + | \\ |
− | {}^{\langle} w_4 {}^{\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} &
| |
− | {}^{\langle} w_5 {}^{\rangle}
| |
− | \\[6pt] | |
− | {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} & | |
− | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} &
| |
− | {}^{\langle} w_6 {}^{\rangle}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 51.1} ~~ \text{Notations for Properties and Their Signs (1)}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | <math>\text{Property}\!</math>
| |
− | | <math>\text{Sign of Property}\!</math>
| |
| |- | | |- |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\lbrace} \text{A} {}^{\rbrace} &
| + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
− | {}^{\lbrace} \text{A} {}^{\rbrace} & | + | \\ |
− | {}^{\lbrace} w_1 {}^{\rbrace} | + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
− | \\[6pt]
| + | \\ |
− | {}^{\lbrace} \text{B} {}^{\rbrace} &
| + | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
− | {}^{\lbrace} \text{B} {}^{\rbrace} &
| + | \\ |
− | {}^{\lbrace} w_2 {}^{\rbrace} | + | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
− | \\[12pt]
| |
− | {}^{\lbrace\backprime\backprime} \text{A} {}^{\prime\prime\rbrace} &
| |
− | {}^{\lbrace\langle} \text{A} {}^{\rangle\rbrace} & | |
− | {}^{\lbrace} w_3 {}^{\rbrace}
| |
− | \\[6pt]
| |
− | {}^{\lbrace\backprime\backprime} \text{B} {}^{\prime\prime\rbrace} &
| |
− | {}^{\lbrace\langle} \text{B} {}^{\rangle\rbrace} & | |
− | {}^{\lbrace} w_4 {}^{\rbrace} | |
− | \\[6pt]
| |
− | {}^{\lbrace\backprime\backprime} \text{i} {}^{\prime\prime\rbrace} &
| |
− | {}^{\lbrace\langle} \text{i} {}^{\rangle\rbrace} &
| |
− | {}^{\lbrace} w_5 {}^{\rbrace} | |
− | \\[6pt]
| |
− | {}^{\lbrace\backprime\backprime} \text{u} {}^{\prime\prime\rbrace} &
| |
− | {}^{\lbrace\langle} \text{u} {}^{\rangle\rbrace} & | |
− | {}^{\lbrace} w_6 {}^{\rbrace}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle\lbrace} \text{A} {}^{\rbrace\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle\lbrace} \text{A} {}^{\rbrace\rangle} & | + | \\ |
− | {}^{\langle\lbrace} w_1 {}^{\rbrace\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | {}^{\langle\lbrace} \text{B} {}^{\rbrace\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle\lbrace} \text{B} {}^{\rbrace\rangle} & | + | \\ |
− | {}^{\langle\lbrace} w_2 {}^{\rbrace\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[12pt]
| + | \end{matrix}</math> |
− | {}^{\langle\lbrace\backprime\backprime} \text{A} {}^{\prime\prime\rbrace\rangle} &
| + | | valign="bottom" width="33%" | |
− | {}^{\langle\lbrace\langle} \text{A} {}^{\rangle\rbrace\rangle} & | + | <math>\begin{matrix} |
− | {}^{\langle\lbrace} w_3 {}^{\rbrace\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | {}^{\langle\lbrace\backprime\backprime} \text{B} {}^{\prime\prime\rbrace\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle\lbrace\langle} \text{B} {}^{\rangle\rbrace\rangle} &
| + | \\ |
− | {}^{\langle\lbrace} w_4 {}^{\rbrace\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | {}^{\langle\lbrace\backprime\backprime} \text{i} {}^{\prime\prime\rbrace\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle\lbrace\langle} \text{i} {}^{\rangle\rbrace\rangle} &
| |
− | {}^{\langle\lbrace} w_5 {}^{\rbrace\rangle} | |
− | \\[6pt] | |
− | {}^{\langle\lbrace\backprime\backprime} \text{u} {}^{\prime\prime\rbrace\rangle} & | |
− | {}^{\langle\lbrace\langle} \text{u} {}^{\rangle\rbrace\rangle} &
| |
− | {}^{\langle\lbrace} w_6 {}^{\rbrace\rangle} | |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 51.2} ~~ \text{Notations for Properties and Their Signs (2)}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | <math>\text{Property}\!</math>
| |
− | | <math>\text{Sign of Property}\!</math>
| |
| |- | | |- |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \underline{\underline{\text{A}}} & | + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
− | \underline{\underline{\text{A}}} &
| + | \\ |
− | \underline{\underline{w_1}} | + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
− | \\[6pt]
| + | \\ |
− | \underline{\underline{\text{B}}} &
| + | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
− | \underline{\underline{\text{B}}} &
| + | \\ |
− | \underline{\underline{w_2}}
| + | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
− | \\[12pt] | + | \end{matrix}</math> |
− | \underline{\underline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}} & | + | | valign="bottom" width="33%" | |
− | \underline{\underline{{}^{\langle} \text{A} {}^{\rangle}}} &
| + | <math>\begin{matrix} |
− | \underline{\underline{w_3}} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | \underline{\underline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}} &
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | \underline{\underline{{}^{\langle} \text{B} {}^{\rangle}}} &
| + | \\ |
− | \underline{\underline{w_4}} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[6pt]
| + | \\ |
− | \underline{\underline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}} & | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \underline{\underline{{}^{\langle} \text{i} {}^{\rangle}}} & | |
− | \underline{\underline{w_5}}
| |
− | \\[6pt] | |
− | \underline{\underline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}} &
| |
− | \underline{\underline{{}^{\langle} \text{u} {}^{\rangle}}} & | |
− | \underline{\underline{w_6}}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & | + | {}^{\langle} \text{B} {}^{\rangle} |
− | {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \underline{\underline{w_1}} {}^{\rangle}
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[6pt]
| + | \\ |
− | {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} &
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & | + | \\ |
− | {}^{\langle} \underline{\underline{w_2}} {}^{\rangle}
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[12pt]
| |
− | {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}} {}^{\rangle} & | |
− | {}^{\langle} \underline{\underline{{}^{\langle} \text{A} {}^{\rangle}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{w_3}} {}^{\rangle}
| |
− | \\[6pt] | |
− | {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{{}^{\langle} \text{B} {}^{\rangle}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{w_4}} {}^{\rangle}
| |
− | \\[6pt]
| |
− | {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{{}^{\langle} \text{i} {}^{\rangle}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{w_5}} {}^{\rangle}
| |
− | \\[6pt]
| |
− | {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{{}^{\langle} \text{u} {}^{\rangle}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{w_6}} {}^{\rangle}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |} | + | |- |
− | | + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
| + | \\ |
| + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
| + | \\ |
| + | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
| + | \\ |
| + | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | | + | |+ style="height:30px" | <math>\text{Table 46.} ~~ \text{Higher Order Sign Relation for} ~ Q(\text{A}, \text{B})\!</math> |
− | <math>\text{Table 51.3} ~~ \text{Notations for Properties and Their Signs (3)}\!</math> | |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | <math>\text{Property}\!</math> | + | | <math>\text{Object}\!</math> |
− | | <math>\text{Sign of Property}\!</math> | + | | <math>\text{Sign}\!</math> |
| + | | <math>\text{Interpretant}\!</math> |
| |- | | |- |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \underline{\underline{\text{A}}} &
| + | {}^{\langle} L {}^{\rangle} |
− | \underline{\underline{o_1}} &
| + | \\ |
− | \underline{\underline{w_1}}
| + | {}^{\langle} L {}^{\rangle} |
− | \\[6pt]
| |
− | \underline{\underline{\text{B}}} &
| |
− | \underline{\underline{o_2}} &
| |
− | \underline{\underline{w_2}}
| |
− | \\[12pt]
| |
− | \underline{\underline{\text{a}}} &
| |
− | \underline{\underline{s_1}} &
| |
− | \underline{\underline{w_3}}
| |
− | \\[6pt]
| |
− | \underline{\underline{\text{b}}} &
| |
− | \underline{\underline{s_2}} &
| |
− | \underline{\underline{w_4}}
| |
− | \\[6pt] | |
− | \underline{\underline{\text{i}}} &
| |
− | \underline{\underline{s_3}} &
| |
− | \underline{\underline{w_5}}
| |
− | \\[6pt]
| |
− | \underline{\underline{\text{u}}} &
| |
− | \underline{\underline{s_4}} &
| |
− | \underline{\underline{w_6}}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & | + | {}^{\langle} L {}^{\rangle} |
− | {}^{\langle} \underline{\underline{o_1}} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \underline{\underline{w_1}} {}^{\rangle}
| + | {}^{\langle} L {}^{\rangle} |
− | \\[6pt]
| |
− | {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{o_2}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{w_2}} {}^{\rangle}
| |
− | \\[12pt]
| |
− | {}^{\langle} \underline{\underline{\text{a}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{s_1}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{w_3}} {}^{\rangle}
| |
− | \\[6pt]
| |
− | {}^{\langle} \underline{\underline{\text{b}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{s_2}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{w_4}} {}^{\rangle} | |
− | \\[6pt]
| |
− | {}^{\langle} \underline{\underline{\text{i}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{s_3}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{w_5}} {}^{\rangle}
| |
− | \\[6pt]
| |
− | {}^{\langle} \underline{\underline{\text{u}}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{s_4}} {}^{\rangle} &
| |
− | {}^{\langle} \underline{\underline{w_6}} {}^{\rangle}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 52.1} ~~ \text{Notations for Instances and Their Signs (1)}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | <math>\text{Instance}\!</math>
| |
− | | <math>\text{Sign of Instance}\!</math>
| |
| |- | | |- |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\lbrack} \text{A} {}^{\rbrack} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\lbrack} \text{A} {}^{\rbrack} &
| + | \\ |
− | {}^{\lbrack} w_1 {}^{\rbrack} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[6pt]
| + | \\ |
− | {}^{\lbrack} \text{B} {}^{\rbrack} &
| + | {}^{\langle} \text{i} {}^{\rangle} |
− | {}^{\lbrack} \text{B} {}^{\rbrack} &
| + | \\ |
− | {}^{\lbrack} w_2 {}^{\rbrack} | + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[12pt]
| + | \end{matrix}</math> |
− | {}^{\lbrack\backprime\backprime} \text{A} {}^{\prime\prime\rbrack} &
| + | | valign="bottom" width="33%" | |
− | {}^{\lbrack\langle} \text{A} {}^{\rangle\rbrack} & | + | <math>\begin{matrix} |
− | {}^{\lbrack} w_3 {}^{\rbrack}
| + | {}^{\langle} q {}^{\rangle} |
− | \\[6pt]
| + | \\ |
− | {}^{\lbrack\backprime\backprime} \text{B} {}^{\prime\prime\rbrack} &
| + | {}^{\langle} q {}^{\rangle} |
− | {}^{\lbrack\langle} \text{B} {}^{\rangle\rbrack} & | + | \\ |
− | {}^{\lbrack} w_4 {}^{\rbrack}
| + | {}^{\langle} q {}^{\rangle} |
− | \\[6pt]
| + | \\ |
− | {}^{\lbrack\backprime\backprime} \text{i} {}^{\prime\prime\rbrack} & | + | {}^{\langle} q {}^{\rangle} |
− | {}^{\lbrack\langle} \text{i} {}^{\rangle\rbrack} & | |
− | {}^{\lbrack} w_5 {}^{\rbrack}
| |
− | \\[6pt]
| |
− | {}^{\lbrack\backprime\backprime} \text{u} {}^{\prime\prime\rbrack} &
| |
− | {}^{\lbrack\langle} \text{u} {}^{\rangle\rbrack} & | |
− | {}^{\lbrack} w_6 {}^{\rbrack}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle\lbrack} \text{A} {}^{\rbrack\rangle} & | + | {}^{\langle} q {}^{\rangle} |
− | {}^{\langle\lbrack} \text{A} {}^{\rbrack\rangle} &
| + | \\ |
− | {}^{\langle\lbrack} w_1 {}^{\rbrack\rangle}
| + | {}^{\langle} q {}^{\rangle} |
− | \\[6pt]
| + | \\ |
− | {}^{\langle\lbrack} \text{B} {}^{\rbrack\rangle} &
| + | {}^{\langle} q {}^{\rangle} |
− | {}^{\langle\lbrack} \text{B} {}^{\rbrack\rangle} &
| + | \\ |
− | {}^{\langle\lbrack} w_2 {}^{\rbrack\rangle}
| + | {}^{\langle} q {}^{\rangle} |
− | \\[12pt]
| |
− | {}^{\langle\lbrack\backprime\backprime} \text{A} {}^{\prime\prime\rbrack\rangle} &
| |
− | {}^{\langle\lbrack\langle} \text{A} {}^{\rangle\rbrack\rangle} &
| |
− | {}^{\langle\lbrack} w_3 {}^{\rbrack\rangle}
| |
− | \\[6pt]
| |
− | {}^{\langle\lbrack\backprime\backprime} \text{B} {}^{\prime\prime\rbrack\rangle} &
| |
− | {}^{\langle\lbrack\langle} \text{B} {}^{\rangle\rbrack\rangle} &
| |
− | {}^{\langle\lbrack} w_4 {}^{\rbrack\rangle}
| |
− | \\[6pt]
| |
− | {}^{\langle\lbrack\backprime\backprime} \text{i} {}^{\prime\prime\rbrack\rangle} &
| |
− | {}^{\langle\lbrack\langle} \text{i} {}^{\rangle\rbrack\rangle} &
| |
− | {}^{\langle\lbrack} w_5 {}^{\rbrack\rangle} | |
− | \\[6pt] | |
− | {}^{\langle\lbrack\backprime\backprime} \text{u} {}^{\prime\prime\rbrack\rangle} & | |
− | {}^{\langle\lbrack\langle} \text{u} {}^{\rangle\rbrack\rangle} &
| |
− | {}^{\langle\lbrack} w_6 {}^{\rbrack\rangle} | |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 52.2} ~~ \text{Notations for Instances and Their Signs (2)}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | <math>\text{Instance}\!</math>
| |
− | | <math>\text{Sign of Instance}\!</math>
| |
| |- | | |- |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \overline{\text{A}} & | + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
− | \overline{\text{A}} & | + | \\ |
− | \overline{w_1} | + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
− | \\[6pt] | + | \\ |
− | \overline{\text{B}} & | + | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
− | \overline{\text{B}} & | + | \\ |
− | \overline{w_2} | + | ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
− | \\[12pt] | + | \\ |
− | \overline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}} & | + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
− | \overline{{}^{\langle} \text{A} {}^{\rangle}} & | + | \\ |
− | \overline{w_3} | + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
− | \\[6pt] | + | \\ |
− | \overline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}} & | + | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
− | \overline{{}^{\langle} \text{B} {}^{\rangle}} & | + | \\ |
− | \overline{w_4} | + | ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
− | \\[6pt] | + | \end{matrix}</math> |
− | \overline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}} & | + | | valign="bottom" width="33%" | |
− | \overline{{}^{\langle} \text{i} {}^{\rangle}} & | + | <math>\begin{matrix} |
− | \overline{w_5} | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | \overline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \overline{{}^{\langle} \text{u} {}^{\rangle}} & | + | \\ |
− | \overline{w_6} | + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \overline{\text{A}} {}^{\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle} \overline{\text{A}} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \overline{w_1} {}^{\rangle} | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | {}^{\langle} \overline{\text{B}} {}^{\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle} \overline{\text{B}} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \overline{w_2} {}^{\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[12pt] | + | \\ |
− | {}^{\langle} \overline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}} {}^{\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle} \overline{{}^{\langle} \text{A} {}^{\rangle}} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \overline{w_3} {}^{\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | {}^{\langle} \overline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}} {}^{\rangle} & | + | {}^{\langle} \text{A} {}^{\rangle} |
− | {}^{\langle} \overline{{}^{\langle} \text{B} {}^{\rangle}} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \overline{w_4} {}^{\rangle}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[6pt] | + | \end{matrix}</math> |
− | {}^{\langle} \overline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}} {}^{\rangle} & | |
− | {}^{\langle} \overline{{}^{\langle} \text{i} {}^{\rangle}} {}^{\rangle} &
| |
− | {}^{\langle} \overline{w_5} {}^{\rangle}
| |
− | \\[6pt] | |
− | {}^{\langle} \overline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}} {}^{\rangle} & | |
− | {}^{\langle} \overline{{}^{\langle} \text{u} {}^{\rangle}} {}^{\rangle} &
| |
− | {}^{\langle} \overline{w_6} {}^{\rangle}
| |
− | \end{matrix}</math> | |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 52.3} ~~ \text{Notations for Instances and Their Signs (3)}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | <math>\text{Instance}\!</math>
| |
− | | <math>\text{Sign of Instance}\!</math>
| |
| |- | | |- |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \overline{\text{A}} & | + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
− | \overline{o_1} & | + | \\ |
− | \overline{w_1} | + | ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
− | \\[6pt] | + | \\ |
− | \overline{\text{B}} & | + | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) |
− | \overline{o_2} & | + | \\ |
− | \overline{w_2} | + | ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) |
− | \\[12pt] | + | \\ |
− | \overline{\text{a}} & | + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
− | \overline{s_1} & | + | \\ |
− | \overline{w_3} | + | ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
− | \\[6pt] | + | \\ |
− | \overline{\text{b}} & | + | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) |
− | \overline{s_2} & | + | \\ |
− | \overline{w_4} | + | ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) |
− | \\[6pt] | |
− | \overline{\text{i}} & | |
− | \overline{s_3} & | |
− | \overline{w_5} | |
− | \\[6pt] | |
− | \overline{\text{u}} & | |
− | \overline{s_4} & | |
− | \overline{w_6} | |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="50%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\langle} \overline{\text{A}} {}^{\rangle} & | + | {}^{\langle} \text{B} {}^{\rangle} |
− | {}^{\langle} \overline{o_1} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \overline{w_1} {}^{\rangle} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[6pt] | + | \\ |
− | {}^{\langle} \overline{\text{B}} {}^{\rangle} & | + | {}^{\langle} \text{B} {}^{\rangle} |
− | {}^{\langle} \overline{o_2} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \overline{w_2} {}^{\rangle} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[12pt] | + | \\ |
− | {}^{\langle} \overline{\text{a}} {}^{\rangle} & | + | {}^{\langle} \text{B} {}^{\rangle} |
− | {}^{\langle} \overline{s_1} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \overline{w_3} {}^{\rangle}
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[6pt]
| + | \\ |
− | {}^{\langle} \overline{\text{b}} {}^{\rangle} & | + | {}^{\langle} \text{B} {}^{\rangle} |
− | {}^{\langle} \overline{s_2} {}^{\rangle} &
| + | \\ |
− | {}^{\langle} \overline{w_4} {}^{\rangle} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[6pt]
| |
− | {}^{\langle} \overline{\text{i}} {}^{\rangle} &
| |
− | {}^{\langle} \overline{s_3} {}^{\rangle} &
| |
− | {}^{\langle} \overline{w_5} {}^{\rangle}
| |
− | \\[6pt] | |
− | {}^{\langle} \overline{\text{u}} {}^{\rangle} & | |
− | {}^{\langle} \overline{s_4} {}^{\rangle} &
| |
− | {}^{\langle} \overline{w_6} {}^{\rangle}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 53.1} ~~ \text{Elements of} ~ \operatorname{ER}(W)\!</math>
| |
− | |- style="background:#f0f0ff"
| |
− | | <math>\text{Mnemonic Element}\!</math> <br><br> <math>w \in W\!</math>
| |
− | | <math>\text{Pragmatic Element}\!</math> <br><br> <math>w \in W\!</math>
| |
− | | <math>\text{Abstract Element}\!</math> <br><br> <math>w_i \in W\!</math>
| |
− | |-
| |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | \text{B} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | o_1
| + | (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) |
− | \\[4pt] | + | \\ |
− | o_2
| + | (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) |
− | \\[4pt] | + | \\ |
− | s_1
| + | (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) |
− | \\[4pt] | + | \\ |
− | s_2
| + | (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) |
− | \\[4pt] | + | \\ |
− | s_3
| + | (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) |
− | \\[4pt] | + | \\ |
− | s_4
| + | (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) |
| + | \\ |
| + | (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) |
| + | \\ |
| + | (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | w_1
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | w_2
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | w_3
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | w_4
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | w_5
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | w_6
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \operatorname{De} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 3,191: |
Line 2,797: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 53.2} ~~ \text{Features of} ~ \operatorname{LIR}(W)\!</math> | + | <math>\text{Table 48.1} ~~ \operatorname{ER}(L_\text{A}) : \text{Extensional Representation of} ~ L_\text{A}\!</math> |
− | |- style="background:#f0f0ff" | + | |- style="height:40px; background:#f0f0ff" |
− | | | + | | <math>\text{Object}\!</math> |
− | <math>\text{Mnemonic Feature}\!</math><br><br> | + | | <math>\text{Sign}\!</math> |
− | <math>\underline{\underline{w}} \in \underline{\underline{W}}\!</math>
| + | | <math>\text{Interpretant}\!</math> |
− | | | |
− | <math>\text{Pragmatic Feature}\!</math><br><br> | |
− | <math>\underline{\underline{w}} \in \underline{\underline{W}}\!</math>
| |
− | | | |
− | <math>\text{Abstract Feature}\!</math><br><br> | |
− | <math>\underline{\underline{w_i}} \in \underline{\underline{W}}\!</math>
| |
| |- | | |- |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \underline{\underline{\text{A}}}
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | \underline{\underline{\text{B}}}
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | \underline{\underline{\text{a}}}
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | \underline{\underline{\text{b}}}
| + | \text{A} |
− | \\[4pt]
| |
− | \underline{\underline{\text{i}}}
| |
− | \\[4pt]
| |
− | \underline{\underline{\text{u}}}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \underline{\underline{o_1}} | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | \underline{\underline{o_2}} | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | \underline{\underline{s_1}} | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt]
| + | \\ |
− | \underline{\underline{s_2}}
| + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | |
− | \underline{\underline{s_3}} | |
− | \\[4pt]
| |
− | \underline{\underline{s_4}}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" width="33%" | | | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \underline{\underline{w_1}} | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | \underline{\underline{w_2}} | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | \underline{\underline{w_3}} | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt]
| + | \\ |
− | \underline{\underline{w_4}}
| + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | |
− | \underline{\underline{w_5}} | |
− | \\[4pt]
| |
− | \underline{\underline{w_6}}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 54.1} ~~ \text{Mnemonic Literal Codes for Interpreters A and B}\!</math>
| |
− | |- style="background:#f0f0ff"
| |
− | | <math>\text{Element}\!</math>
| |
− | | <math>\text{Vector}\!</math>
| |
− | | <math>\text{Conjunct Term}\!</math>
| |
− | | <math>\text{Code}\!</math>
| |
| |- | | |- |
− | | valign="bottom" width="20%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A}
| |
− | \\[4pt]
| |
| \text{B} | | \text{B} |
− | \\[4pt] | + | \\ |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| + | \text{B} |
− | \\[4pt] | + | \\ |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | \text{B} |
− | \\[4pt]
| + | \\ |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| + | \text{B} |
− | \\[4pt] | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 100000
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | 010000
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | 001000
| + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | 000100
| + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[4pt] | |
− | 000010
| |
− | \\[4pt] | |
− | 000001
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="40%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{A}}~
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | (\underline{\underline{B}})
| + | \\ |
− | (\underline{\underline{a}})
| + | {}^{\langle} \text{u} {}^{\rangle} |
− | (\underline{\underline{b}})
| + | \\ |
− | (\underline{\underline{i}})
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | (\underline{\underline{u}})
| + | \\ |
− | \\[4pt]
| + | {}^{\langle} \text{u} {}^{\rangle} |
− | (\underline{\underline{A}})
| + | \end{matrix}</math> |
− | ~\underline{\underline{B}}~
| + | |} |
− | (\underline{\underline{a}})
| |
− | (\underline{\underline{b}})
| |
− | (\underline{\underline{i}})
| |
− | (\underline{\underline{u}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{A}})
| |
− | (\underline{\underline{B}})
| |
− | ~\underline{\underline{a}}~
| |
− | (\underline{\underline{b}})
| |
− | (\underline{\underline{i}})
| |
− | (\underline{\underline{u}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{A}})
| |
− | (\underline{\underline{B}})
| |
− | (\underline{\underline{a}})
| |
− | ~\underline{\underline{b}}~
| |
− | (\underline{\underline{i}})
| |
− | (\underline{\underline{u}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{A}})
| |
− | (\underline{\underline{B}})
| |
− | (\underline{\underline{a}})
| |
− | (\underline{\underline{b}})
| |
− | ~\underline{\underline{i}}~
| |
− | (\underline{\underline{u}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{A}})
| |
− | (\underline{\underline{B}})
| |
− | (\underline{\underline{a}})
| |
− | (\underline{\underline{b}})
| |
− | (\underline{\underline{i}})
| |
− | ~\underline{\underline{u}}~
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="20%" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{A}}\rangle}_W
| |
− | \\[4pt] | |
− | {\langle\underline{\underline{B}}\rangle}_W | |
− | \\[4pt]
| |
− | {\langle\underline{\underline{a}}\rangle}_W | |
− | \\[4pt]
| |
− | {\langle\underline{\underline{b}}\rangle}_W | |
− | \\[4pt]
| |
− | {\langle\underline{\underline{i}}\rangle}_W | |
− | \\[4pt]
| |
− | {\langle\underline{\underline{u}}\rangle}_W | |
− | \end{matrix}</math> | |
− | |} | |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 54.2} ~~ \text{Pragmatic Literal Codes for Interpreters A and B}\!</math> | + | <math>\text{Table 48.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> |
− | |- style="background:#f0f0ff" | + | |- style="height:40px; background:#f0f0ff" |
− | | <math>\text{Element}\!</math> | + | | <math>\text{Object}\!</math> |
− | | <math>\text{Vector}\!</math>
| + | | <math>\text{Sign}\!</math> |
− | | <math>\text{Conjunct Term}\!</math> | + | | <math>\text{Transition}\!</math> |
− | | <math>\text{Code}\!</math> | |
| |- | | |- |
− | | valign="bottom" width="20%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \text{A} | | \text{A} |
− | \\[4pt] | + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) |
| + | \\ |
| + | ({}^{\langle} \text{i} {}^{\rangle}, \text{A}) |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| \text{B} | | \text{B} |
− | \\[4pt]
| |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| |
− | \\[4pt]
| |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| |
− | \\[4pt]
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \\[4pt]
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 100000
| + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | 010000
| + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[4pt] | |
− | 001000
| |
− | \\[4pt] | |
− | 000100
| |
− | \\[4pt] | |
− | 000010
| |
− | \\[4pt] | |
− | 000001
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="40%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{o_1}}~
| + | ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) |
− | (\underline{\underline{o_2}}) | + | \\ |
− | (\underline{\underline{s_1}})
| + | ({}^{\langle} \text{u} {}^{\rangle}, \text{B}) |
− | (\underline{\underline{s_2}})
| |
− | (\underline{\underline{s_3}})
| |
− | (\underline{\underline{s_4}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{o_1}})
| |
− | ~\underline{\underline{o_2}}~
| |
− | (\underline{\underline{s_1}})
| |
− | (\underline{\underline{s_2}})
| |
− | (\underline{\underline{s_3}})
| |
− | (\underline{\underline{s_4}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{o_1}})
| |
− | (\underline{\underline{o_2}})
| |
− | ~\underline{\underline{s_1}}~
| |
− | (\underline{\underline{s_2}})
| |
− | (\underline{\underline{s_3}})
| |
− | (\underline{\underline{s_4}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{o_1}})
| |
− | (\underline{\underline{o_2}})
| |
− | (\underline{\underline{s_1}})
| |
− | ~\underline{\underline{s_2}}~
| |
− | (\underline{\underline{s_3}})
| |
− | (\underline{\underline{s_4}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{o_1}})
| |
− | (\underline{\underline{o_2}})
| |
− | (\underline{\underline{s_1}})
| |
− | (\underline{\underline{s_2}})
| |
− | ~\underline{\underline{s_3}}~
| |
− | (\underline{\underline{s_4}})
| |
− | \\[4pt] | |
− | (\underline{\underline{o_1}}) | |
− | (\underline{\underline{o_2}})
| |
− | (\underline{\underline{s_1}})
| |
− | (\underline{\underline{s_2}})
| |
− | (\underline{\underline{s_3}})
| |
− | ~\underline{\underline{s_4}}~
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" width="20%" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{o_1}}\rangle}_W | |
− | \\[4pt]
| |
− | {\langle\underline{\underline{o_2}}\rangle}_W
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{s_1}}\rangle}_W
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{s_2}}\rangle}_W
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{s_3}}\rangle}_W
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{s_4}}\rangle}_W
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 3,449: |
Line 2,919: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 54.3} ~~ \text{Abstract Literal Codes for Interpreters A and B}\!</math> | + | <math>\text{Table 48.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> |
− | |- style="background:#f0f0ff" | + | |- style="height:40px; background:#f0f0ff" |
− | | <math>\text{Element}\!</math> | + | | <math>\text{Sign}\!</math> |
− | | <math>\text{Vector}\!</math>
| + | | <math>\text{Interpretant}\!</math> |
− | | <math>\text{Conjunct Term}\!</math> | + | | <math>\text{Transition}\!</math> |
− | | <math>\text{Code}\!</math> | |
| |- | | |- |
− | | valign="bottom" width="20%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt]
| + | \\ |
− | \text{B}
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt]
| + | \\ |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | |
− | \\[4pt] | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 100000
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | 010000
| + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | 001000
| + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | 000100
| + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | |
− | 000010
| |
− | \\[4pt] | |
− | 000001
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="40%" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{w_1}}~
| + | ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) |
− | (\underline{\underline{w_2}})
| + | \\ |
− | (\underline{\underline{w_3}})
| + | ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) |
− | (\underline{\underline{w_4}})
| + | \\ |
− | (\underline{\underline{w_5}})
| + | ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) |
− | (\underline{\underline{w_6}})
| + | \\ |
− | \\[4pt]
| + | ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) |
− | (\underline{\underline{w_1}})
| |
− | ~\underline{\underline{w_2}}~
| |
− | (\underline{\underline{w_3}}) | |
− | (\underline{\underline{w_4}})
| |
− | (\underline{\underline{w_5}})
| |
− | (\underline{\underline{w_6}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{w_1}})
| |
− | (\underline{\underline{w_2}})
| |
− | ~\underline{\underline{w_3}}~
| |
− | (\underline{\underline{w_4}})
| |
− | (\underline{\underline{w_5}})
| |
− | (\underline{\underline{w_6}})
| |
− | \\[4pt] | |
− | (\underline{\underline{w_1}}) | |
− | (\underline{\underline{w_2}})
| |
− | (\underline{\underline{w_3}})
| |
− | ~\underline{\underline{w_4}}~
| |
− | (\underline{\underline{w_5}})
| |
− | (\underline{\underline{w_6}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{w_1}})
| |
− | (\underline{\underline{w_2}})
| |
− | (\underline{\underline{w_3}}) | |
− | (\underline{\underline{w_4}})
| |
− | ~\underline{\underline{w_5}}~
| |
− | (\underline{\underline{w_6}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{w_1}})
| |
− | (\underline{\underline{w_2}})
| |
− | (\underline{\underline{w_3}})
| |
− | (\underline{\underline{w_4}})
| |
− | (\underline{\underline{w_5}})
| |
− | ~\underline{\underline{w_6}}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" | | + | |- |
| + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{w_1}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{w_2}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{w_3}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{w_4}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[4pt] | + | \end{matrix}</math> |
− | {\langle\underline{\underline{w_5}}\rangle}_W | + | | valign="bottom" width="33%" | |
− | \\[4pt] | + | <math>\begin{matrix} |
− | {\langle\underline{\underline{w_6}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" width="33%" | |
| + | <math>\begin{matrix} |
| + | ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) |
| + | \\ |
| + | ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) |
| + | \\ |
| + | ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) |
| + | \\ |
| + | ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 3,550: |
Line 2,994: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 55.1} ~~ \operatorname{LIR}_1 (L_\text{A}) : \text{Literal Representation of} ~ L_\text{A}\!</math> | + | <math>\text{Table 49.1} ~~ \operatorname{ER}(L_\text{B}) : \text{Extensional Representation of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math>
| + | | <math>\text{Object}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| + | | <math>\text{Interpretant}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{B} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{B} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{B} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{B} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\langle} \text{i} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\langle} \text{i} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 3,623: |
Line 3,067: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 55.2} ~~ \operatorname{LIR}_1 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 49.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math>
| + | | <math>\text{Object}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| + | | <math>\text{Transition}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({\langle\underline{\underline{\text{a}}}\rangle}_W, | + | ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W)
| + | \\ |
− | \\[4pt] | + | ({}^{\langle} \text{u} {}^{\rangle}, \text{A}) |
− | ({\langle\underline{\underline{\text{i}}}\rangle}_W, | |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W)
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{B} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{B} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\langle} \text{i} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({\langle\underline{\underline{\text{b}}}\rangle}_W, | + | ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W)
| + | \\ |
− | \\[4pt] | + | ({}^{\langle} \text{i} {}^{\rangle}, \text{B}) |
− | ({\langle\underline{\underline{\text{u}}}\rangle}_W, | |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W)
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 3,676: |
Line 3,116: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 55.3} ~~ \operatorname{LIR}_1 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 49.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| + | | <math>\text{Interpretant}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| + | | <math>\text{Transition}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\langle} \text{A} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\langle} \text{u} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 0_{\operatorname{d}W}
| + | ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) |
− | \\[4pt]
| + | \\ |
− | {\langle | + | ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) |
− | \operatorname{d}\underline{\underline{\text{a}}}
| + | \\ |
− | ~
| + | ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) |
− | \operatorname{d}\underline{\underline{\text{i}}}
| + | \\ |
− | \rangle}_{\operatorname{d}W} | + | ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) |
− | \\[4pt] | |
− | {\langle | |
− | \operatorname{d}\underline{\underline{\text{a}}} | |
− | ~
| |
− | \operatorname{d}\underline{\underline{\text{i}}}
| |
− | \rangle}_{\operatorname{d}W} | |
− | \\[4pt]
| |
− | 0_{\operatorname{d}W}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\langle} \text{i} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\langle} \text{i} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\langle} \text{B} {}^{\rangle} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\langle} \text{i} {}^{\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 0_{\operatorname{d}W}
| + | ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) |
− | \\[4pt]
| + | \\ |
− | {\langle | + | ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) |
− | \operatorname{d}\underline{\underline{\text{b}}}
| + | \\ |
− | ~
| + | ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) |
− | \operatorname{d}\underline{\underline{\text{u}}}
| + | \\ |
− | \rangle}_{\operatorname{d}W} | + | ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) |
− | \\[4pt] | |
− | {\langle | |
− | \operatorname{d}\underline{\underline{\text{b}}} | |
− | ~
| |
− | \operatorname{d}\underline{\underline{\text{u}}}
| |
− | \rangle}_{\operatorname{d}W} | |
− | \\[4pt]
| |
− | 0_{\operatorname{d}W}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
| + | |
| + | <br> |
| + | |
| + | ===Sign Processes=== |
| + | |
| + | ====Blocked Version==== |
| | | |
| <br> | | <br> |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | | + | |+ style="height:30px" | <math>\text{Table 78.} ~~ \text{Sign Process of Interpreter A}\!</math> |
− | <math>\text{Table 56.1} ~~ \operatorname{LIR}_1 (L_\text{B}) : \text{Literal Representation of} ~ L_\text{B}\!</math> | |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Object}\!</math> | | | width="33%" | <math>\text{Object}\!</math> |
Line 3,773: |
Line 3,202: |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W
| + | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W
| + | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 56.2} ~~ \operatorname{LIR}_1 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | width="33%" | <math>\text{Object}\!</math>
| |
− | | width="33%" | <math>\text{Sign}\!</math>
| |
− | | width="33%" | <math>\text{Transition}\!</math>
| |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({\langle\underline{\underline{\text{a}}}\rangle}_W,
| + | \text{B} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W)
| + | \\ |
− | \\[4pt] | + | \text{B} |
− | ({\langle\underline{\underline{\text{u}}}\rangle}_W,
| + | \\ |
− | {\langle\underline{\underline{\text{A}}}\rangle}_W)
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \end{matrix}</math> | + | \\ |
− | | valign="bottom" |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | <math>\begin{matrix}
| + | \\ |
− | ({\langle\underline{\underline{\text{b}}}\rangle}_W,
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W)
| |
− | \\[4pt] | |
− | ({\langle\underline{\underline{\text{i}}}\rangle}_W,
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_W)
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 3,890: |
Line 3,328: |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | | + | |+ style="height:30px" | <math>\text{Table 79.} ~~ \text{Sign Process of Interpreter B}\!</math> |
− | <math>\text{Table 56.3} ~~ \operatorname{LIR}_1 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math> | |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| | width="33%" | <math>\text{Sign}\!</math> | | | width="33%" | <math>\text{Sign}\!</math> |
| | width="33%" | <math>\text{Interpretant}\!</math> | | | width="33%" | <math>\text{Interpretant}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W
| + | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{a}}}\rangle}_W | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{u}}}\rangle}_W | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 0_{\operatorname{d}W}
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt]
| + | \\ |
− | {\langle | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \operatorname{d}\underline{\underline{\text{a}}} | + | \\ |
− | ~
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \operatorname{d}\underline{\underline{\text{u}}}
| + | \\ |
− | \rangle}_{\operatorname{d}W} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \\[4pt] | |
− | {\langle | |
− | \operatorname{d}\underline{\underline{\text{a}}} | |
− | ~
| |
− | \operatorname{d}\underline{\underline{\text{u}}}
| |
− | \rangle}_{\operatorname{d}W}
| |
− | \\[4pt]
| |
− | 0_{\operatorname{d}W}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W
| + | \text{A} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W
| + | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{b}}}\rangle}_W | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{\text{i}}}\rangle}_W | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 0_{\operatorname{d}W}
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \operatorname{d}\underline{\underline{\text{b}}}
| + | \\ |
− | ~
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \operatorname{d}\underline{\underline{\text{i}}}
| + | \\ |
− | \rangle}_{\operatorname{d}W} | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \\[4pt] | + | \end{matrix}</math> |
− | {\langle | + | |- |
− | \operatorname{d}\underline{\underline{\text{b}}} | + | | valign="bottom" | |
− | ~
| + | <math>\begin{matrix} |
− | \operatorname{d}\underline{\underline{\text{i}}} | + | \text{B} |
− | \rangle}_{\operatorname{d}W} | + | \\ |
− | \\[4pt] | + | \text{B} |
− | 0_{\operatorname{d}W}
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| + | | valign="bottom" | |
− | | |
− | <br>
| |
− | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 57.1} ~~ \text{Mnemonic Lateral Codes for Interpreters A and B}\!</math>
| |
− | |- style="background:#f0f0ff"
| |
− | | <math>\text{Element}\!</math>
| |
− | | <math>\text{Vector}\!</math>
| |
− | | <math>\text{Conjunct Term}\!</math>
| |
− | | <math>\text{Code}\!</math>
| |
− | |-
| |
− | | valign="bottom" width="20%" | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A}
| |
− | \\[4pt]
| |
− | \text{B}
| |
− | \\[4pt]
| |
| {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
| {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt]
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" | | + | |- |
| + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {10}_X | + | \text{B} |
− | \\[4pt] | + | \\ |
− | {01}_X | + | \text{B} |
− | \\[4pt] | + | \\ |
− | {1000}_Y
| + | \text{B} |
− | \\[4pt] | + | \\ |
− | {0100}_Y | + | \text{B} |
− | \\[4pt] | |
− | {0010}_Y
| |
− | \\[4pt] | |
− | {0001}_Y | |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="40%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{A}}~
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | (\underline{\underline{B}})
| + | \\ |
− | \\[4pt]
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | (\underline{\underline{A}})
| + | \\ |
− | ~\underline{\underline{B}}~
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | ~\underline{\underline{a}}~
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | (\underline{\underline{b}})
| |
− | (\underline{\underline{i}})
| |
− | (\underline{\underline{u}})
| |
− | \\[4pt] | |
− | (\underline{\underline{a}})
| |
− | ~\underline{\underline{b}}~
| |
− | (\underline{\underline{i}})
| |
− | (\underline{\underline{u}})
| |
− | \\[4pt] | |
− | (\underline{\underline{a}})
| |
− | (\underline{\underline{b}})
| |
− | ~\underline{\underline{i}}~
| |
− | (\underline{\underline{u}})
| |
− | \\[4pt] | |
− | (\underline{\underline{a}})
| |
− | (\underline{\underline{b}})
| |
− | (\underline{\underline{i}})
| |
− | ~\underline{\underline{u}}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{A}}\rangle}_X | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{B}}\rangle}_X
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{a}}\rangle}_Y | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {\langle\underline{\underline{b}}\rangle}_Y | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | |
− | {\langle\underline{\underline{i}}\rangle}_Y | |
− | \\[4pt]
| |
− | {\langle\underline{\underline{u}}\rangle}_Y
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 4,061: |
Line 3,461: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | + | ====Sorted Version==== |
− | |+ style="height:30px" | | + | |
− | <math>\text{Table 57.2} ~~ \text{Pragmatic Lateral Codes for Interpreters A and B}\!</math> | + | <br> |
− | |- style="background:#f0f0ff" | + | |
− | | <math>\text{Element}\!</math> | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | | <math>\text{Vector}\!</math> | + | |+ style="height:30px" | <math>\text{Table 78.} ~~ \text{Sign Process of Interpreter A}\!</math> |
− | | <math>\text{Conjunct Term}\!</math> | + | |- style="height:40px; background:#f0f0ff" |
− | | <math>\text{Code}\!</math> | + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| |- | | |- |
− | | valign="bottom" width="20%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \text{A} | | \text{A} |
− | \\[4pt] | + | \\ |
− | \text{B} | + | \text{A} |
− | \\[4pt] | + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
| {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {10}_X | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {01}_X | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {1000}_Y | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {0100}_Y | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {0010}_Y | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {0001}_Y | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="40%" | | + | |- |
| + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{o_1}}~
| + | \text{B} |
− | (\underline{\underline{o_2}})
| + | \\ |
− | \\[4pt]
| + | \text{B} |
− | (\underline{\underline{o_1}})
| + | \\ |
− | ~\underline{\underline{o_2}}~
| + | \text{B} |
− | \\[4pt]
| + | \\ |
− | ~\underline{\underline{s_1}}~
| + | \text{B} |
− | (\underline{\underline{s_2}})
| + | \\ |
− | (\underline{\underline{s_3}})
| + | \text{B} |
− | (\underline{\underline{s_4}})
| + | \\ |
− | \\[4pt] | + | \text{B} |
− | (\underline{\underline{s_1}})
| + | \\ |
− | ~\underline{\underline{s_2}}~
| + | \text{B} |
− | (\underline{\underline{s_3}})
| + | \\ |
− | (\underline{\underline{s_4}})
| + | \text{B} |
− | \\[4pt] | |
− | (\underline{\underline{s_1}})
| |
− | (\underline{\underline{s_2}})
| |
− | ~\underline{\underline{s_3}}~
| |
− | (\underline{\underline{s_4}})
| |
− | \\[4pt] | |
− | (\underline{\underline{s_1}})
| |
− | (\underline{\underline{s_2}})
| |
− | (\underline{\underline{s_3}})
| |
− | ~\underline{\underline{s_4}}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{o_1}}\rangle}_X
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{o_2}}\rangle}_X
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{s_1}}\rangle}_Y
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{s_2}}\rangle}_Y
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{s_3}}\rangle}_Y
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{s_4}}\rangle}_Y
| |
− | \end{matrix}</math>
| |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 57.3} ~~ \text{Abstract Lateral Codes for Interpreters A and B}\!</math>
| |
− | |- style="background:#f0f0ff"
| |
− | | <math>\text{Element}\!</math>
| |
− | | <math>\text{Vector}\!</math>
| |
− | | <math>\text{Conjunct Term}\!</math>
| |
− | | <math>\text{Code}\!</math>
| |
− | |-
| |
− | | valign="bottom" width="20%" |
| |
− | <math>\begin{matrix}
| |
− | \text{A}
| |
− | \\[4pt]
| |
− | \text{B}
| |
− | \\[4pt]
| |
| {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {10}_X | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {01}_X | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {1000}_Y | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {0100}_Y | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {0010}_Y | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | {0001}_Y | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="40%" | | + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 79.} ~~ \text{Sign Process of Interpreter B}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{x_1}}~
| + | \text{A} |
− | (\underline{\underline{x_2}})
| + | \\ |
− | \\[4pt]
| + | \text{A} |
− | (\underline{\underline{x_1}})
| + | \\ |
− | ~\underline{\underline{x_2}}~
| + | \text{A} |
− | \\[4pt]
| + | \\ |
− | ~\underline{\underline{y_1}}~
| + | \text{A} |
− | (\underline{\underline{y_2}})
| + | \\ |
− | (\underline{\underline{y_3}})
| + | \text{A} |
− | (\underline{\underline{y_4}})
| + | \\ |
− | \\[4pt] | + | \text{A} |
− | (\underline{\underline{y_1}})
| + | \\ |
− | ~\underline{\underline{y_2}}~
| + | \text{A} |
− | (\underline{\underline{y_3}})
| + | \\ |
− | (\underline{\underline{y_4}})
| + | \text{A} |
− | \\[4pt] | |
− | (\underline{\underline{y_1}})
| |
− | (\underline{\underline{y_2}})
| |
− | ~\underline{\underline{y_3}}~
| |
− | (\underline{\underline{y_4}})
| |
− | \\[4pt] | |
− | (\underline{\underline{y_1}})
| |
− | (\underline{\underline{y_2}})
| |
− | (\underline{\underline{y_3}})
| |
− | ~\underline{\underline{y_4}}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" width="20%" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{x_1}}\rangle}_X
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{x_2}}\rangle}_X
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{y_1}}\rangle}_Y
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{y_2}}\rangle}_Y
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{y_3}}\rangle}_Y
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{y_4}}\rangle}_Y
| |
− | \end{matrix}</math>
| |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 58.1} ~~ \operatorname{LIR}_2 (L_\text{A}) : \text{Lateral Representation of} ~ L_\text{A}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | width="33%" | <math>\text{Object}\!</math>
| |
− | | width="33%" | <math>\text{Sign}\!</math>
| |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{A}}}~
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | (\underline{\underline{\text{B}}})
| + | \\ |
− | \\[4pt] | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | ~\underline{\underline{\text{A}}}~
| + | \\ |
− | (\underline{\underline{\text{B}}})
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | ~\underline{\underline{\text{A}}}~
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | (\underline{\underline{\text{B}}})
| + | \\ |
− | \\[4pt] | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | ~\underline{\underline{\text{A}}}~
| + | \\ |
− | (\underline{\underline{\text{B}}})
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{a}}}~
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | (\underline{\underline{\text{b}}})
| + | \\ |
− | (\underline{\underline{\text{i}}})
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | (\underline{\underline{\text{u}}})
| + | \\ |
− | \\[4pt] | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | ~\underline{\underline{\text{a}}}~
| + | \\ |
− | (\underline{\underline{\text{b}}})
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | (\underline{\underline{\text{i}}})
| + | \\ |
− | (\underline{\underline{\text{u}}})
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | (\underline{\underline{\text{a}}})
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | (\underline{\underline{\text{b}}})
| + | \\ |
− | ~\underline{\underline{\text{i}}}~
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | (\underline{\underline{\text{u}}})
| + | \\ |
− | \\[4pt] | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | ~\underline{\underline{\text{i}}}~
| |
− | (\underline{\underline{\text{u}}})
| |
− | \end{matrix}</math> | |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | ~\underline{\underline{\text{a}}}~
| |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | ~\underline{\underline{\text{i}}}~
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt] | |
− | ~\underline{\underline{\text{a}}}~
| |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | ~\underline{\underline{\text{i}}}~
| |
− | (\underline{\underline{\text{u}}})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\underline{\underline{\text{A}}})
| + | \text{B} |
− | ~\underline{\underline{\text{B}}}~
| + | \\ |
− | \\[4pt] | + | \text{B} |
− | (\underline{\underline{\text{A}}})
| + | \\ |
− | ~\underline{\underline{\text{B}}}~
| + | \text{B} |
− | \\[4pt] | + | \\ |
− | (\underline{\underline{\text{A}}})
| + | \text{B} |
− | ~\underline{\underline{\text{B}}}~
| + | \\ |
− | \\[4pt] | + | \text{B} |
− | (\underline{\underline{\text{A}}})
| + | \\ |
− | ~\underline{\underline{\text{B}}}~
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\underline{\underline{\text{a}}})
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | ~\underline{\underline{\text{b}}}~
| + | \\ |
− | (\underline{\underline{\text{i}}})
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | (\underline{\underline{\text{u}}})
| + | \\ |
− | \\[4pt] | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | (\underline{\underline{\text{a}}})
| + | \\ |
− | ~\underline{\underline{\text{b}}}~
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | (\underline{\underline{\text{i}}})
| + | \\ |
− | (\underline{\underline{\text{u}}})
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | (\underline{\underline{\text{a}}})
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | (\underline{\underline{\text{b}}})
| + | \\ |
− | (\underline{\underline{\text{i}}})
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | ~\underline{\underline{\text{u}}}~
| + | \\ |
− | \\[4pt] | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | ~\underline{\underline{\text{u}}}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\underline{\underline{\text{a}}})
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | ~\underline{\underline{\text{b}}}~
| + | \\ |
− | (\underline{\underline{\text{i}}})
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | (\underline{\underline{\text{u}}})
| + | \\ |
− | \\[4pt] | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | (\underline{\underline{\text{a}}})
| + | \\ |
− | (\underline{\underline{\text{b}}})
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | (\underline{\underline{\text{i}}})
| + | \\ |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\[4pt] | + | \\ |
− | (\underline{\underline{\text{a}}})
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | ~\underline{\underline{\text{b}}}~
| + | \\ |
− | (\underline{\underline{\text{i}}})
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | (\underline{\underline{\text{u}}})
| + | \\ |
− | \\[4pt] | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | ~\underline{\underline{\text{u}}}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
| + | |
| + | <br> |
| + | |
| + | ===Type Tables=== |
| | | |
| <br> | | <br> |
Line 4,358: |
Line 3,711: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 58.2} ~~ \operatorname{LIR}_2 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 47.1} ~~ \text{Basic Types for ERs and IRs of Sign Relations}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math>
| + | | <math>\text{Type}\!</math> || <math>\text{Symbol}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| |
− | | width="33%" | <math>\text{Transition}\!</math> | |
| |- | | |- |
− | | valign="bottom" | | + | | width="50%" | |
| + | <math>\begin{array}{l} |
| + | \text{Property} \\ \text{Sign} \\ \text{Set} \\ \text{Triple}\\ \text{Underlying Element} |
| + | \end{array}</math> |
| + | | width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{A}}}~
| + | P \\ \underline{S} \\ S \\ T \\ U |
− | (\underline{\underline{\text{B}}})
| |
− | \\[4pt]
| |
− | ~\underline{\underline{\text{A}}}~
| |
− | (\underline{\underline{\text{B}}})
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | ~\underline{\underline{\text{a}}}~
| |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | ~\underline{\underline{\text{i}}}~
| |
− | (\underline{\underline{\text{u}}})
| |
− | \end{matrix}</math> | |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | ({\langle\underline{\underline{\text{a}}}\rangle}_Y,
| |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X)
| |
− | \\[4pt]
| |
− | ({\langle\underline{\underline{\text{i}}}\rangle}_Y,
| |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X)
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 47.2} ~~ \text{Derived Types for ERs of Sign Relations}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Type}\!</math> |
| + | | width="33%" | <math>\text{Symbol}\!</math> |
| + | | width="33%" | <math>\text{Construction}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | <math>\text{Relation}\!</math> |
− | <math>\begin{matrix} | + | | <math>R\!</math> |
− | (\underline{\underline{\text{A}}})
| + | | <math>S(T(U))\!</math> |
− | ~\underline{\underline{\text{B}}}~
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{A}}})
| |
− | ~\underline{\underline{\text{B}}}~
| |
− | \end{matrix}</math> | |
− | | valign="bottom" | | |
− | <math>\begin{matrix} | |
− | (\underline{\underline{\text{a}}})
| |
− | ~\underline{\underline{\text{b}}}~
| |
− | (\underline{\underline{\text{i}}})
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | ~\underline{\underline{\text{u}}}~
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" | | |
− | <math>\begin{matrix} | |
− | ({\langle\underline{\underline{\text{b}}}\rangle}_Y, | |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X)
| |
− | \\[4pt]
| |
− | ({\langle\underline{\underline{\text{u}}}\rangle}_Y,
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X)
| |
− | \end{matrix}</math> | |
| |} | | |} |
| | | |
Line 4,427: |
Line 3,744: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 58.3} ~~ \operatorname{LIR}_2 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 47.3} ~~ \text{Derived Types for IRs of Sign Relations}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Type}\!</math> |
| + | | width="33%" | <math>\text{Symbol}\!</math> |
| + | | width="33%" | <math>\text{Construction}\!</math> |
| + | |- |
| + | | <math>\text{Relation}\!</math> |
| + | | <math>P(R)\!</math> |
| + | | <math>P(S(T(U)))\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ==Completed Work== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 50.} ~~ \text{Notations for Objects and Their Signs}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Object}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| + | | <math>\text{Sign of Object}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{a}}}~
| + | \text{A} & |
− | (\underline{\underline{\text{b}}})
| + | \text{A} & |
− | (\underline{\underline{\text{i}}})
| + | w_1 |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | \text{B} & |
− | ~\underline{\underline{\text{a}}}~
| + | \text{B} & |
− | (\underline{\underline{\text{b}}})
| + | w_2 |
− | (\underline{\underline{\text{i}}})
| + | \\[12pt] |
− | (\underline{\underline{\text{u}}})
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} & |
− | \\[4pt] | + | {}^{\langle} \text{A} {}^{\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | w_3 |
− | (\underline{\underline{\text{b}}})
| + | \\[6pt] |
− | ~\underline{\underline{\text{i}}}~
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} & |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} \text{B} {}^{\rangle} & |
− | \\[4pt] | + | w_4 |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} & |
− | ~\underline{\underline{\text{i}}}~
| + | {}^{\langle} \text{i} {}^{\rangle} & |
− | (\underline{\underline{\text{u}}})
| + | w_5 |
| + | \\[6pt] |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} & |
| + | {}^{\langle} \text{u} {}^{\rangle} & |
| + | w_6 |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{a}}}~
| + | {}^{\langle} \text{A} {}^{\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \text{A} {}^{\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} w_1 {}^{\rangle} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | {}^{\langle} \text{B} {}^{\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \text{B} {}^{\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} w_2 {}^{\rangle} |
− | ~\underline{\underline{\text{i}}}~
| + | \\[12pt] |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle} & |
− | \\[4pt] | + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} & |
− | ~\underline{\underline{\text{a}}}~
| + | {}^{\langle} w_3 {}^{\rangle} |
− | (\underline{\underline{\text{b}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} & |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} & |
− | \\[4pt] | + | {}^{\langle} w_4 {}^{\rangle} |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} & |
− | ~\underline{\underline{\text{i}}}~
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} & |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} w_5 {}^{\rangle} |
− | \end{matrix}</math>
| + | \\[6pt] |
− | | valign="bottom" |
| + | {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} & |
− | <math>\begin{matrix}
| + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} & |
− | (\underline{\underline{\text{da}}})
| + | {}^{\langle} w_6 {}^{\rangle} |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | (\underline{\underline{\text{du}}})
| |
− | \\[4pt] | |
− | ~\underline{\underline{\text{da}}}~
| |
− | (\underline{\underline{\text{db}}})
| |
− | ~\underline{\underline{\text{di}}}~
| |
− | (\underline{\underline{\text{du}}})
| |
− | \\[4pt] | |
− | ~\underline{\underline{\text{da}}}~
| |
− | (\underline{\underline{\text{db}}})
| |
− | ~\underline{\underline{\text{di}}}~
| |
− | (\underline{\underline{\text{du}}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{da}}})
| |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | (\underline{\underline{\text{du}}})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 51.1} ~~ \text{Notations for Properties and Their Signs (1)}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | <math>\text{Property}\!</math> |
| + | | <math>\text{Sign of Property}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\underline{\underline{\text{a}}})
| + | {}^{\lbrace} \text{A} {}^{\rbrace} & |
− | ~\underline{\underline{\text{b}}}~
| + | {}^{\lbrace} \text{A} {}^{\rbrace} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\lbrace} w_1 {}^{\rbrace} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | {}^{\lbrace} \text{B} {}^{\rbrace} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\lbrace} \text{B} {}^{\rbrace} & |
− | ~\underline{\underline{\text{b}}}~
| + | {}^{\lbrace} w_2 {}^{\rbrace} |
− | (\underline{\underline{\text{i}}})
| + | \\[12pt] |
− | (\underline{\underline{\text{u}}})
| + | {}^{\lbrace\backprime\backprime} \text{A} {}^{\prime\prime\rbrace} & |
− | \\[4pt] | + | {}^{\lbrace\langle} \text{A} {}^{\rangle\rbrace} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\lbrace} w_3 {}^{\rbrace} |
− | (\underline{\underline{\text{b}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{i}}})
| + | {}^{\lbrace\backprime\backprime} \text{B} {}^{\prime\prime\rbrace} & |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\lbrace\langle} \text{B} {}^{\rangle\rbrace} & |
− | \\[4pt] | + | {}^{\lbrace} w_4 {}^{\rbrace} |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | {}^{\lbrace\backprime\backprime} \text{i} {}^{\prime\prime\rbrace} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\lbrace\langle} \text{i} {}^{\rangle\rbrace} & |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\lbrace} w_5 {}^{\rbrace} |
| + | \\[6pt] |
| + | {}^{\lbrace\backprime\backprime} \text{u} {}^{\prime\prime\rbrace} & |
| + | {}^{\lbrace\langle} \text{u} {}^{\rangle\rbrace} & |
| + | {}^{\lbrace} w_6 {}^{\rbrace} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle\lbrace} \text{A} {}^{\rbrace\rangle} & |
− | ~\underline{\underline{\text{b}}}~
| + | {}^{\langle\lbrace} \text{A} {}^{\rbrace\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle\lbrace} w_1 {}^{\rbrace\rangle} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | {}^{\langle\lbrace} \text{B} {}^{\rbrace\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle\lbrace} \text{B} {}^{\rbrace\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle\lbrace} w_2 {}^{\rbrace\rangle} |
− | (\underline{\underline{\text{i}}})
| + | \\[12pt] |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\langle\lbrace\backprime\backprime} \text{A} {}^{\prime\prime\rbrace\rangle} & |
− | \\[4pt] | + | {}^{\langle\lbrace\langle} \text{A} {}^{\rangle\rbrace\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle\lbrace} w_3 {}^{\rbrace\rangle} |
− | ~\underline{\underline{\text{b}}}~
| + | \\[6pt] |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle\lbrace\backprime\backprime} \text{B} {}^{\prime\prime\rbrace\rangle} & |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle\lbrace\langle} \text{B} {}^{\rangle\rbrace\rangle} & |
− | \\[4pt] | + | {}^{\langle\lbrace} w_4 {}^{\rbrace\rangle} |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle\lbrace\backprime\backprime} \text{i} {}^{\prime\prime\rbrace\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle\lbrace\langle} \text{i} {}^{\rangle\rbrace\rangle} & |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\langle\lbrace} w_5 {}^{\rbrace\rangle} |
− | \end{matrix}</math>
| + | \\[6pt] |
− | | valign="bottom" |
| + | {}^{\langle\lbrace\backprime\backprime} \text{u} {}^{\prime\prime\rbrace\rangle} & |
− | <math>\begin{matrix}
| + | {}^{\langle\lbrace\langle} \text{u} {}^{\rangle\rbrace\rangle} & |
− | (\underline{\underline{\text{da}}})
| + | {}^{\langle\lbrace} w_6 {}^{\rbrace\rangle} |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | (\underline{\underline{\text{du}}})
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{da}}})
| |
− | ~\underline{\underline{\text{db}}}~
| |
− | (\underline{\underline{\text{di}}})
| |
− | ~\underline{\underline{\text{du}}}~
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{da}}})
| |
− | ~\underline{\underline{\text{db}}}~
| |
− | (\underline{\underline{\text{di}}})
| |
− | ~\underline{\underline{\text{du}}}~
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{da}}})
| |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | (\underline{\underline{\text{du}}})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 4,570: |
Line 3,887: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 59.1} ~~ \operatorname{LIR}_2 (L_\text{B}) : \text{Lateral Representation of} ~ L_\text{B}\!</math> | + | <math>\text{Table 51.2} ~~ \text{Notations for Properties and Their Signs (2)}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math>
| + | | <math>\text{Property}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Sign of Property}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{A}}}~
| + | \underline{\underline{\text{A}}} & |
− | (\underline{\underline{\text{B}}})
| + | \underline{\underline{\text{A}}} & |
− | \\[4pt] | + | \underline{\underline{w_1}} |
− | ~\underline{\underline{\text{A}}}~
| + | \\[6pt] |
− | (\underline{\underline{\text{B}}})
| + | \underline{\underline{\text{B}}} & |
− | \\[4pt] | + | \underline{\underline{\text{B}}} & |
− | ~\underline{\underline{\text{A}}}~
| + | \underline{\underline{w_2}} |
− | (\underline{\underline{\text{B}}})
| + | \\[12pt] |
− | \\[4pt] | + | \underline{\underline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}} & |
− | ~\underline{\underline{\text{A}}}~
| + | \underline{\underline{{}^{\langle} \text{A} {}^{\rangle}}} & |
− | (\underline{\underline{\text{B}}})
| + | \underline{\underline{w_3}} |
| + | \\[6pt] |
| + | \underline{\underline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}} & |
| + | \underline{\underline{{}^{\langle} \text{B} {}^{\rangle}}} & |
| + | \underline{\underline{w_4}} |
| + | \\[6pt] |
| + | \underline{\underline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}} & |
| + | \underline{\underline{{}^{\langle} \text{i} {}^{\rangle}}} & |
| + | \underline{\underline{w_5}} |
| + | \\[6pt] |
| + | \underline{\underline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}} & |
| + | \underline{\underline{{}^{\langle} \text{u} {}^{\rangle}}} & |
| + | \underline{\underline{w_6}} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{a}}}~
| + | {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} \underline{\underline{w_1}} {}^{\rangle} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & |
− | ~\underline{\underline{\text{a}}}~
| + | {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \underline{\underline{w_2}} {}^{\rangle} |
− | (\underline{\underline{\text{i}}})
| + | \\[12pt] |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}} {}^{\rangle} & |
− | \\[4pt] | + | {}^{\langle} \underline{\underline{{}^{\langle} \text{A} {}^{\rangle}}} {}^{\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \underline{\underline{w_3}} {}^{\rangle} |
− | (\underline{\underline{\text{b}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}} {}^{\rangle} & |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\langle} \underline{\underline{{}^{\langle} \text{B} {}^{\rangle}}} {}^{\rangle} & |
− | \\[4pt] | + | {}^{\langle} \underline{\underline{w_4}} {}^{\rangle} |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}} {}^{\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} \underline{\underline{{}^{\langle} \text{i} {}^{\rangle}}} {}^{\rangle} & |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\langle} \underline{\underline{w_5}} {}^{\rangle} |
− | \end{matrix}</math>
| + | \\[6pt] |
− | | valign="bottom" |
| + | {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}} {}^{\rangle} & |
− | <math>\begin{matrix}
| + | {}^{\langle} \underline{\underline{{}^{\langle} \text{u} {}^{\rangle}}} {}^{\rangle} & |
− | ~\underline{\underline{\text{a}}}~
| + | {}^{\langle} \underline{\underline{w_6}} {}^{\rangle} |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | ~\underline{\underline{\text{u}}}~
| |
− | \\[4pt] | |
− | ~\underline{\underline{\text{a}}}~
| |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | (\underline{\underline{\text{i}}})
| |
− | ~\underline{\underline{\text{u}}}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 51.3} ~~ \text{Notations for Properties and Their Signs (3)}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | <math>\text{Property}\!</math> |
| + | | <math>\text{Sign of Property}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\underline{\underline{\text{A}}})
| + | \underline{\underline{\text{A}}} & |
− | ~\underline{\underline{\text{B}}}~
| + | \underline{\underline{o_1}} & |
− | \\[4pt] | + | \underline{\underline{w_1}} |
− | (\underline{\underline{\text{A}}})
| + | \\[6pt] |
− | ~\underline{\underline{\text{B}}}~
| + | \underline{\underline{\text{B}}} & |
− | \\[4pt] | + | \underline{\underline{o_2}} & |
− | (\underline{\underline{\text{A}}})
| + | \underline{\underline{w_2}} |
− | ~\underline{\underline{\text{B}}}~
| + | \\[12pt] |
− | \\[4pt] | + | \underline{\underline{\text{a}}} & |
− | (\underline{\underline{\text{A}}})
| + | \underline{\underline{s_1}} & |
− | ~\underline{\underline{\text{B}}}~
| + | \underline{\underline{w_3}} |
| + | \\[6pt] |
| + | \underline{\underline{\text{b}}} & |
| + | \underline{\underline{s_2}} & |
| + | \underline{\underline{w_4}} |
| + | \\[6pt] |
| + | \underline{\underline{\text{i}}} & |
| + | \underline{\underline{s_3}} & |
| + | \underline{\underline{w_5}} |
| + | \\[6pt] |
| + | \underline{\underline{\text{u}}} & |
| + | \underline{\underline{s_4}} & |
| + | \underline{\underline{w_6}} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & |
− | ~\underline{\underline{\text{b}}}~
| + | {}^{\langle} \underline{\underline{o_1}} {}^{\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} \underline{\underline{w_1}} {}^{\rangle} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \underline{\underline{o_2}} {}^{\rangle} & |
− | ~\underline{\underline{\text{b}}}~
| + | {}^{\langle} \underline{\underline{w_2}} {}^{\rangle} |
− | (\underline{\underline{\text{i}}})
| + | \\[12pt] |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} \underline{\underline{\text{a}}} {}^{\rangle} & |
− | \\[4pt] | + | {}^{\langle} \underline{\underline{s_1}} {}^{\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \underline{\underline{w_3}} {}^{\rangle} |
− | (\underline{\underline{\text{b}}})
| + | \\[6pt] |
− | ~\underline{\underline{\text{i}}}~
| + | {}^{\langle} \underline{\underline{\text{b}}} {}^{\rangle} & |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} \underline{\underline{s_2}} {}^{\rangle} & |
− | \\[4pt] | + | {}^{\langle} \underline{\underline{w_4}} {}^{\rangle} |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \underline{\underline{\text{i}}} {}^{\rangle} & |
− | ~\underline{\underline{\text{i}}}~
| + | {}^{\langle} \underline{\underline{s_3}} {}^{\rangle} & |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} \underline{\underline{w_5}} {}^{\rangle} |
− | \end{matrix}</math>
| + | \\[6pt] |
− | | valign="bottom" |
| + | {}^{\langle} \underline{\underline{\text{u}}} {}^{\rangle} & |
− | <math>\begin{matrix}
| + | {}^{\langle} \underline{\underline{s_4}} {}^{\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \underline{\underline{w_6}} {}^{\rangle} |
− | ~\underline{\underline{\text{b}}}~
| |
− | (\underline{\underline{\text{i}}})
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | ~\underline{\underline{\text{i}}}~
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{a}}})
| |
− | ~\underline{\underline{\text{b}}}~
| |
− | (\underline{\underline{\text{i}}})
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | ~\underline{\underline{\text{i}}}~
| |
− | (\underline{\underline{\text{u}}})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 4,699: |
Line 4,013: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 59.2} ~~ \operatorname{LIR}_2 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> | + | <math>\text{Table 52.1} ~~ \text{Notations for Instances and Their Signs (1)}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math>
| + | | <math>\text{Instance}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Sign of Instance}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{A}}}~
| + | {}^{\lbrack} \text{A} {}^{\rbrack} & |
− | (\underline{\underline{\text{B}}})
| + | {}^{\lbrack} \text{A} {}^{\rbrack} & |
− | \\[4pt] | + | {}^{\lbrack} w_1 {}^{\rbrack} |
− | ~\underline{\underline{\text{A}}}~
| + | \\[6pt] |
− | (\underline{\underline{\text{B}}})
| + | {}^{\lbrack} \text{B} {}^{\rbrack} & |
| + | {}^{\lbrack} \text{B} {}^{\rbrack} & |
| + | {}^{\lbrack} w_2 {}^{\rbrack} |
| + | \\[12pt] |
| + | {}^{\lbrack\backprime\backprime} \text{A} {}^{\prime\prime\rbrack} & |
| + | {}^{\lbrack\langle} \text{A} {}^{\rangle\rbrack} & |
| + | {}^{\lbrack} w_3 {}^{\rbrack} |
| + | \\[6pt] |
| + | {}^{\lbrack\backprime\backprime} \text{B} {}^{\prime\prime\rbrack} & |
| + | {}^{\lbrack\langle} \text{B} {}^{\rangle\rbrack} & |
| + | {}^{\lbrack} w_4 {}^{\rbrack} |
| + | \\[6pt] |
| + | {}^{\lbrack\backprime\backprime} \text{i} {}^{\prime\prime\rbrack} & |
| + | {}^{\lbrack\langle} \text{i} {}^{\rangle\rbrack} & |
| + | {}^{\lbrack} w_5 {}^{\rbrack} |
| + | \\[6pt] |
| + | {}^{\lbrack\backprime\backprime} \text{u} {}^{\prime\prime\rbrack} & |
| + | {}^{\lbrack\langle} \text{u} {}^{\rangle\rbrack} & |
| + | {}^{\lbrack} w_6 {}^{\rbrack} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{a}}}~
| + | {}^{\langle\lbrack} \text{A} {}^{\rbrack\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle\lbrack} \text{A} {}^{\rbrack\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle\lbrack} w_1 {}^{\rbrack\rangle} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | {}^{\langle\lbrack} \text{B} {}^{\rbrack\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle\lbrack} \text{B} {}^{\rbrack\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle\lbrack} w_2 {}^{\rbrack\rangle} |
− | (\underline{\underline{\text{i}}})
| + | \\[12pt] |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\langle\lbrack\backprime\backprime} \text{A} {}^{\prime\prime\rbrack\rangle} & |
| + | {}^{\langle\lbrack\langle} \text{A} {}^{\rangle\rbrack\rangle} & |
| + | {}^{\langle\lbrack} w_3 {}^{\rbrack\rangle} |
| + | \\[6pt] |
| + | {}^{\langle\lbrack\backprime\backprime} \text{B} {}^{\prime\prime\rbrack\rangle} & |
| + | {}^{\langle\lbrack\langle} \text{B} {}^{\rangle\rbrack\rangle} & |
| + | {}^{\langle\lbrack} w_4 {}^{\rbrack\rangle} |
| + | \\[6pt] |
| + | {}^{\langle\lbrack\backprime\backprime} \text{i} {}^{\prime\prime\rbrack\rangle} & |
| + | {}^{\langle\lbrack\langle} \text{i} {}^{\rangle\rbrack\rangle} & |
| + | {}^{\langle\lbrack} w_5 {}^{\rbrack\rangle} |
| + | \\[6pt] |
| + | {}^{\langle\lbrack\backprime\backprime} \text{u} {}^{\prime\prime\rbrack\rangle} & |
| + | {}^{\langle\lbrack\langle} \text{u} {}^{\rangle\rbrack\rangle} & |
| + | {}^{\langle\lbrack} w_6 {}^{\rbrack\rangle} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" |
| + | |} |
− | <math>\begin{matrix}
| |
− | ({\langle\underline{\underline{\text{a}}}\rangle}_Y,
| |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X)
| |
− | \\[4pt]
| |
− | ({\langle\underline{\underline{\text{u}}}\rangle}_Y,
| |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X)
| |
− | \end{matrix}</math>
| |
− | |-
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | (\underline{\underline{\text{A}}})
| |
− | ~\underline{\underline{\text{B}}}~
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{A}}})
| |
− | ~\underline{\underline{\text{B}}}~
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | (\underline{\underline{\text{a}}})
| |
− | ~\underline{\underline{\text{b}}}~
| |
− | (\underline{\underline{\text{i}}})
| |
− | (\underline{\underline{\text{u}}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{a}}})
| |
− | (\underline{\underline{\text{b}}})
| |
− | ~\underline{\underline{\text{i}}}~
| |
− | (\underline{\underline{\text{u}}})
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | ({\langle\underline{\underline{\text{b}}}\rangle}_Y,
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X)
| |
− | \\[4pt]
| |
− | ({\langle\underline{\underline{\text{i}}}\rangle}_Y,
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X)
| |
− | \end{matrix}</math>
| |
− | |} | |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 59.3} ~~ \operatorname{LIR}_2 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math> | + | <math>\text{Table 52.2} ~~ \text{Notations for Instances and Their Signs (2)}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Instance}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| + | | <math>\text{Sign of Instance}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{a}}}~
| + | \overline{\text{A}} & |
− | (\underline{\underline{\text{b}}})
| + | \overline{\text{A}} & |
− | (\underline{\underline{\text{i}}})
| + | \overline{w_1} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | \overline{\text{B}} & |
− | ~\underline{\underline{\text{a}}}~
| + | \overline{\text{B}} & |
− | (\underline{\underline{\text{b}}})
| + | \overline{w_2} |
− | (\underline{\underline{\text{i}}})
| + | \\[12pt] |
− | (\underline{\underline{\text{u}}})
| + | \overline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}} & |
− | \\[4pt] | + | \overline{{}^{\langle} \text{A} {}^{\rangle}} & |
− | (\underline{\underline{\text{a}}})
| + | \overline{w_3} |
− | (\underline{\underline{\text{b}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{i}}})
| + | \overline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}} & |
− | ~\underline{\underline{\text{u}}}~
| + | \overline{{}^{\langle} \text{B} {}^{\rangle}} & |
− | \\[4pt] | + | \overline{w_4} |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | \overline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}} & |
− | (\underline{\underline{\text{i}}})
| + | \overline{{}^{\langle} \text{i} {}^{\rangle}} & |
− | ~\underline{\underline{\text{u}}}~
| + | \overline{w_5} |
| + | \\[6pt] |
| + | \overline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}} & |
| + | \overline{{}^{\langle} \text{u} {}^{\rangle}} & |
| + | \overline{w_6} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\underline{\underline{\text{a}}}~
| + | {}^{\langle} \overline{\text{A}} {}^{\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \overline{\text{A}} {}^{\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} \overline{w_1} {}^{\rangle} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | {}^{\langle} \overline{\text{B}} {}^{\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \overline{\text{B}} {}^{\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \overline{w_2} {}^{\rangle} |
− | (\underline{\underline{\text{i}}})
| + | \\[12pt] |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\langle} \overline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}} {}^{\rangle} & |
− | \\[4pt] | + | {}^{\langle} \overline{{}^{\langle} \text{A} {}^{\rangle}} {}^{\rangle} & |
− | ~\underline{\underline{\text{a}}}~
| + | {}^{\langle} \overline{w_3} {}^{\rangle} |
− | (\underline{\underline{\text{b}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} \overline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}} {}^{\rangle} & |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} \overline{{}^{\langle} \text{B} {}^{\rangle}} {}^{\rangle} & |
− | \\[4pt] | + | {}^{\langle} \overline{w_4} {}^{\rangle} |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \overline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}} {}^{\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} \overline{{}^{\langle} \text{i} {}^{\rangle}} {}^{\rangle} & |
− | ~\underline{\underline{\text{u}}}~
| + | {}^{\langle} \overline{w_5} {}^{\rangle} |
− | \end{matrix}</math> | + | \\[6pt] |
− | | valign="bottom" |
| + | {}^{\langle} \overline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}} {}^{\rangle} & |
− | <math>\begin{matrix}
| + | {}^{\langle} \overline{{}^{\langle} \text{u} {}^{\rangle}} {}^{\rangle} & |
− | (\underline{\underline{\text{da}}})
| + | {}^{\langle} \overline{w_6} {}^{\rangle} |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | (\underline{\underline{\text{du}}})
| |
− | \\[4pt] | |
− | ~\underline{\underline{\text{da}}}~
| |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | ~\underline{\underline{\text{du}}}~
| |
− | \\[4pt] | |
− | ~\underline{\underline{\text{da}}}~
| |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | ~\underline{\underline{\text{du}}}~
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{da}}})
| |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | (\underline{\underline{\text{du}}})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:70%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 52.3} ~~ \text{Notations for Instances and Their Signs (3)}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | <math>\text{Instance}\!</math> |
| + | | <math>\text{Sign of Instance}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\underline{\underline{\text{a}}})
| + | \overline{\text{A}} & |
− | ~\underline{\underline{\text{b}}}~
| + | \overline{o_1} & |
− | (\underline{\underline{\text{i}}})
| + | \overline{w_1} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | \overline{\text{B}} & |
− | (\underline{\underline{\text{a}}})
| + | \overline{o_2} & |
− | ~\underline{\underline{\text{b}}}~
| + | \overline{w_2} |
− | (\underline{\underline{\text{i}}})
| + | \\[12pt] |
− | (\underline{\underline{\text{u}}})
| + | \overline{\text{a}} & |
− | \\[4pt] | + | \overline{s_1} & |
− | (\underline{\underline{\text{a}}})
| + | \overline{w_3} |
− | (\underline{\underline{\text{b}}})
| + | \\[6pt] |
− | ~\underline{\underline{\text{i}}}~
| + | \overline{\text{b}} & |
− | (\underline{\underline{\text{u}}})
| + | \overline{s_2} & |
− | \\[4pt] | + | \overline{w_4} |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | \overline{\text{i}} & |
− | ~\underline{\underline{\text{i}}}~
| + | \overline{s_3} & |
− | (\underline{\underline{\text{u}}})
| + | \overline{w_5} |
| + | \\[6pt] |
| + | \overline{\text{u}} & |
| + | \overline{s_4} & |
| + | \overline{w_6} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="50%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \overline{\text{A}} {}^{\rangle} & |
− | ~\underline{\underline{\text{b}}}~
| + | {}^{\langle} \overline{o_1} {}^{\rangle} & |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} \overline{w_1} {}^{\rangle} |
− | (\underline{\underline{\text{u}}})
| + | \\[6pt] |
− | \\[4pt] | + | {}^{\langle} \overline{\text{B}} {}^{\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \overline{o_2} {}^{\rangle} & |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \overline{w_2} {}^{\rangle} |
− | ~\underline{\underline{\text{i}}}~
| + | \\[12pt] |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} \overline{\text{a}} {}^{\rangle} & |
− | \\[4pt] | + | {}^{\langle} \overline{s_1} {}^{\rangle} & |
− | (\underline{\underline{\text{a}}})
| + | {}^{\langle} \overline{w_3} {}^{\rangle} |
− | ~\underline{\underline{\text{b}}}~
| + | \\[6pt] |
− | (\underline{\underline{\text{i}}})
| + | {}^{\langle} \overline{\text{b}} {}^{\rangle} & |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} \overline{s_2} {}^{\rangle} & |
− | \\[4pt] | + | {}^{\langle} \overline{w_4} {}^{\rangle} |
− | (\underline{\underline{\text{a}}})
| + | \\[6pt] |
− | (\underline{\underline{\text{b}}})
| + | {}^{\langle} \overline{\text{i}} {}^{\rangle} & |
− | ~\underline{\underline{\text{i}}}~
| + | {}^{\langle} \overline{s_3} {}^{\rangle} & |
− | (\underline{\underline{\text{u}}})
| + | {}^{\langle} \overline{w_5} {}^{\rangle} |
− | \end{matrix}</math> | + | \\[6pt] |
− | | valign="bottom" |
| + | {}^{\langle} \overline{\text{u}} {}^{\rangle} & |
− | <math>\begin{matrix}
| + | {}^{\langle} \overline{s_4} {}^{\rangle} & |
− | (\underline{\underline{\text{da}}})
| + | {}^{\langle} \overline{w_6} {}^{\rangle} |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | (\underline{\underline{\text{du}}})
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{da}}})
| |
− | ~\underline{\underline{\text{db}}}~
| |
− | ~\underline{\underline{\text{di}}}~
| |
− | (\underline{\underline{\text{du}}})
| |
− | \\[4pt] | |
− | (\underline{\underline{\text{da}}})
| |
− | ~\underline{\underline{\text{db}}}~
| |
− | ~\underline{\underline{\text{di}}}~
| |
− | (\underline{\underline{\text{du}}})
| |
− | \\[4pt]
| |
− | (\underline{\underline{\text{da}}})
| |
− | (\underline{\underline{\text{db}}})
| |
− | (\underline{\underline{\text{di}}})
| |
− | (\underline{\underline{\text{du}}})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 4,913: |
Line 4,202: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 60.1} ~~ \operatorname{LIR}_3 (L_\text{A}) : \text{Lateral Representation of} ~ L_\text{A}\!</math> | + | <math>\text{Table 53.1} ~~ \text{Elements of} ~ \operatorname{ER}(W)\!</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math>
| + | | <math>\text{Mnemonic Element}\!</math> <br><br> <math>w \in W\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Pragmatic Element}\!</math> <br><br> <math>w \in W\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| + | | <math>\text{Abstract Element}\!</math> <br><br> <math>w_i \in W\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X
| + | \text{A} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X
| + | \text{B} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \\[4pt]
| |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| + | o_1 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y
| + | o_2 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| + | s_1 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y
| + | s_2 |
− | \end{matrix}</math>
| |
− | |-
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| + | s_3 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| + | s_4 |
− | \\[4pt]
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y
| + | w_1 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y
| + | w_2 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| + | w_3 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| + | w_4 |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| + | w_5 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y
| + | w_6 |
− | \\[4pt]
| + | \end{matrix}</math> |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| |
− | \end{matrix}</math> | |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 60.2} ~~ \operatorname{LIR}_3 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 53.2} ~~ \text{Features of} ~ \operatorname{LIR}(W)\!</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math> | + | | |
− | | width="33%" | <math>\text{Sign}\!</math> | + | <math>\text{Mnemonic Feature}\!</math><br><br> |
− | | width="33%" | <math>\text{Transition}\!</math> | + | <math>\underline{\underline{w}} \in \underline{\underline{W}}\!</math> |
| + | | |
| + | <math>\text{Pragmatic Feature}\!</math><br><br> |
| + | <math>\underline{\underline{w}} \in \underline{\underline{W}}\!</math> |
| + | | |
| + | <math>\text{Abstract Feature}\!</math><br><br> |
| + | <math>\underline{\underline{w_i}} \in \underline{\underline{W}}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X | + | \underline{\underline{\text{A}}} |
| + | \\[4pt] |
| + | \underline{\underline{\text{B}}} |
| + | \\[4pt] |
| + | \underline{\underline{\text{a}}} |
| + | \\[4pt] |
| + | \underline{\underline{\text{b}}} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X
| + | \underline{\underline{\text{i}}} |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y
| + | \underline{\underline{\text{u}}} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({\langle\underline{\underline{\text{a}}}\rangle}_Y,
| + | \underline{\underline{o_1}} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X)
| |
| \\[4pt] | | \\[4pt] |
− | ({\langle\underline{\underline{\text{i}}}\rangle}_Y,
| + | \underline{\underline{o_2}} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X)
| |
− | \end{matrix}</math>
| |
− | |-
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| + | \underline{\underline{s_1}} |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y | + | \underline{\underline{s_2}} |
| + | \\[4pt] |
| + | \underline{\underline{s_3}} |
| + | \\[4pt] |
| + | \underline{\underline{s_4}} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="33%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ({\langle\underline{\underline{\text{b}}}\rangle}_Y,
| + | \underline{\underline{w_1}} |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X)
| + | \\[4pt] |
| + | \underline{\underline{w_2}} |
| + | \\[4pt] |
| + | \underline{\underline{w_3}} |
| + | \\[4pt] |
| + | \underline{\underline{w_4}} |
| + | \\[4pt] |
| + | \underline{\underline{w_5}} |
| \\[4pt] | | \\[4pt] |
− | ({\langle\underline{\underline{\text{u}}}\rangle}_Y,
| + | \underline{\underline{w_6}} |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X)
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,039: |
Line 4,316: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 60.3} ~~ \operatorname{LIR}_3 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 54.1} ~~ \text{Mnemonic Literal Codes for Interpreters A and B}\!</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="background:#f0f0ff" |
− | | width="33%" | <math>\text{Sign}\!</math> | + | | <math>\text{Element}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| + | | <math>\text{Vector}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| + | | <math>\text{Conjunct Term}\!</math> |
| + | | <math>\text{Code}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y | + | \text{A} |
| + | \\[4pt] |
| + | \text{B} |
| + | \\[4pt] |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| + | 100000 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y
| + | 010000 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| + | 001000 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y
| + | 000100 |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | 0_{\operatorname{d}Y}
| |
| \\[4pt] | | \\[4pt] |
− | {\langle
| + | 000010 |
− | \operatorname{d}\underline{\underline{\text{a}}}
| |
− | ~
| |
− | \operatorname{d}\underline{\underline{\text{i}}}
| |
− | \rangle}_{\operatorname{d}Y}
| |
| \\[4pt] | | \\[4pt] |
− | {\langle
| + | 000001 |
− | \operatorname{d}\underline{\underline{\text{a}}}
| |
− | ~
| |
− | \operatorname{d}\underline{\underline{\text{i}}}
| |
− | \rangle}_{\operatorname{d}Y}
| |
− | \\[4pt]
| |
− | 0_{\operatorname{d}Y}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| + | | valign="bottom" width="40%" | |
− | | valign="bottom" | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | ~\underline{\underline{A}}~ |
| + | (\underline{\underline{B}}) |
| + | (\underline{\underline{a}}) |
| + | (\underline{\underline{b}}) |
| + | (\underline{\underline{i}}) |
| + | (\underline{\underline{u}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | (\underline{\underline{A}}) |
| + | ~\underline{\underline{B}}~ |
| + | (\underline{\underline{a}}) |
| + | (\underline{\underline{b}}) |
| + | (\underline{\underline{i}}) |
| + | (\underline{\underline{u}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y | + | (\underline{\underline{A}}) |
| + | (\underline{\underline{B}}) |
| + | ~\underline{\underline{a}}~ |
| + | (\underline{\underline{b}}) |
| + | (\underline{\underline{i}}) |
| + | (\underline{\underline{u}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y | + | (\underline{\underline{A}}) |
− | \end{matrix}</math> | + | (\underline{\underline{B}}) |
− | | valign="bottom" |
| + | (\underline{\underline{a}}) |
− | <math>\begin{matrix}
| + | ~\underline{\underline{b}}~ |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | (\underline{\underline{i}}) |
| + | (\underline{\underline{u}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y | + | (\underline{\underline{A}}) |
− | \\[4pt] | + | (\underline{\underline{B}}) |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | (\underline{\underline{a}}) |
| + | (\underline{\underline{b}}) |
| + | ~\underline{\underline{i}}~ |
| + | (\underline{\underline{u}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y | + | (\underline{\underline{A}}) |
| + | (\underline{\underline{B}}) |
| + | (\underline{\underline{a}}) |
| + | (\underline{\underline{b}}) |
| + | (\underline{\underline{i}}) |
| + | ~\underline{\underline{u}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 0_{\operatorname{d}Y}
| + | {\langle\underline{\underline{A}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{B}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{a}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {\langle | + | {\langle\underline{\underline{b}}\rangle}_W |
− | \operatorname{d}\underline{\underline{\text{b}}}
| |
− | ~
| |
− | \operatorname{d}\underline{\underline{\text{u}}}
| |
− | \rangle}_{\operatorname{d}Y} | |
| \\[4pt] | | \\[4pt] |
− | {\langle | + | {\langle\underline{\underline{i}}\rangle}_W |
− | \operatorname{d}\underline{\underline{\text{b}}}
| |
− | ~
| |
− | \operatorname{d}\underline{\underline{\text{u}}}
| |
− | \rangle}_{\operatorname{d}Y} | |
| \\[4pt] | | \\[4pt] |
− | 0_{\operatorname{d}Y}
| + | {\langle\underline{\underline{u}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,128: |
Line 4,415: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 61.1} ~~ \operatorname{LIR}_3 (L_\text{B}) : \text{Lateral Representation of} ~ L_\text{B}\!</math> | + | <math>\text{Table 54.2} ~~ \text{Pragmatic Literal Codes for Interpreters A and B}\!</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math> | + | | <math>\text{Element}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Vector}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| + | | <math>\text{Conjunct Term}\!</math> |
| + | | <math>\text{Code}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X | + | \text{A} |
| + | \\[4pt] |
| + | \text{B} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X | + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
− | \\[4pt]
| |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| |
− | \\[4pt]
| |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| + | 100000 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| + | 010000 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| + | 001000 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| + | 000100 |
− | \end{matrix}</math>
| |
− | |-
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| + | 000010 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| + | 000001 |
− | \\[4pt]
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="40%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | ~\underline{\underline{o_1}}~ |
| + | (\underline{\underline{o_2}}) |
| + | (\underline{\underline{s_1}}) |
| + | (\underline{\underline{s_2}}) |
| + | (\underline{\underline{s_3}}) |
| + | (\underline{\underline{s_4}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | (\underline{\underline{o_1}}) |
| + | ~\underline{\underline{o_2}}~ |
| + | (\underline{\underline{s_1}}) |
| + | (\underline{\underline{s_2}}) |
| + | (\underline{\underline{s_3}}) |
| + | (\underline{\underline{s_4}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | (\underline{\underline{o_1}}) |
| + | (\underline{\underline{o_2}}) |
| + | ~\underline{\underline{s_1}}~ |
| + | (\underline{\underline{s_2}}) |
| + | (\underline{\underline{s_3}}) |
| + | (\underline{\underline{s_4}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | (\underline{\underline{o_1}}) |
| + | (\underline{\underline{o_2}}) |
| + | (\underline{\underline{s_1}}) |
| + | ~\underline{\underline{s_2}}~ |
| + | (\underline{\underline{s_3}}) |
| + | (\underline{\underline{s_4}}) |
| + | \\[4pt] |
| + | (\underline{\underline{o_1}}) |
| + | (\underline{\underline{o_2}}) |
| + | (\underline{\underline{s_1}}) |
| + | (\underline{\underline{s_2}}) |
| + | ~\underline{\underline{s_3}}~ |
| + | (\underline{\underline{s_4}}) |
| + | \\[4pt] |
| + | (\underline{\underline{o_1}}) |
| + | (\underline{\underline{o_2}}) |
| + | (\underline{\underline{s_1}}) |
| + | (\underline{\underline{s_2}}) |
| + | (\underline{\underline{s_3}}) |
| + | ~\underline{\underline{s_4}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | {\langle\underline{\underline{o_1}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{o_2}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{s_1}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | {\langle\underline{\underline{s_2}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | {\langle\underline{\underline{s_3}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | {\langle\underline{\underline{s_4}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,201: |
Line 4,514: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 61.2} ~~ \operatorname{LIR}_3 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> | + | <math>\text{Table 54.3} ~~ \text{Abstract Literal Codes for Interpreters A and B}\!</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math> | + | | <math>\text{Element}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Vector}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| + | | <math>\text{Conjunct Term}\!</math> |
| + | | <math>\text{Code}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X | + | \text{A} |
| + | \\[4pt] |
| + | \text{B} |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y | + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | ({\langle\underline{\underline{\text{a}}}\rangle}_Y,
| |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X)
| |
| \\[4pt] | | \\[4pt] |
− | ({\langle\underline{\underline{\text{u}}}\rangle}_Y,
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | {\langle\underline{\underline{\text{A}}}\rangle}_X)
| |
− | \end{matrix}</math>
| |
− | |-
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X | |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X | + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y
| + | 100000 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y
| + | 010000 |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | ({\langle\underline{\underline{\text{b}}}\rangle}_Y,
| |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X)
| |
| \\[4pt] | | \\[4pt] |
− | ({\langle\underline{\underline{\text{i}}}\rangle}_Y,
| + | 001000 |
− | {\langle\underline{\underline{\text{B}}}\rangle}_X)
| |
− | \end{matrix}</math>
| |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 61.3} ~~ \operatorname{LIR}_3 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | width="33%" | <math>\text{Sign}\!</math>
| |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| |
− | | width="33%" | <math>\text{Transition}\!</math>
| |
− | |-
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y
| + | 000100 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| + | 000010 |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y
| + | 000001 |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="40%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y | + | ~\underline{\underline{w_1}}~ |
− | \\[4pt] | + | (\underline{\underline{w_2}}) |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y | + | (\underline{\underline{w_3}}) |
| + | (\underline{\underline{w_4}}) |
| + | (\underline{\underline{w_5}}) |
| + | (\underline{\underline{w_6}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{a}}}\rangle}_Y | + | (\underline{\underline{w_1}}) |
| + | ~\underline{\underline{w_2}}~ |
| + | (\underline{\underline{w_3}}) |
| + | (\underline{\underline{w_4}}) |
| + | (\underline{\underline{w_5}}) |
| + | (\underline{\underline{w_6}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{u}}}\rangle}_Y | + | (\underline{\underline{w_1}}) |
− | \end{matrix}</math> | + | (\underline{\underline{w_2}}) |
− | | valign="bottom" |
| + | ~\underline{\underline{w_3}}~ |
− | <math>\begin{matrix}
| + | (\underline{\underline{w_4}}) |
− | 0_{\operatorname{d}Y}
| + | (\underline{\underline{w_5}}) |
| + | (\underline{\underline{w_6}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle | + | (\underline{\underline{w_1}}) |
− | \operatorname{d}\underline{\underline{\text{a}}} | + | (\underline{\underline{w_2}}) |
− | ~ | + | (\underline{\underline{w_3}}) |
− | \operatorname{d}\underline{\underline{\text{u}}} | + | ~\underline{\underline{w_4}}~ |
− | \rangle}_{\operatorname{d}Y} | + | (\underline{\underline{w_5}}) |
| + | (\underline{\underline{w_6}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle | + | (\underline{\underline{w_1}}) |
− | \operatorname{d}\underline{\underline{\text{a}}} | + | (\underline{\underline{w_2}}) |
− | ~
| + | (\underline{\underline{w_3}}) |
− | \operatorname{d}\underline{\underline{\text{u}}} | + | (\underline{\underline{w_4}}) |
− | \rangle}_{\operatorname{d}Y} | + | ~\underline{\underline{w_5}}~ |
| + | (\underline{\underline{w_6}}) |
| \\[4pt] | | \\[4pt] |
− | 0_{\operatorname{d}Y}
| + | (\underline{\underline{w_1}}) |
| + | (\underline{\underline{w_2}}) |
| + | (\underline{\underline{w_3}}) |
| + | (\underline{\underline{w_4}}) |
| + | (\underline{\underline{w_5}}) |
| + | ~\underline{\underline{w_6}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| + | | valign="bottom" width="20%" | |
− | | valign="bottom" | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | {\langle\underline{\underline{w_1}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | {\langle\underline{\underline{w_2}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | {\langle\underline{\underline{w_3}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | {\langle\underline{\underline{w_4}}\rangle}_W |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y
| |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y | + | {\langle\underline{\underline{w_5}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {\langle\underline{\underline{\text{b}}}\rangle}_Y | + | {\langle\underline{\underline{w_6}}\rangle}_W |
− | \\[4pt]
| |
− | {\langle\underline{\underline{\text{i}}}\rangle}_Y
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | 0_{\operatorname{d}Y}
| |
− | \\[4pt]
| |
− | {\langle
| |
− | \operatorname{d}\underline{\underline{\text{b}}}
| |
− | ~
| |
− | \operatorname{d}\underline{\underline{\text{i}}}
| |
− | \rangle}_{\operatorname{d}Y}
| |
− | \\[4pt]
| |
− | {\langle
| |
− | \operatorname{d}\underline{\underline{\text{b}}}
| |
− | ~
| |
− | \operatorname{d}\underline{\underline{\text{i}}}
| |
− | \rangle}_{\operatorname{d}Y} | |
− | \\[4pt]
| |
− | 0_{\operatorname{d}Y}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,345: |
Line 4,615: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 62.1} ~~ \text{Analytic Codes for Object Features}\!</math> | + | <math>\text{Table 55.1} ~~ \operatorname{LIR}_1 (L_\text{A}) : \text{Literal Representation of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Category}\!</math> | + | | width="33%" | <math>\text{Object}\!</math> |
− | | width="33%" | <math>\text{Mnemonic}\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>\text{Code}\!</math> | + | | width="33%" | <math>\text{Interpretant}\!</math> |
| |- | | |- |
− | | | + | | valign="bottom" | |
− | <math>\begin{array}{l} | + | <math>\begin{matrix} |
− | \text{Self} | + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | \text{Other} | + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
− | \end{array}</math> | |
− | |
| |
− | <math>\begin{matrix}
| |
− | \text{self} | |
| \\[4pt] | | \\[4pt] |
− | \text{(self)} | + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | | + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{s} | + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | \text{(s)} | + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,375: |
Line 4,688: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 62.2} ~~ \text{Analytic Codes for Semantic Features}\!</math> | + | <math>\text{Table 55.2} ~~ \operatorname{LIR}_1 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Category}\!</math> | + | | width="33%" | <math>\text{Object}\!</math> |
− | | width="33%" | <math>\text{Mnemonic}\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>\text{Code}\!</math> | + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
− | | | + | | valign="bottom" | |
− | <math>\begin{array}{l} | + | <math>\begin{matrix} |
− | \text{1st Person} | + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | ({\langle\underline{\underline{\text{a}}}\rangle}_W, |
| + | {\langle\underline{\underline{\text{A}}}\rangle}_W) |
| + | \\[4pt] |
| + | ({\langle\underline{\underline{\text{i}}}\rangle}_W, |
| + | {\langle\underline{\underline{\text{A}}}\rangle}_W) |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | \text{2nd Person} | + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
− | \end{array}</math> | + | \end{matrix}</math> |
− | | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{my} | + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | \text{(my)} | + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{m} | + | ({\langle\underline{\underline{\text{b}}}\rangle}_W, |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W) |
| \\[4pt] | | \\[4pt] |
− | \text{(m)} | + | ({\langle\underline{\underline{\text{u}}}\rangle}_W, |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,405: |
Line 4,741: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 62.3} ~~ \text{Analytic Codes for Syntactic Features}\!</math> | + | <math>\text{Table 55.3} ~~ \operatorname{LIR}_1 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Category}\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>\text{Mnemonic}\!</math> | + | | width="33%" | <math>\text{Interpretant}\!</math> |
− | | width="33%" | <math>\text{Code}\!</math> | + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
− | | | + | | valign="bottom" | |
− | <math>\begin{array}{l} | + | <math>\begin{matrix} |
− | \text{Noun} | + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | \text{Pronoun} | + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
− | \end{array}</math> | |
− | |
| |
− | <math>\begin{matrix}
| |
− | \text{name} | |
| \\[4pt] | | \\[4pt] |
− | \text{(name)} | + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
− | \end{matrix}</math> | |
− | |
| |
− | <math>\begin{matrix}
| |
− | \text{n} | |
| \\[4pt] | | \\[4pt] |
− | \text{(n)} | + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 63.} ~~ \text{Analytic Codes for Interpreter A}\!</math>
| |
− | |- style="background:#f0f0ff"
| |
− | | width="16%" | <math>\text{Name}\!</math>
| |
− | | width="16%" | <math>\text{Vector}\!</math>
| |
− | | width="26%" | <math>\text{Conjunct Term}\!</math>
| |
− | | width="26%" | <math>\text{Mnemonic}\!</math>
| |
− | | width="16%" | <math>\text{Code}\!</math>
| |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | \text{B} | + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
− | \\[4pt]
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \\[4pt]
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {1}_X | + | 0_{\operatorname{d}W} |
| \\[4pt] | | \\[4pt] |
− | {0}_X | + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{a}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{i}}} |
| + | \rangle}_{\operatorname{d}W} |
| \\[4pt] | | \\[4pt] |
− | {11}_Y | + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{a}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{i}}} |
| + | \rangle}_{\operatorname{d}W} |
| \\[4pt] | | \\[4pt] |
− | {01}_Y | + | 0_{\operatorname{d}W} |
− | \\[4pt] | + | \end{matrix}</math> |
− | {10}_Y | + | |- |
− | \\[4pt]
| |
− | {00}_Y
| |
− | \end{matrix}</math> | |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~x_1~
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (x_1)
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~y_1~~y_2~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (y_1)~y_2~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
− | \\[4pt] | |
− | ~y_1~(y_2)
| |
− | \\[4pt] | |
− | (y_1)(y_2)
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{self}~
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (\text{self})
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~\text{my}~~\text{name}~
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (\text{my})~\text{name}~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
− | \\[4pt]
| |
− | ~\text{my}~(\text{name})
| |
− | \\[4pt]
| |
− | (\text{my})(\text{name})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{s}~
| + | 0_{\operatorname{d}W} |
| \\[4pt] | | \\[4pt] |
− | (\text{s})
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{u}}} |
| + | \rangle}_{\operatorname{d}W} |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~~\text{n}~
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{u}}} |
| + | \rangle}_{\operatorname{d}W} |
| \\[4pt] | | \\[4pt] |
− | (\text{m})~\text{n}~
| + | 0_{\operatorname{d}W} |
− | \\[4pt]
| |
− | ~\text{m}~(\text{n})
| |
− | \\[4pt]
| |
− | (\text{m})(\text{n})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,517: |
Line 4,828: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 64.} ~~ \text{Analytic Codes for Interpreter B}\!</math> | + | <math>\text{Table 56.1} ~~ \operatorname{LIR}_1 (L_\text{B}) : \text{Literal Representation of} ~ L_\text{B}\!</math> |
− | |- style="background:#f0f0ff" | + | |- style="height:40px; background:#f0f0ff" |
− | | width="16%" | <math>\text{Name}\!</math> | + | | width="33%" | <math>\text{Object}\!</math> |
− | | width="16%" | <math>\text{Vector}\!</math>
| + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="26%" | <math>\text{Conjunct Term}\!</math>
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
− | | width="26%" | <math>\text{Mnemonic}\!</math> | |
− | | width="16%" | <math>\text{Code}\!</math> | |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | \text{B} | + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
− | \\[4pt]
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \\[4pt]
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {0}_X | + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {1}_X | + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {01}_Y | + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | {11}_Y | + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
− | \\[4pt] | |
− | {10}_Y | |
− | \\[4pt] | |
− | {00}_Y | |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (x_1)
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~x_1~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (y_1)~y_2~
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~y_1~~y_2~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
− | \\[4pt] | |
− | ~y_1~(y_2)
| |
− | \\[4pt] | |
− | (y_1)(y_2)
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{self})
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~\text{self}~
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (\text{my})~\text{name}~
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~\text{my}~~\text{name}~
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
− | \\[4pt]
| |
− | ~\text{my}~(\text{name})
| |
− | \\[4pt]
| |
− | (\text{my})(\text{name})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{s})
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~\text{s}~
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (\text{m})~\text{n}~
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n})
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,603: |
Line 4,903: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 65.1} ~~ \operatorname{AIR}_1 (L_\text{A}) : \text{Analytic Representation of} ~ L_\text{A}\!</math> | + | <math>\text{Table 56.2} ~~ \operatorname{LIR}_1 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Object}\!</math> | | | width="33%" | <math>\text{Object}\!</math> |
| | width="33%" | <math>\text{Sign}\!</math> | | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math> | + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{s} | + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | \text{s} | + | {\langle\underline{\underline{\text{A}}}\rangle}_W |
− | \\[4pt] | |
− | \text{s} | |
− | \\[4pt]
| |
− | \text{s} | |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
− | \\[4pt]
| |
− | ~\text{m}~(\text{n})
| |
− | \\[4pt]
| |
− | ~\text{m}~(\text{n})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{m}~~\text{n}~
| + | ({\langle\underline{\underline{\text{a}}}\rangle}_W, |
| + | {\langle\underline{\underline{\text{A}}}\rangle}_W) |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | ({\langle\underline{\underline{\text{u}}}\rangle}_W, |
− | \\[4pt]
| + | {\langle\underline{\underline{\text{A}}}\rangle}_W) |
− | ~\text{m}~~\text{n}~
| |
− | \\[4pt] | |
− | ~\text{m}~(\text{n})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{s})
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (\text{s})
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W |
− | \\[4pt] | |
− | (\text{s})
| |
− | \\[4pt]
| |
− | (\text{s})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{m})~\text{n}~
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (\text{m})~\text{n}~
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
− | \\[4pt]
| + | \end{matrix}</math> |
− | (\text{m})(\text{n})
| + | | valign="bottom" | |
− | \\[4pt]
| |
− | (\text{m})(\text{n})
| |
− | \end{matrix}</math> | |
− | | valign="bottom" | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{m})~\text{n}~ | + | ({\langle\underline{\underline{\text{b}}}\rangle}_W, |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W) |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n}) | + | ({\langle\underline{\underline{\text{i}}}\rangle}_W, |
− | \\[4pt]
| + | {\langle\underline{\underline{\text{B}}}\rangle}_W) |
− | (\text{m})~\text{n}~
| |
− | \\[4pt] | |
− | (\text{m})(\text{n})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,676: |
Line 4,956: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 65.2} ~~ \operatorname{AIR}_1 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 56.3} ~~ \operatorname{LIR}_1 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math>
| |
| | width="33%" | <math>\text{Sign}\!</math> | | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| | width="33%" | <math>\text{Transition}\!</math> | | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{s} | + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | \text{s} | + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {\langle\underline{\underline{\text{u}}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{m}~~\text{n}~ \mapsto ~\text{s}~ | + | 0_{\operatorname{d}W} |
| + | \\[4pt] |
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{a}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{u}}} |
| + | \rangle}_{\operatorname{d}W} |
| + | \\[4pt] |
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{a}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{u}}} |
| + | \rangle}_{\operatorname{d}W} |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n}) \mapsto ~\text{s}~
| + | 0_{\operatorname{d}W} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{s})
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (\text{s})
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{m})~\text{n}~
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_W |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n})
| + | {\langle\underline{\underline{\text{i}}}\rangle}_W |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{m})~\text{n}~ \mapsto (\text{s})
| + | 0_{\operatorname{d}W} |
| + | \\[4pt] |
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{i}}} |
| + | \rangle}_{\operatorname{d}W} |
| + | \\[4pt] |
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{i}}} |
| + | \rangle}_{\operatorname{d}W} |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n}) \mapsto (\text{s})
| + | 0_{\operatorname{d}W} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,723: |
Line 5,043: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 65.3} ~~ \operatorname{AIR}_1 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 57.1} ~~ \text{Mnemonic Lateral Codes for Interpreters A and B}\!</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="background:#f0f0ff" |
− | | width="33%" | <math>\text{Sign}\!</math> | + | | <math>\text{Element}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| + | | <math>\text{Vector}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| + | | <math>\text{Conjunct Term}\!</math> |
| + | | <math>\text{Code}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{m}~~\text{n}~
| + | \text{A} |
| + | \\[4pt] |
| + | \text{B} |
| + | \\[4pt] |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~~\text{n}~
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{m}~~\text{n}~
| + | {10}_X |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {01}_X |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~~\text{n}~
| + | {1000}_Y |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {0100}_Y |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | (\text{dm})(\text{dn})
| |
| \\[4pt] | | \\[4pt] |
− | (\text{dm})~\text{dn}~
| + | {0010}_Y |
| \\[4pt] | | \\[4pt] |
− | (\text{dm})~\text{dn}~
| + | {0001}_Y |
− | \\[4pt]
| |
− | (\text{dm})(\text{dn})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| + | | valign="bottom" width="40%" | |
− | | valign="bottom" | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{m})~\text{n}~
| + | ~\underline{\underline{A}}~ |
| + | (\underline{\underline{B}}) |
| \\[4pt] | | \\[4pt] |
− | (\text{m})~\text{n}~ | + | (\underline{\underline{A}}) |
| + | ~\underline{\underline{B}}~ |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n}) | + | ~\underline{\underline{a}}~ |
| + | (\underline{\underline{b}}) |
| + | (\underline{\underline{i}}) |
| + | (\underline{\underline{u}}) |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n}) | + | (\underline{\underline{a}}) |
− | \end{matrix}</math> | + | ~\underline{\underline{b}}~ |
− | | valign="bottom" |
| + | (\underline{\underline{i}}) |
− | <math>\begin{matrix}
| + | (\underline{\underline{u}}) |
− | (\text{m})~\text{n}~ | |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n}) | + | (\underline{\underline{a}}) |
| + | (\underline{\underline{b}}) |
| + | ~\underline{\underline{i}}~ |
| + | (\underline{\underline{u}}) |
| \\[4pt] | | \\[4pt] |
− | (\text{m})~\text{n}~ | + | (\underline{\underline{a}}) |
− | \\[4pt] | + | (\underline{\underline{b}}) |
− | (\text{m})(\text{n}) | + | (\underline{\underline{i}}) |
| + | ~\underline{\underline{u}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{dm})(\text{dn})
| + | {\langle\underline{\underline{A}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | (\text{dm})~\text{dn}~
| + | {\langle\underline{\underline{B}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | (\text{dm})~\text{dn}~
| + | {\langle\underline{\underline{a}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{b}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{i}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | (\text{dm})(\text{dn})
| + | {\langle\underline{\underline{u}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,796: |
Line 5,126: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 66.1} ~~ \operatorname{AIR}_1 (L_\text{B}) : \text{Analytic Representation of} ~ L_\text{B}\!</math> | + | <math>\text{Table 57.2} ~~ \text{Pragmatic Lateral Codes for Interpreters A and B}\!</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math> | + | | <math>\text{Element}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Vector}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| + | | <math>\text{Conjunct Term}\!</math> |
| + | | <math>\text{Code}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{s})
| + | \text{A} |
| + | \\[4pt] |
| + | \text{B} |
| + | \\[4pt] |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | (\text{s})
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | (\text{s})
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| \\[4pt] | | \\[4pt] |
− | (\text{s})
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{m})~\text{n}~
| + | {10}_X |
| \\[4pt] | | \\[4pt] |
− | (\text{m})~\text{n}~
| + | {01}_X |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n})
| + | {1000}_Y |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n})
| + | {0100}_Y |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | (\text{m})~\text{n}~
| |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n})
| + | {0010}_Y |
| \\[4pt] | | \\[4pt] |
− | (\text{m})~\text{n}~
| + | {0001}_Y |
− | \\[4pt]
| |
− | (\text{m})(\text{n})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| + | | valign="bottom" width="40%" | |
− | | valign="bottom" | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{s} | + | ~\underline{\underline{o_1}}~ |
| + | (\underline{\underline{o_2}}) |
| + | \\[4pt] |
| + | (\underline{\underline{o_1}}) |
| + | ~\underline{\underline{o_2}}~ |
| + | \\[4pt] |
| + | ~\underline{\underline{s_1}}~ |
| + | (\underline{\underline{s_2}}) |
| + | (\underline{\underline{s_3}}) |
| + | (\underline{\underline{s_4}}) |
| \\[4pt] | | \\[4pt] |
− | \text{s} | + | (\underline{\underline{s_1}}) |
| + | ~\underline{\underline{s_2}}~ |
| + | (\underline{\underline{s_3}}) |
| + | (\underline{\underline{s_4}}) |
| \\[4pt] | | \\[4pt] |
− | \text{s} | + | (\underline{\underline{s_1}}) |
| + | (\underline{\underline{s_2}}) |
| + | ~\underline{\underline{s_3}}~ |
| + | (\underline{\underline{s_4}}) |
| \\[4pt] | | \\[4pt] |
− | \text{s} | + | (\underline{\underline{s_1}}) |
| + | (\underline{\underline{s_2}}) |
| + | (\underline{\underline{s_3}}) |
| + | ~\underline{\underline{s_4}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{o_1}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{o_2}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {\langle\underline{\underline{s_1}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {\langle\underline{\underline{s_2}}\rangle}_Y |
− | \end{matrix}</math> | |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | ~\text{m}~~\text{n}~
| |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {\langle\underline{\underline{s_3}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{s_4}}\rangle}_Y |
− | \\[4pt]
| |
− | ~\text{m}~(\text{n})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,869: |
Line 5,209: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 66.2} ~~ \operatorname{AIR}_1 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> | + | <math>\text{Table 57.3} ~~ \text{Abstract Lateral Codes for Interpreters A and B}\!</math> |
− | |- style="height:40px; background:#f0f0ff" | + | |- style="background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math> | + | | <math>\text{Element}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math>
| + | | <math>\text{Vector}\!</math> |
− | | width="33%" | <math>\text{Transition}\!</math>
| + | | <math>\text{Conjunct Term}\!</math> |
| + | | <math>\text{Code}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{s})
| + | \text{A} |
| \\[4pt] | | \\[4pt] |
− | (\text{s})
| + | \text{B} |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | (\text{m})~\text{n}~
| |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n})
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \end{matrix}</math> | |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | (\text{m})~\text{n}~ \mapsto (\text{s})
| |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n}) \mapsto (\text{s})
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \end{matrix}</math>
| |
− | |-
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | \text{s} | |
| \\[4pt] | | \\[4pt] |
− | \text{s}
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
− | \end{matrix}</math> | |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | ~\text{m}~~\text{n}~
| |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="20%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{m}~~\text{n}~ \mapsto ~\text{s}~
| + | {10}_X |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n}) \mapsto ~\text{s}~
| + | {01}_X |
− | \end{matrix}</math>
| |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 66.3} ~~ \operatorname{AIR}_1 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | width="33%" | <math>\text{Sign}\!</math>
| |
− | | width="33%" | <math>\text{Interpretant}\!</math>
| |
− | | width="33%" | <math>\text{Transition}\!</math>
| |
− | |-
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | (\text{m})~\text{n}~
| |
| \\[4pt] | | \\[4pt] |
− | (\text{m})~\text{n}~
| + | {1000}_Y |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n})
| + | {0100}_Y |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n})
| + | {0010}_Y |
| + | \\[4pt] |
| + | {0001}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | | valign="bottom" width="40%" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\text{m})~\text{n}~
| + | ~\underline{\underline{x_1}}~ |
| + | (\underline{\underline{x_2}}) |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n}) | + | (\underline{\underline{x_1}}) |
| + | ~\underline{\underline{x_2}}~ |
| \\[4pt] | | \\[4pt] |
− | (\text{m})~\text{n}~ | + | ~\underline{\underline{y_1}}~ |
| + | (\underline{\underline{y_2}}) |
| + | (\underline{\underline{y_3}}) |
| + | (\underline{\underline{y_4}}) |
| \\[4pt] | | \\[4pt] |
− | (\text{m})(\text{n}) | + | (\underline{\underline{y_1}}) |
− | \end{matrix}</math> | + | ~\underline{\underline{y_2}}~ |
− | | valign="bottom" |
| + | (\underline{\underline{y_3}}) |
− | <math>\begin{matrix}
| + | (\underline{\underline{y_4}}) |
− | (\text{dm})(\text{dn}) | |
| \\[4pt] | | \\[4pt] |
− | (\text{dm})~\text{dn}~ | + | (\underline{\underline{y_1}}) |
| + | (\underline{\underline{y_2}}) |
| + | ~\underline{\underline{y_3}}~ |
| + | (\underline{\underline{y_4}}) |
| \\[4pt] | | \\[4pt] |
− | (\text{dm})~\text{dn}~ | + | (\underline{\underline{y_1}}) |
− | \\[4pt] | + | (\underline{\underline{y_2}}) |
− | (\text{dm})(\text{dn}) | + | (\underline{\underline{y_3}}) |
| + | ~\underline{\underline{y_4}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| + | | valign="bottom" width="20%" | |
− | | valign="bottom" | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{x_1}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{x_2}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {\langle\underline{\underline{y_1}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {\langle\underline{\underline{y_2}}\rangle}_Y |
− | \end{matrix}</math> | |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | ~\text{m}~~\text{n}~
| |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~(\text{n})
| + | {\langle\underline{\underline{y_3}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | ~\text{m}~~\text{n}~
| + | {\langle\underline{\underline{y_4}}\rangle}_Y |
− | \\[4pt]
| |
− | ~\text{m}~(\text{n})
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | (\text{dm})(\text{dn})
| |
− | \\[4pt]
| |
− | (\text{dm})~\text{dn}~
| |
− | \\[4pt] | |
− | (\text{dm})~\text{dn}~
| |
− | \\[4pt]
| |
− | (\text{dm})(\text{dn})
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 5,993: |
Line 5,294: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 67.1} ~~ \operatorname{AIR}_2 (L_\text{A}) : \text{Analytic Representation of} ~ L_\text{A}\!</math> | + | <math>\text{Table 58.1} ~~ \operatorname{LIR}_2 (L_\text{A}) : \text{Lateral Representation of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Object}\!</math> | | | width="33%" | <math>\text{Object}\!</math> |
Line 6,001: |
Line 5,302: |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
− | \\[4pt] | + | (\underline{\underline{\text{b}}}) |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| + | \\[4pt] |
| + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle ! \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{n}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{n}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 6,066: |
Line 5,423: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 67.2} ~~ \operatorname{AIR}_2 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 58.2} ~~ \operatorname{LIR}_2 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Object}\!</math> | | | width="33%" | <math>\text{Object}\!</math> |
Line 6,074: |
Line 5,431: |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
− | <math>\begin{array}{r} | + | <math>\begin{matrix} |
− | {\langle * \rangle}_Y \mapsto {\langle * \rangle}_X | + | ({\langle\underline{\underline{\text{a}}}\rangle}_Y, |
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y \mapsto {\langle * \rangle}_X | + | ({\langle\underline{\underline{\text{i}}}\rangle}_Y, |
− | \end{array}</math> | + | {\langle\underline{\underline{\text{A}}}\rangle}_X) |
| + | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle ! \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
− | <math>\begin{array}{r} | + | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y \mapsto {\langle ! \rangle}_X | + | ({\langle\underline{\underline{\text{b}}}\rangle}_Y, |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y \mapsto {\langle ! \rangle}_X | + | ({\langle\underline{\underline{\text{u}}}\rangle}_Y, |
− | \end{array}</math> | + | {\langle\underline{\underline{\text{B}}}\rangle}_X) |
| + | \end{matrix}</math> |
| |} | | |} |
| | | |
Line 6,115: |
Line 5,492: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 67.3} ~~ \operatorname{AIR}_2 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> | + | <math>\text{Table 58.3} ~~ \operatorname{LIR}_2 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Sign}\!</math> | | | width="33%" | <math>\text{Sign}\!</math> |
Line 6,123: |
Line 5,500: |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | (\underline{\underline{\text{du}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} | + | ~\underline{\underline{\text{da}}}~ |
| + | (\underline{\underline{\text{db}}}) |
| + | ~\underline{\underline{\text{di}}}~ |
| + | (\underline{\underline{\text{du}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} | + | ~\underline{\underline{\text{da}}}~ |
| + | (\underline{\underline{\text{db}}}) |
| + | ~\underline{\underline{\text{di}}}~ |
| + | (\underline{\underline{\text{du}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | (\underline{\underline{\text{du}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{n}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{n}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | (\underline{\underline{\text{du}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | ~\underline{\underline{\text{db}}}~ |
| + | (\underline{\underline{\text{di}}}) |
| + | ~\underline{\underline{\text{du}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | ~\underline{\underline{\text{db}}}~ |
| + | (\underline{\underline{\text{di}}}) |
| + | ~\underline{\underline{\text{du}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | (\underline{\underline{\text{du}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 6,188: |
Line 5,637: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 68.1} ~~ \operatorname{AIR}_2 (L_\text{B}) : \text{Analytic Representation of} ~ L_\text{B}\!</math> | + | <math>\text{Table 59.1} ~~ \operatorname{LIR}_2 (L_\text{B}) : \text{Lateral Representation of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Object}\!</math> | | | width="33%" | <math>\text{Object}\!</math> |
Line 6,196: |
Line 5,645: |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle ! \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{n}\rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{n}\rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 6,261: |
Line 5,766: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 68.2} ~~ \operatorname{AIR}_2 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> | + | <math>\text{Table 59.2} ~~ \operatorname{LIR}_2 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Object}\!</math> | | | width="33%" | <math>\text{Object}\!</math> |
Line 6,269: |
Line 5,774: |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle ! \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_X | + | ~\underline{\underline{\text{A}}}~ |
| + | (\underline{\underline{\text{B}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
− | <math>\begin{array}{r} | + | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y \mapsto {\langle ! \rangle}_X | + | ({\langle\underline{\underline{\text{a}}}\rangle}_Y, |
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y \mapsto {\langle ! \rangle}_X | + | ({\langle\underline{\underline{\text{u}}}\rangle}_Y, |
− | \end{array}</math> | + | {\langle\underline{\underline{\text{A}}}\rangle}_X) |
| + | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_X | + | (\underline{\underline{\text{A}}}) |
| + | ~\underline{\underline{\text{B}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
− | <math>\begin{array}{r} | + | <math>\begin{matrix} |
− | {\langle * \rangle}_Y \mapsto {\langle * \rangle}_X | + | ({\langle\underline{\underline{\text{b}}}\rangle}_Y, |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y \mapsto {\langle * \rangle}_X | + | ({\langle\underline{\underline{\text{i}}}\rangle}_Y, |
− | \end{array}</math> | + | {\langle\underline{\underline{\text{B}}}\rangle}_X) |
| + | \end{matrix}</math> |
| |} | | |} |
| | | |
Line 6,310: |
Line 5,835: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 68.3} ~~ \operatorname{AIR}_2 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math> | + | <math>\text{Table 59.3} ~~ \operatorname{LIR}_2 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Sign}\!</math> | | | width="33%" | <math>\text{Sign}\!</math> |
Line 6,318: |
Line 5,843: |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{n}\rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\text{n}\rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{n}\rangle}_Y | + | ~\underline{\underline{\text{a}}}~ |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle ! \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | (\underline{\underline{\text{i}}}) |
| + | ~\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | (\underline{\underline{\text{du}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} | + | ~\underline{\underline{\text{da}}}~ |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | ~\underline{\underline{\text{du}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} | + | ~\underline{\underline{\text{da}}}~ |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | ~\underline{\underline{\text{du}}}~ |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | (\underline{\underline{\text{du}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle * \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle * \rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | ~\underline{\underline{\text{b}}}~ |
| + | (\underline{\underline{\text{i}}}) |
| + | (\underline{\underline{\text{u}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\text{m}\rangle}_Y | + | (\underline{\underline{\text{a}}}) |
| + | (\underline{\underline{\text{b}}}) |
| + | ~\underline{\underline{\text{i}}}~ |
| + | (\underline{\underline{\text{u}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | (\underline{\underline{\text{du}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | ~\underline{\underline{\text{db}}}~ |
| + | ~\underline{\underline{\text{di}}}~ |
| + | (\underline{\underline{\text{du}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | ~\underline{\underline{\text{db}}}~ |
| + | ~\underline{\underline{\text{di}}}~ |
| + | (\underline{\underline{\text{du}}}) |
| \\[4pt] | | \\[4pt] |
− | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} | + | (\underline{\underline{\text{da}}}) |
| + | (\underline{\underline{\text{db}}}) |
| + | (\underline{\underline{\text{di}}}) |
| + | (\underline{\underline{\text{du}}}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 6,383: |
Line 5,980: |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 69.} ~~ \text{Schematism of Sequential Inference}\!</math> | + | <math>\text{Table 60.1} ~~ \operatorname{LIR}_3 (L_\text{A}) : \text{Lateral Representation of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Initial Premiss}\!</math> | + | | width="33%" | <math>\text{Object}\!</math> |
− | | width="33%" | <math>\text{Differential Premiss}\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>\text{Inferred Sequel}\!</math> | + | | width="33%" | <math>\text{Interpretant}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~x~ ~\operatorname{at}~ t
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | ~x~ ~\operatorname{at}~ t
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | (x) ~\operatorname{at}~ t
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | (x) ~\operatorname{at}~ t
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\operatorname{d}x~ ~\operatorname{at}~ t
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | (\operatorname{d}x) ~\operatorname{at}~ t
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}x~ ~\operatorname{at}~ t
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | (\operatorname{d}x) ~\operatorname{at}~ t
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (x) ~\operatorname{at}~ t'
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | ~x~ ~\operatorname{at}~ t'
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | ~x~ ~\operatorname{at}~ t'
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | (x) ~\operatorname{at}~ t'
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 70.1} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{A} (V_4)\!</math>
| |
− | |- style="background:#f0f0ff"
| |
− | | width="16%" | <math>\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}</math>
| |
− | | width="36%" | <math>\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}</math>
| |
− | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{List} \end{matrix}</math>
| |
− | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}</math>
| |
− | | width="16%" | <math>\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}</math>
| |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | r
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | s
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | t
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\operatorname{d}\underline{\underline{\text{a}}})
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
− | (\operatorname{d}\underline{\underline{\text{b}}})
| + | \\[4pt] |
− | (\operatorname{d}\underline{\underline{\text{i}}})
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
− | (\operatorname{d}\underline{\underline{\text{u}}})
| |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}\underline{\underline{\text{a}}}~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
− | (\operatorname{d}\underline{\underline{\text{b}}})
| |
− | ~\operatorname{d}\underline{\underline{\text{i}}}~
| |
− | (\operatorname{d}\underline{\underline{\text{u}}})
| |
| \\[4pt] | | \\[4pt] |
− | (\operatorname{d}\underline{\underline{\text{a}}})
| + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
− | ~\operatorname{d}\underline{\underline{\text{b}}}~
| |
− | (\operatorname{d}\underline{\underline{\text{i}}})
| |
− | ~\operatorname{d}\underline{\underline{\text{u}}}~
| |
− | \\[4pt] | |
− | ~\operatorname{d}\underline{\underline{\text{a}}}~
| |
− | ~\operatorname{d}\underline{\underline{\text{b}}}~
| |
− | ~\operatorname{d}\underline{\underline{\text{i}}}~
| |
− | ~\operatorname{d}\underline{\underline{\text{u}}}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \langle \operatorname{d}! \rangle | + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \langle | + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
− | \operatorname{d}\underline{\underline{\text{a}}} ~
| |
− | \operatorname{d}\underline{\underline{\text{i}}} | |
− | \rangle
| |
| \\[4pt] | | \\[4pt] |
− | \langle | + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
− | \operatorname{d}\underline{\underline{\text{b}}} ~
| |
− | \operatorname{d}\underline{\underline{\text{u}}} | |
− | \rangle
| |
| \\[4pt] | | \\[4pt] |
− | \langle \operatorname{d}* \rangle | + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 60.2} ~~ \operatorname{LIR}_3 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Transition}\!</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \operatorname{d}! | + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}\underline{\underline{\text{a}}} \cdot | + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
− | \operatorname{d}\underline{\underline{\text{i}}} ~ ! | + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}\underline{\underline{\text{b}}} \cdot
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
− | \operatorname{d}\underline{\underline{\text{u}}} ~ ! | |
− | \\[4pt] | |
− | \operatorname{d}*
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1
| + | ({\langle\underline{\underline{\text{a}}}\rangle}_Y, |
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X) |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_{\text{ai}} | + | ({\langle\underline{\underline{\text{i}}}\rangle}_Y, |
− | \\[4pt] | + | {\langle\underline{\underline{\text{A}}}\rangle}_X) |
− | \operatorname{d}_{\text{bu}} | + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | ({\langle\underline{\underline{\text{b}}}\rangle}_Y, |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X) |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_{\text{ai}} * \operatorname{d}_{\text{bu}} | + | ({\langle\underline{\underline{\text{u}}}\rangle}_Y, |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 6,507: |
Line 6,104: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 70.2} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{B} (V_4)\!</math> | + | <math>\text{Table 60.3} ~~ \operatorname{LIR}_3 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> |
− | |- style="background:#f0f0ff"
| + | |- style="height:40px; background:#f0f0ff" |
− | | width="16%" | <math>\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}</math>
| + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="36%" | <math>\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}</math> | + | | width="33%" | <math>\text{Interpretant}\!</math> |
− | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{List} \end{matrix}</math> | + | | width="33%" | <math>\text{Transition}\!</math> |
− | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}</math> | |
− | | width="16%" | <math>\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}</math> | |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | r
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | s
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | t
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\operatorname{d}\underline{\underline{\text{a}}})
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
− | (\operatorname{d}\underline{\underline{\text{b}}})
| |
− | (\operatorname{d}\underline{\underline{\text{i}}})
| |
− | (\operatorname{d}\underline{\underline{\text{u}}})
| |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}\underline{\underline{\text{a}}}~
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
− | (\operatorname{d}\underline{\underline{\text{b}}})
| |
− | (\operatorname{d}\underline{\underline{\text{i}}})
| |
− | ~\operatorname{d}\underline{\underline{\text{u}}}~
| |
| \\[4pt] | | \\[4pt] |
− | (\operatorname{d}\underline{\underline{\text{a}}})
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
− | ~\operatorname{d}\underline{\underline{\text{b}}}~
| |
− | ~\operatorname{d}\underline{\underline{\text{i}}}~
| |
− | (\operatorname{d}\underline{\underline{\text{u}}})
| |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}\underline{\underline{\text{a}}}~
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
− | ~\operatorname{d}\underline{\underline{\text{b}}}~
| |
− | ~\operatorname{d}\underline{\underline{\text{i}}}~
| |
− | ~\operatorname{d}\underline{\underline{\text{u}}}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \langle \operatorname{d}! \rangle
| + | 0_{\operatorname{d}Y} |
| \\[4pt] | | \\[4pt] |
− | \langle | + | {\langle |
− | \operatorname{d}\underline{\underline{\text{a}}} ~ | + | \operatorname{d}\underline{\underline{\text{a}}} |
− | \operatorname{d}\underline{\underline{\text{u}}} | + | ~ |
− | \rangle | + | \operatorname{d}\underline{\underline{\text{i}}} |
| + | \rangle}_{\operatorname{d}Y} |
| \\[4pt] | | \\[4pt] |
− | \langle | + | {\langle |
− | \operatorname{d}\underline{\underline{\text{b}}} ~ | + | \operatorname{d}\underline{\underline{\text{a}}} |
| + | ~ |
| \operatorname{d}\underline{\underline{\text{i}}} | | \operatorname{d}\underline{\underline{\text{i}}} |
− | \rangle | + | \rangle}_{\operatorname{d}Y} |
| \\[4pt] | | \\[4pt] |
− | \langle \operatorname{d}* \rangle
| + | 0_{\operatorname{d}Y} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \operatorname{d}! | + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}\underline{\underline{\text{a}}} \cdot | + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
− | \operatorname{d}\underline{\underline{\text{u}}} ~ !
| |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}\underline{\underline{\text{b}}} \cdot | + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
− | \operatorname{d}\underline{\underline{\text{i}}} ~ !
| |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}* | + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_{\text{au}} | + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_{\text{bi}} | + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_{\text{au}} * \operatorname{d}_{\text{bi}} | + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |} | + | | valign="bottom" | |
− | | + | <math>\begin{matrix} |
− | <br> | + | 0_{\operatorname{d}Y} |
− | | + | \\[4pt] |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{u}}} |
| + | \rangle}_{\operatorname{d}Y} |
| + | \\[4pt] |
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{u}}} |
| + | \rangle}_{\operatorname{d}Y} |
| + | \\[4pt] |
| + | 0_{\operatorname{d}Y} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 70.3} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{C} (V_4)\!</math> | + | <math>\text{Table 61.1} ~~ \operatorname{LIR}_3 (L_\text{B}) : \text{Lateral Representation of} ~ L_\text{B}\!</math> |
− | |- style="background:#f0f0ff" | + | |- style="height:40px; background:#f0f0ff" |
− | | width="16%" | <math>\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}</math> | + | | width="33%" | <math>\text{Object}\!</math> |
− | | width="36%" | <math>\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{List} \end{matrix}</math> | + | | width="33%" | <math>\text{Interpretant}\!</math> |
− | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}</math>
| |
− | | width="16%" | <math>\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}</math>
| |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | r
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | s
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | t
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\operatorname{d}\text{m})
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
− | (\operatorname{d}\text{n})
| |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}\text{m}~
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
− | (\operatorname{d}\text{n})
| |
| \\[4pt] | | \\[4pt] |
− | (\operatorname{d}\text{m})
| + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
− | ~\operatorname{d}\text{n}~
| |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}\text{m}~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
− | ~\operatorname{d}\text{n}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \langle\operatorname{d}!\rangle | + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \langle\operatorname{d}\text{m}\rangle | + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \langle\operatorname{d}\text{n}\rangle | + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \langle\operatorname{d}*\rangle | + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \operatorname{d}! | + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}\text{m}! | + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}\text{n}! | + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}* | + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_{\text{m}} | + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_{\text{n}} | + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_{\text{m}} * \operatorname{d}_{\text{n}} | + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 6,659: |
Line 6,266: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 71.1} ~~ \text{The Differential Group} ~ G = V_4\!</math> | + | <math>\text{Table 61.2} ~~ \operatorname{LIR}_3 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> |
− | |- style="background:#f0f0ff"
| + | |- style="height:40px; background:#f0f0ff" |
− | | width="16%" | <math>\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}</math>
| + | | width="33%" | <math>\text{Object}\!</math> |
− | | width="36%" | <math>\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{List} \end{matrix}</math> | + | | width="33%" | <math>\text{Transition}\!</math> |
− | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}</math> | |
− | | width="16%" | <math>\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}</math> | |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | r
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | s
| + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
− | \\[4pt] | |
− | t
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\operatorname{d}\text{m}) | + | ({\langle\underline{\underline{\text{a}}}\rangle}_Y, |
− | (\operatorname{d}\text{n})
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X) |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}\text{m}~
| + | ({\langle\underline{\underline{\text{u}}}\rangle}_Y, |
− | (\operatorname{d}\text{n})
| + | {\langle\underline{\underline{\text{A}}}\rangle}_X) |
− | \\[4pt]
| |
− | (\operatorname{d}\text{m})
| |
− | ~\operatorname{d}\text{n}~
| |
− | \\[4pt] | |
− | ~\operatorname{d}\text{m}~
| |
− | ~\operatorname{d}\text{n}~
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \langle\operatorname{d}!\rangle | + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
| \\[4pt] | | \\[4pt] |
− | \langle\operatorname{d}\text{m}\rangle | + | {\langle\underline{\underline{\text{B}}}\rangle}_X |
− | \\[4pt]
| |
− | \langle\operatorname{d}\text{n}\rangle
| |
− | \\[4pt]
| |
− | \langle\operatorname{d}*\rangle
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \operatorname{d}! | + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}\text{m}! | + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
− | \\[4pt] | |
− | \operatorname{d}\text{n}!
| |
− | \\[4pt]
| |
− | \operatorname{d}*
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1
| + | ({\langle\underline{\underline{\text{b}}}\rangle}_Y, |
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X) |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_{\text{m}} | + | ({\langle\underline{\underline{\text{i}}}\rangle}_Y, |
− | \\[4pt]
| + | {\langle\underline{\underline{\text{B}}}\rangle}_X) |
− | \operatorname{d}_{\text{n}}
| |
− | \\[4pt] | |
− | \operatorname{d}_{\text{m}} * \operatorname{d}_{\text{n}} | |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 6,727: |
Line 6,319: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| |+ style="height:30px" | | | |+ style="height:30px" | |
− | <math>\text{Table 71.2} ~~ \text{Cosets of} ~ G_\text{m} ~ \text{in} ~ G\!</math> | + | <math>\text{Table 61.3} ~~ \operatorname{LIR}_3 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math> |
− | |- style="background:#f0f0ff" | + | |- style="height:40px; background:#f0f0ff" |
− | | width="25%" | <math>\text{Group Coset}\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="25%" | <math>\text{Logical Coset}\!</math>
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
− | | width="25%" | <math>\text{Logical Element}\!</math> | + | | width="33%" | <math>\text{Transition}\!</math> |
− | | width="25%" | <math>\text{Group Element}\!</math> | |
| |- | | |- |
− | | <math>G_\text{m}\!</math> | + | | valign="bottom" | |
− | | <math>(\operatorname{d}\text{m})\!</math>
| |
− | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\operatorname{d}\text{m})(\operatorname{d}\text{n})
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | (\operatorname{d}\text{m})~\operatorname{d}\text{n}~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | 1
| |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_\text{n} | + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |- | + | | valign="bottom" | |
− | | <math>G_\text{m} * \operatorname{d}_\text{m}\!</math>
| |
− | | <math>\operatorname{d}\text{m}\!</math>
| |
− | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~\operatorname{d}\text{m}~(\operatorname{d}\text{n})
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{a}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}\text{m}~~\operatorname{d}\text{n}~
| + | {\langle\underline{\underline{\text{u}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | | + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \operatorname{d}_\text{m} | + | 0_{\operatorname{d}Y} |
| + | \\[4pt] |
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{a}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{u}}} |
| + | \rangle}_{\operatorname{d}Y} |
| + | \\[4pt] |
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{a}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{u}}} |
| + | \rangle}_{\operatorname{d}Y} |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_\text{n} * \operatorname{d}_\text{m}
| + | 0_{\operatorname{d}Y} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
| |
− | |+ style="height:30px" |
| |
− | <math>\text{Table 71.3} ~~ \text{Cosets of} ~ G_\text{n} ~ \text{in} ~ G\!</math>
| |
− | |- style="background:#f0f0ff"
| |
− | | width="25%" | <math>\text{Group Coset}\!</math>
| |
− | | width="25%" | <math>\text{Logical Coset}\!</math>
| |
− | | width="25%" | <math>\text{Logical Element}\!</math>
| |
− | | width="25%" | <math>\text{Group Element}\!</math>
| |
| |- | | |- |
− | | <math>G_\text{n}\!</math> | + | | valign="bottom" | |
− | | <math>(\operatorname{d}\text{n})\!</math>
| |
− | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\operatorname{d}\text{m})(\operatorname{d}\text{n})
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}\text{m}~(\operatorname{d}\text{n})
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | | + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{b}}}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\underline{\underline{\text{i}}}\rangle}_Y |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1
| + | 0_{\operatorname{d}Y} |
| + | \\[4pt] |
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{i}}} |
| + | \rangle}_{\operatorname{d}Y} |
| + | \\[4pt] |
| + | {\langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} |
| + | ~ |
| + | \operatorname{d}\underline{\underline{\text{i}}} |
| + | \rangle}_{\operatorname{d}Y} |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_\text{m} | + | 0_{\operatorname{d}Y} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 62.1} ~~ \text{Analytic Codes for Object Features}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Category}\!</math> |
| + | | width="33%" | <math>\text{Mnemonic}\!</math> |
| + | | width="33%" | <math>\text{Code}\!</math> |
| |- | | |- |
− | | <math>G_\text{n} * \operatorname{d}_\text{n}\!</math> | + | | |
− | | <math>\operatorname{d}\text{n}\!</math>
| + | <math>\begin{array}{l} |
| + | \text{Self} |
| + | \\[4pt] |
| + | \text{Other} |
| + | \end{array}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (\operatorname{d}\text{m})~\operatorname{d}\text{n}~
| + | \text{self} |
| \\[4pt] | | \\[4pt] |
− | ~\operatorname{d}\text{m}~~\operatorname{d}\text{n}~
| + | \text{(self)} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \operatorname{d}_\text{n}
| + | \text{s} |
| \\[4pt] | | \\[4pt] |
− | \operatorname{d}_\text{m} * \operatorname{d}_\text{n}
| + | \text{(s)} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 6,812: |
Line 6,439: |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 72.1} ~~ \text{Sign Relation of Interpreter A}\!</math> | + | |+ style="height:30px" | |
| + | <math>\text{Table 62.2} ~~ \text{Analytic Codes for Semantic Features}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math> | + | | width="33%" | <math>\text{Category}\!</math> |
− | | width="33%" | <math>\text{Sign}\!</math> | + | | width="33%" | <math>\text{Mnemonic}\!</math> |
− | | width="33%" | <math>\text{Interpretant}\!</math> | + | | width="33%" | <math>\text{Code}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | |
| + | <math>\begin{array}{l} |
| + | \text{1st Person} |
| + | \\[4pt] |
| + | \text{2nd Person} |
| + | \end{array}</math> |
| + | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | \text{my} |
− | \\ | + | \\[4pt] |
− | \text{A} | + | \text{(my)} |
− | \\
| |
− | \text{A}
| |
− | \\
| |
− | \text{A}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" |
| + | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| + | \text{m} |
− | \\
| + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| + | \text{(m)} |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| |
− | \\ | |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 62.3} ~~ \text{Analytic Codes for Syntactic Features}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Category}\!</math> |
| + | | width="33%" | <math>\text{Mnemonic}\!</math> |
| + | | width="33%" | <math>\text{Code}\!</math> |
| |- | | |- |
− | | valign="bottom" | | + | | |
| + | <math>\begin{array}{l} |
| + | \text{Noun} |
| + | \\[4pt] |
| + | \text{Pronoun} |
| + | \end{array}</math> |
| + | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | \text{name} |
− | \\ | + | \\[4pt] |
− | \text{B} | + | \text{(name)} |
− | \\
| |
− | \text{B}
| |
− | \\
| |
− | \text{B}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" |
| + | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | \text{n} |
− | \\
| + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | \text{(n)} |
− | \\
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| |
− | \\ | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 6,883: |
Line 6,498: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ style="height:30px" | <math>\text{Table 72.2} ~~ \text{Dyadic Projection} ~ L(\text{A})_{OS}\!</math> | + | |+ style="height:30px" | |
− | |- style="height:40px; background:#f0f0ff" | + | <math>\text{Table 63.} ~~ \text{Analytic Codes for Interpreter A}\!</math> |
− | | width="50%" | <math>\text{Object}\!</math> | + | |- style="background:#f0f0ff" |
− | | width="50%" | <math>\text{Sign}\!</math> | + | | width="16%" | <math>\text{Name}\!</math> |
| + | | width="16%" | <math>\text{Vector}\!</math> |
| + | | width="26%" | <math>\text{Conjunct Term}\!</math> |
| + | | width="26%" | <math>\text{Mnemonic}\!</math> |
| + | | width="16%" | <math>\text{Code}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \text{A} | | \text{A} |
− | \\ | + | \\[4pt] |
− | \text{A} | + | \text{B} |
− | \end{matrix}</math> | + | \\[4pt] |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
| {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \\ | + | \\[4pt] |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\[4pt] |
| {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\[4pt] |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | {1}_X |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {0}_X |
| + | \\[4pt] |
| + | {11}_Y |
| + | \\[4pt] |
| + | {01}_Y |
| + | \\[4pt] |
| + | {10}_Y |
| + | \\[4pt] |
| + | {00}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | ~x_1~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | (x_1) |
| + | \\[4pt] |
| + | ~y_1~~y_2~ |
| + | \\[4pt] |
| + | (y_1)~y_2~ |
| + | \\[4pt] |
| + | ~y_1~(y_2) |
| + | \\[4pt] |
| + | (y_1)(y_2) |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%"
| |
− | |+ style="height:30px" | <math>\text{Table 72.3} ~~ \text{Dyadic Projection} ~ L(\text{A})_{OI}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | width="50%" | <math>\text{Object}\!</math>
| |
− | | width="50%" | <math>\text{Interpretant}\!</math>
| |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | ~\text{self}~ |
− | \\ | + | \\[4pt] |
− | \text{A} | + | (\text{self}) |
| + | \\[4pt] |
| + | ~\text{my}~~\text{name}~ |
| + | \\[4pt] |
| + | (\text{my})~\text{name}~ |
| + | \\[4pt] |
| + | ~\text{my}~(\text{name}) |
| + | \\[4pt] |
| + | (\text{my})(\text{name}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | ~\text{s}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | (\text{s}) |
| + | \\[4pt] |
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | (\text{m})~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 64.} ~~ \text{Analytic Codes for Interpreter B}\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="16%" | <math>\text{Name}\!</math> |
| + | | width="16%" | <math>\text{Vector}\!</math> |
| + | | width="26%" | <math>\text{Conjunct Term}\!</math> |
| + | | width="26%" | <math>\text{Mnemonic}\!</math> |
| + | | width="16%" | <math>\text{Code}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| + | \text{A} |
| + | \\[4pt] |
| \text{B} | | \text{B} |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
− | \end{matrix}</math> | + | \\[4pt] |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
| {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
− | \\ | + | \\[4pt] |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\[4pt] |
| {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%"
| |
− | |+ style="height:30px" | <math>\text{Table 72.4} ~~ \text{Dyadic Projection} ~ L(\text{A})_{SI}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | width="50%" | <math>\text{Sign}\!</math>
| |
− | | width="50%" | <math>\text{Interpretant}\!</math>
| |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | {0}_X |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | {1}_X |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | {01}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | {11}_Y |
| + | \\[4pt] |
| + | {10}_Y |
| + | \\[4pt] |
| + | {00}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| + | (x_1) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| + | ~x_1~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| + | (y_1)~y_2~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| + | ~y_1~~y_2~ |
| + | \\[4pt] |
| + | ~y_1~(y_2) |
| + | \\[4pt] |
| + | (y_1)(y_2) |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | (\text{self}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | ~\text{self}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | + | (\text{my})~\text{name}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | ~\text{my}~~\text{name}~ |
| + | \\[4pt] |
| + | ~\text{my}~(\text{name}) |
| + | \\[4pt] |
| + | (\text{my})(\text{name}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | (\text{s}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | + | ~\text{s}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | (\text{m})~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 7,005: |
Line 6,667: |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 73.1} ~~ \text{Sign Relation of Interpreter B}\!</math> | + | |+ style="height:30px" | |
| + | <math>\text{Table 65.1} ~~ \operatorname{AIR}_1 (L_\text{A}) : \text{Analytic Representation of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Object}\!</math> | | | width="33%" | <math>\text{Object}\!</math> |
Line 7,013: |
Line 6,676: |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | \text{s} |
− | \\ | + | \\[4pt] |
− | \text{A} | + | \text{s} |
− | \\ | + | \\[4pt] |
− | \text{A} | + | \text{s} |
− | \\ | + | \\[4pt] |
− | \text{A} | + | \text{s} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | ~\text{m}~~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| + | ~\text{m}~~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | ~\text{m}~(\text{n}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | ~\text{m}~(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | ~\text{m}~~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | ~\text{m}~(\text{n}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| + | ~\text{m}~~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | ~\text{m}~(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | (\text{s}) |
− | \\ | + | \\[4pt] |
− | \text{B} | + | (\text{s}) |
− | \\ | + | \\[4pt] |
− | \text{B} | + | (\text{s}) |
− | \\ | + | \\[4pt] |
− | \text{B} | + | (\text{s}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | (\text{m})~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | (\text{m})~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| + | (\text{m})(\text{n}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| + | (\text{m})(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | (\text{m})~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| + | (\text{m})(\text{n}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | (\text{m})~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| + | (\text{m})(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 7,076: |
Line 6,739: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 73.2} ~~ \text{Dyadic Projection} ~ L(\text{B})_{OS}\!</math> | + | |+ style="height:30px" | |
| + | <math>\text{Table 65.2} ~~ \operatorname{AIR}_1 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="50%" | <math>\text{Object}\!</math> | + | | width="33%" | <math>\text{Object}\!</math> |
− | | width="50%" | <math>\text{Sign}\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | \text{s} |
− | \\ | + | \\[4pt] |
− | \text{A} | + | \text{s} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | ~\text{m}~~\text{n}~ \mapsto ~\text{s}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | + | ~\text{m}~(\text{n}) \mapsto ~\text{s}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | (\text{s}) |
− | \\ | + | \\[4pt] |
− | \text{B} | + | (\text{s}) |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | (\text{m})~\text{n}~ |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | (\text{m})~\text{n}~ \mapsto (\text{s}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | (\text{m})(\text{n}) \mapsto (\text{s}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 7,111: |
Line 6,788: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 73.3} ~~ \text{Dyadic Projection} ~ L(\text{B})_{OI}\!</math> | + | |+ style="height:30px" | |
| + | <math>\text{Table 65.3} ~~ \operatorname{AIR}_1 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="50%" | <math>\text{Object}\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="50%" | <math>\text{Interpretant}\!</math> | + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | ~\text{m}~~\text{n}~ |
− | \\ | + | \\[4pt] |
− | \text{A} | + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | ~\text{m}~~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | + | ~\text{m}~(\text{n}) |
| + | \\[4pt] |
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | (\text{dm})(\text{dn}) |
| + | \\[4pt] |
| + | (\text{dm})~\text{dn}~ |
| + | \\[4pt] |
| + | (\text{dm})~\text{dn}~ |
| + | \\[4pt] |
| + | (\text{dm})(\text{dn}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | (\text{m})~\text{n}~ |
− | \\ | + | \\[4pt] |
− | \text{B} | + | (\text{m})~\text{n}~ |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | (\text{m})~\text{n}~ |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) |
| + | \\[4pt] |
| + | (\text{m})~\text{n}~ |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | (\text{dm})(\text{dn}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | (\text{dm})~\text{dn}~ |
| + | \\[4pt] |
| + | (\text{dm})~\text{dn}~ |
| + | \\[4pt] |
| + | (\text{dm})(\text{dn}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 7,146: |
Line 6,861: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 73.4} ~~ \text{Dyadic Projection} ~ L(\text{B})_{SI}\!</math> | + | |+ style="height:30px" | |
| + | <math>\text{Table 66.1} ~~ \operatorname{AIR}_1 (L_\text{B}) : \text{Analytic Representation of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="50%" | <math>\text{Sign}\!</math> | + | | width="33%" | <math>\text{Object}\!</math> |
− | | width="50%" | <math>\text{Interpretant}\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | (\text{s}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | (\text{s}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | + | (\text{s}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} | + | (\text{s}) |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | (\text{m})~\text{n}~ |
| + | \\[4pt] |
| + | (\text{m})~\text{n}~ |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} | + | (\text{m})~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | (\text{m})(\text{n}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime}
| + | (\text{m})~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime}
| + | (\text{m})(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | \text{s} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime}
| + | \text{s} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| + | \text{s} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime}
| + | \text{s} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | ~\text{m}~~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | ~\text{m}~~\text{n}~ |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} | + | ~\text{m}~(\text{n}) |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} | + | ~\text{m}~(\text{n}) |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \\[4pt] |
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 7,197: |
Line 6,934: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 74.1} ~~ \text{Relation} ~ L_0 =\{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 0 \}\!</math> | + | |+ style="height:30px" | |
| + | <math>\text{Table 66.2} ~~ \operatorname{AIR}_1 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>x\!</math> | + | | width="33%" | <math>\text{Object}\!</math> |
− | | width="33%" | <math>y\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>z\!</math> | + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
− | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> | + | | valign="bottom" | |
− | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> | + | <math>\begin{matrix} |
− | | valign="bottom" | <math>\begin{matrix}0\\1\\1\\0\end{matrix}</math> | + | (\text{s}) |
− | |}
| + | \\[4pt] |
− | | + | (\text{s}) |
− | <br>
| + | \end{matrix}</math> |
− | | + | | valign="bottom" | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%"
| + | <math>\begin{matrix} |
− | |+ style="height:30px" | <math>\text{Table 74.2} ~~ \text{Dyadic Projection} ~ (L_0)_{12}\!</math>
| + | (\text{m})~\text{n}~ |
− | |- style="height:40px; background:#f0f0ff"
| + | \\[4pt] |
− | | width="33%" | <math>x\!</math>
| + | (\text{m})(\text{n}) |
− | | width="33%" | <math>y\!</math>
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | (\text{m})~\text{n}~ \mapsto (\text{s}) |
| + | \\[4pt] |
| + | (\text{m})(\text{n}) \mapsto (\text{s}) |
| + | \end{matrix}</math> |
| |- | | |- |
− | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> | + | | valign="bottom" | |
− | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> | + | <math>\begin{matrix} |
| + | \text{s} |
| + | \\[4pt] |
| + | \text{s} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | ~\text{m}~~\text{n}~ \mapsto ~\text{s}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) \mapsto ~\text{s}~ |
| + | \end{matrix}</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 74.3} ~~ \text{Dyadic Projection} ~ (L_0)_{13}\!</math> | + | |+ style="height:30px" | |
| + | <math>\text{Table 66.3} ~~ \operatorname{AIR}_1 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>x\!</math> | + | | width="33%" | <math>\text{Sign}\!</math> |
− | | width="33%" | <math>z\!</math> | + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
− | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> | + | | valign="bottom" | |
− | | valign="bottom" | <math>\begin{matrix}0\\1\\1\\0\end{matrix}</math>
| + | <math>\begin{matrix} |
− | |} | + | (\text{m})~\text{n}~ |
− | | + | \\[4pt] |
− | <br>
| + | (\text{m})~\text{n}~ |
− | | + | \\[4pt] |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%"
| + | (\text{m})(\text{n}) |
− | |+ style="height:30px" | <math>\text{Table 74.4} ~~ \text{Dyadic Projection} ~ (L_0)_{23}\!</math>
| + | \\[4pt] |
− | |- style="height:40px; background:#f0f0ff"
| + | (\text{m})(\text{n}) |
− | | width="33%" | <math>y\!</math>
| + | \end{matrix}</math> |
− | | width="33%" | <math>z\!</math>
| + | | valign="bottom" | |
− | |-
| + | <math>\begin{matrix} |
− | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
| + | (\text{m})~\text{n}~ |
− | | valign="bottom" | <math>\begin{matrix}0\\1\\1\\0\end{matrix}</math> | + | \\[4pt] |
− | |}
| + | (\text{m})(\text{n}) |
− | | + | \\[4pt] |
− | <br>
| + | (\text{m})~\text{n}~ |
− | | + | \\[4pt] |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%"
| + | (\text{m})(\text{n}) |
− | |+ style="height:30px" | <math>\text{Table 75.1} ~~ \text{Relation} ~ L_1 =\{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 1 \}\!</math>
| + | \end{matrix}</math> |
− | |- style="height:40px; background:#f0f0ff"
| + | | valign="bottom" | |
− | | width="33%" | <math>x\!</math>
| + | <math>\begin{matrix} |
− | | width="33%" | <math>y\!</math>
| + | (\text{dm})(\text{dn}) |
− | | width="33%" | <math>z\!</math>
| + | \\[4pt] |
| + | (\text{dm})~\text{dn}~ |
| + | \\[4pt] |
| + | (\text{dm})~\text{dn}~ |
| + | \\[4pt] |
| + | (\text{dm})(\text{dn}) |
| + | \end{matrix}</math> |
| |- | | |- |
− | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> | + | | valign="bottom" | |
− | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> | + | <math>\begin{matrix} |
− | | valign="bottom" | <math>\begin{matrix}1\\0\\0\\1\end{matrix}</math> | + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \\[4pt] |
| + | ~\text{m}~~\text{n}~ |
| + | \\[4pt] |
| + | ~\text{m}~(\text{n}) |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | (\text{dm})(\text{dn}) |
| + | \\[4pt] |
| + | (\text{dm})~\text{dn}~ |
| + | \\[4pt] |
| + | (\text{dm})~\text{dn}~ |
| + | \\[4pt] |
| + | (\text{dm})(\text{dn}) |
| + | \end{matrix}</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 75.2} ~~ \text{Dyadic Projection} ~ (L_1)_{12}\!</math> | + | |+ style="height:30px" | |
− | |- style="height:40px; background:#f0f0ff"
| + | <math>\text{Table 67.1} ~~ \operatorname{AIR}_2 (L_\text{A}) : \text{Analytic Representation of} ~ L_\text{A}\!</math> |
− | | width="33%" | <math>x\!</math>
| |
− | | width="33%" | <math>y\!</math>
| |
− | |-
| |
− | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math>
| |
− | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
| |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%"
| |
− | |+ style="height:30px" | <math>\text{Table 75.3} ~~ \text{Dyadic Projection} ~ (L_1)_{13}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | width="33%" | <math>x\!</math>
| |
− | | width="33%" | <math>z\!</math>
| |
− | |-
| |
− | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math>
| |
− | | valign="bottom" | <math>\begin{matrix}1\\0\\0\\1\end{matrix}</math>
| |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%"
| |
− | |+ style="height:30px" | <math>\text{Table 75.4} ~~ \text{Dyadic Projection} ~ (L_1)_{23}\!</math>
| |
− | |- style="height:40px; background:#f0f0ff"
| |
− | | width="33%" | <math>y\!</math>
| |
− | | width="33%" | <math>z\!</math>
| |
− | |-
| |
− | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
| |
− | | valign="bottom" | <math>\begin{matrix}1\\0\\0\\1\end{matrix}</math>
| |
− | |}
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
| |
− | |+ style="height:30px" | <math>\text{Table 76.} ~~ \text{Attributed Sign Relation for Interpreters A and B}\!</math>
| |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
| | width="33%" | <math>\text{Object}\!</math> | | | width="33%" | <math>\text{Object}\!</math> |
Line 7,306: |
Line 7,066: |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | {\langle * \rangle}_X |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle * \rangle}_X |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle * \rangle}_X |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle * \rangle}_X |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}
| + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} | + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} | + | {\langle\text{m}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}
| + | {\langle\text{m}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}
| + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}
| + | {\langle\text{m}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}
| + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}
| + | {\langle\text{m}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | {\langle ! \rangle}_X |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle ! \rangle}_X |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle ! \rangle}_X |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle ! \rangle}_X |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} | + | {\langle ! \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}
| + | {\langle ! \rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}
| + | {\langle ! \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}
| + | {\langle ! \rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 67.2} ~~ \operatorname{AIR}_2 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A}
| + | {\langle * \rangle}_X |
− | \\
| + | \\[4pt] |
− | \text{A} | + | {\langle * \rangle}_X |
− | \\ | |
− | \text{A}
| |
− | \\
| |
− | \text{A} | |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}
| + | {\langle * \rangle}_Y |
− | \\
| + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}
| + | {\langle\text{m}\rangle}_Y |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}
| |
− | \\ | |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{array}{r} |
| + | {\langle * \rangle}_Y \mapsto {\langle * \rangle}_X |
| + | \\[4pt] |
| + | {\langle\text{m}\rangle}_Y \mapsto {\langle * \rangle}_X |
| + | \end{array}</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}
| + | {\langle ! \rangle}_X |
− | \\
| + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}
| + | {\langle ! \rangle}_X |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}
| |
− | \\ | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} | |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | {\langle\text{n}\rangle}_Y |
− | \\
| + | \\[4pt] |
− | \text{A} | + | {\langle ! \rangle}_Y |
− | \\ | |
− | \text{A}
| |
− | \\
| |
− | \text{A} | |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{array}{r} |
| + | {\langle\text{n}\rangle}_Y \mapsto {\langle ! \rangle}_X |
| + | \\[4pt] |
| + | {\langle ! \rangle}_Y \mapsto {\langle ! \rangle}_X |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 67.3} ~~ \operatorname{AIR}_2 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | | width="33%" | <math>\text{Transition}\!</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}
| + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} | + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} | + | {\langle\text{m}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}
| + | {\langle\text{m}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}
| + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}
| + | {\langle\text{m}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}
| + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}
| + | {\langle\text{m}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} | + | {\langle ! \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}}
| + | {\langle ! \rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}
| + | {\langle ! \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}
| + | {\langle ! \rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 68.1} ~~ \operatorname{AIR}_2 (L_\text{B}) : \text{Analytic Representation of} ~ L_\text{B}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}
| + | {\langle ! \rangle}_X |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}
| + | {\langle ! \rangle}_X |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}
| + | {\langle ! \rangle}_X |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}
| + | {\langle ! \rangle}_X |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} | + | {\langle ! \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}
| + | {\langle ! \rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {\langle ! \rangle}_Y |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | \text{B} | + | {\langle ! \rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} | + | {\langle * \rangle}_X |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}
| + | {\langle * \rangle}_X |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}
| + | {\langle * \rangle}_X |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}
| + | {\langle * \rangle}_X |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle * \rangle}_Y |
| + | \\[4pt] |
| + | {\langle * \rangle}_Y |
| + | \\[4pt] |
| + | {\langle\text{m}\rangle}_Y |
| + | \\[4pt] |
| + | {\langle\text{m}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}}
| + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}
| + | {\langle\text{m}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}
| + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}
| + | {\langle\text{m}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 68.2} ~~ \operatorname{AIR}_2 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B}
| + | {\langle ! \rangle}_X |
− | \\
| + | \\[4pt] |
− | \text{B} | + | {\langle ! \rangle}_X |
− | \\ | |
− | \text{B}
| |
− | \\
| |
− | \text{B} | |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} | + | {\langle ! \rangle}_Y |
− | \\ | + | \end{matrix}</math> |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}
| + | | valign="bottom" | |
− | \\ | + | <math>\begin{array}{r} |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} | + | {\langle\text{n}\rangle}_Y \mapsto {\langle ! \rangle}_X |
| + | \\[4pt] |
| + | {\langle ! \rangle}_Y \mapsto {\langle ! \rangle}_X |
| + | \end{array}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {\langle * \rangle}_X |
| + | \\[4pt] |
| + | {\langle * \rangle}_X |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}}
| + | {\langle * \rangle}_Y |
− | \\
| + | \\[4pt] |
− | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}
| + | {\langle\text{m}\rangle}_Y |
− | \\
| |
− | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}
| |
− | \\ | |
− | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{array}{r} |
| + | {\langle * \rangle}_Y \mapsto {\langle * \rangle}_X |
| + | \\[4pt] |
| + | {\langle\text{m}\rangle}_Y \mapsto {\langle * \rangle}_X |
| + | \end{array}</math> |
| |} | | |} |
| | | |
Line 7,556: |
Line 7,374: |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table 77.} ~~ \text{Adequated Sign Relation for Interpreters A and B}\!</math> | + | |+ style="height:30px" | |
| + | <math>\text{Table 68.3} ~~ \operatorname{AIR}_2 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!</math> |
| |- style="height:40px; background:#f0f0ff" | | |- style="height:40px; background:#f0f0ff" |
− | | width="33%" | <math>\text{Object}\!</math>
| |
| | width="33%" | <math>\text{Sign}\!</math> | | | width="33%" | <math>\text{Sign}\!</math> |
| | width="33%" | <math>\text{Interpretant}\!</math> | | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | | width="33%" | <math>\text{Transition}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle ! \rangle}_Y |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle ! \rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | {\langle ! \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | {\langle\text{n}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | {\langle ! \rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle\text{m}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | \text{A} | + | {\langle\text{m}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | {\langle\text{m}\rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | {\langle * \rangle}_Y |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | {\langle\text{m}\rangle}_Y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 69.} ~~ \text{Schematism of Sequential Inference}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Initial Premiss}\!</math> |
| + | | width="33%" | <math>\text{Differential Premiss}\!</math> |
| + | | width="33%" | <math>\text{Inferred Sequel}\!</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A} | + | ~x~ ~\operatorname{at}~ t |
− | \\ | + | \\[4pt] |
− | \text{A} | + | ~x~ ~\operatorname{at}~ t |
− | \\ | + | \\[4pt] |
− | \text{A} | + | (x) ~\operatorname{at}~ t |
− | \\ | + | \\[4pt] |
− | \text{A} | + | (x) ~\operatorname{at}~ t |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | ~\operatorname{d}x~ ~\operatorname{at}~ t |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | (\operatorname{d}x) ~\operatorname{at}~ t |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | ~\operatorname{d}x~ ~\operatorname{at}~ t |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | (\operatorname{d}x) ~\operatorname{at}~ t |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | (x) ~\operatorname{at}~ t' |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | ~x~ ~\operatorname{at}~ t' |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | ~x~ ~\operatorname{at}~ t' |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | (x) ~\operatorname{at}~ t' |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 70.1} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{A} (V_4)\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="16%" | <math>\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}</math> |
| + | | width="36%" | <math>\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{List} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{A}
| + | 1 |
− | \\ | + | \\[4pt] |
− | \text{A}
| + | r |
− | \\ | + | \\[4pt] |
− | \text{A}
| + | s |
− | \\ | + | \\[4pt] |
− | \text{A}
| + | t |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | (\operatorname{d}\underline{\underline{\text{a}}}) |
− | \\ | + | (\operatorname{d}\underline{\underline{\text{b}}}) |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | (\operatorname{d}\underline{\underline{\text{i}}}) |
− | \\ | + | (\operatorname{d}\underline{\underline{\text{u}}}) |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | \\[4pt] |
− | \\ | + | ~\operatorname{d}\underline{\underline{\text{a}}}~ |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | (\operatorname{d}\underline{\underline{\text{b}}}) |
| + | ~\operatorname{d}\underline{\underline{\text{i}}}~ |
| + | (\operatorname{d}\underline{\underline{\text{u}}}) |
| + | \\[4pt] |
| + | (\operatorname{d}\underline{\underline{\text{a}}}) |
| + | ~\operatorname{d}\underline{\underline{\text{b}}}~ |
| + | (\operatorname{d}\underline{\underline{\text{i}}}) |
| + | ~\operatorname{d}\underline{\underline{\text{u}}}~ |
| + | \\[4pt] |
| + | ~\operatorname{d}\underline{\underline{\text{a}}}~ |
| + | ~\operatorname{d}\underline{\underline{\text{b}}}~ |
| + | ~\operatorname{d}\underline{\underline{\text{i}}}~ |
| + | ~\operatorname{d}\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | \langle \operatorname{d}! \rangle |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | \langle |
− | \\ | + | \operatorname{d}\underline{\underline{\text{a}}} ~ |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | \operatorname{d}\underline{\underline{\text{i}}} |
− | \\ | + | \rangle |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | \\[4pt] |
| + | \langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} ~ |
| + | \operatorname{d}\underline{\underline{\text{u}}} |
| + | \rangle |
| + | \\[4pt] |
| + | \langle \operatorname{d}* \rangle |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | \operatorname{d}! |
− | \\ | + | \\[4pt] |
− | \text{B} | + | \operatorname{d}\underline{\underline{\text{a}}} \cdot |
− | \\ | + | \operatorname{d}\underline{\underline{\text{i}}} ~ ! |
− | \text{B} | + | \\[4pt] |
− | \\ | + | \operatorname{d}\underline{\underline{\text{b}}} \cdot |
− | \text{B} | + | \operatorname{d}\underline{\underline{\text{u}}} ~ ! |
| + | \\[4pt] |
| + | \operatorname{d}* |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | 1 |
− | \\
| + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | \operatorname{d}_{\text{ai}} |
− | \\
| + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | \operatorname{d}_{\text{bu}} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | \operatorname{d}_{\text{ai}} * \operatorname{d}_{\text{bu}} |
− | \end{matrix}</math>
| |
− | | valign="bottom" |
| |
− | <math>\begin{matrix}
| |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}
| |
− | \\ | |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} | |
− | \\
| |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}
| |
− | \\
| |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 70.2} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{B} (V_4)\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="16%" | <math>\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}</math> |
| + | | width="36%" | <math>\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{List} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}</math> |
| |- | | |- |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B}
| + | 1 |
− | \\ | + | \\[4pt] |
− | \text{B}
| + | r |
− | \\ | + | \\[4pt] |
− | \text{B}
| + | s |
− | \\ | + | \\[4pt] |
− | \text{B}
| + | t |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | (\operatorname{d}\underline{\underline{\text{a}}}) |
− | \\ | + | (\operatorname{d}\underline{\underline{\text{b}}}) |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | (\operatorname{d}\underline{\underline{\text{i}}}) |
− | \\ | + | (\operatorname{d}\underline{\underline{\text{u}}}) |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | \\[4pt] |
− | \\ | + | ~\operatorname{d}\underline{\underline{\text{a}}}~ |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | (\operatorname{d}\underline{\underline{\text{b}}}) |
| + | (\operatorname{d}\underline{\underline{\text{i}}}) |
| + | ~\operatorname{d}\underline{\underline{\text{u}}}~ |
| + | \\[4pt] |
| + | (\operatorname{d}\underline{\underline{\text{a}}}) |
| + | ~\operatorname{d}\underline{\underline{\text{b}}}~ |
| + | ~\operatorname{d}\underline{\underline{\text{i}}}~ |
| + | (\operatorname{d}\underline{\underline{\text{u}}}) |
| + | \\[4pt] |
| + | ~\operatorname{d}\underline{\underline{\text{a}}}~ |
| + | ~\operatorname{d}\underline{\underline{\text{b}}}~ |
| + | ~\operatorname{d}\underline{\underline{\text{i}}}~ |
| + | ~\operatorname{d}\underline{\underline{\text{u}}}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | \langle \operatorname{d}! \rangle |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | \langle |
− | \\ | + | \operatorname{d}\underline{\underline{\text{a}}} ~ |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | \operatorname{d}\underline{\underline{\text{u}}} |
− | \\ | + | \rangle |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | \\[4pt] |
| + | \langle |
| + | \operatorname{d}\underline{\underline{\text{b}}} ~ |
| + | \operatorname{d}\underline{\underline{\text{i}}} |
| + | \rangle |
| + | \\[4pt] |
| + | \langle \operatorname{d}* \rangle |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | \operatorname{d}! |
− | \\ | + | \\[4pt] |
− | \text{B} | + | \operatorname{d}\underline{\underline{\text{a}}} \cdot |
− | \\ | + | \operatorname{d}\underline{\underline{\text{u}}} ~ ! |
− | \text{B} | + | \\[4pt] |
− | \\ | + | \operatorname{d}\underline{\underline{\text{b}}} \cdot |
− | \text{B} | + | \operatorname{d}\underline{\underline{\text{i}}} ~ ! |
| + | \\[4pt] |
| + | \operatorname{d}* |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | 1 |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | \operatorname{d}_{\text{au}} |
− | \\ | + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | \operatorname{d}_{\text{bi}} |
− | \\
| + | \\[4pt] |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | \operatorname{d}_{\text{au}} * \operatorname{d}_{\text{bi}} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | valign="bottom" | | + | |} |
− | <math>\begin{matrix} | + | |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | <br> |
− | \\ | + | |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | \\ | + | |+ style="height:30px" | |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}
| + | <math>\text{Table 70.3} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{C} (V_4)\!</math> |
− | \\ | + | |- style="background:#f0f0ff" |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | | width="16%" | <math>\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}</math> |
| + | | width="36%" | <math>\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{List} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | 1 |
| + | \\[4pt] |
| + | r |
| + | \\[4pt] |
| + | s |
| + | \\[4pt] |
| + | t |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}\text{m}) |
| + | (\operatorname{d}\text{n}) |
| + | \\[4pt] |
| + | ~\operatorname{d}\text{m}~ |
| + | (\operatorname{d}\text{n}) |
| + | \\[4pt] |
| + | (\operatorname{d}\text{m}) |
| + | ~\operatorname{d}\text{n}~ |
| + | \\[4pt] |
| + | ~\operatorname{d}\text{m}~ |
| + | ~\operatorname{d}\text{n}~ |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |-
| |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{B} | + | \langle\operatorname{d}!\rangle |
− | \\ | + | \\[4pt] |
− | \text{B} | + | \langle\operatorname{d}\text{m}\rangle |
− | \\ | + | \\[4pt] |
− | \text{B} | + | \langle\operatorname{d}\text{n}\rangle |
− | \\ | + | \\[4pt] |
− | \text{B} | + | \langle\operatorname{d}*\rangle |
| \end{matrix}</math> | | \end{matrix}</math> |
| | valign="bottom" | | | | valign="bottom" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| + | \operatorname{d}! |
| + | \\[4pt] |
| + | \operatorname{d}\text{m}! |
| + | \\[4pt] |
| + | \operatorname{d}\text{n}! |
| + | \\[4pt] |
| + | \operatorname{d}* |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | 1 |
| + | \\[4pt] |
| + | \operatorname{d}_{\text{m}} |
| + | \\[4pt] |
| + | \operatorname{d}_{\text{n}} |
| + | \\[4pt] |
| + | \operatorname{d}_{\text{m}} * \operatorname{d}_{\text{n}} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 71.1} ~~ \text{The Differential Group} ~ G = V_4\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="16%" | <math>\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}</math> |
| + | | width="36%" | <math>\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{List} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}</math> |
| + | | width="16%" | <math>\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | 1 |
| + | \\[4pt] |
| + | r |
| + | \\[4pt] |
| + | s |
| + | \\[4pt] |
| + | t |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}\text{m}) |
| + | (\operatorname{d}\text{n}) |
| + | \\[4pt] |
| + | ~\operatorname{d}\text{m}~ |
| + | (\operatorname{d}\text{n}) |
| + | \\[4pt] |
| + | (\operatorname{d}\text{m}) |
| + | ~\operatorname{d}\text{n}~ |
| + | \\[4pt] |
| + | ~\operatorname{d}\text{m}~ |
| + | ~\operatorname{d}\text{n}~ |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \langle\operatorname{d}!\rangle |
| + | \\[4pt] |
| + | \langle\operatorname{d}\text{m}\rangle |
| + | \\[4pt] |
| + | \langle\operatorname{d}\text{n}\rangle |
| + | \\[4pt] |
| + | \langle\operatorname{d}*\rangle |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}! |
| + | \\[4pt] |
| + | \operatorname{d}\text{m}! |
| + | \\[4pt] |
| + | \operatorname{d}\text{n}! |
| + | \\[4pt] |
| + | \operatorname{d}* |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | 1 |
| + | \\[4pt] |
| + | \operatorname{d}_{\text{m}} |
| + | \\[4pt] |
| + | \operatorname{d}_{\text{n}} |
| + | \\[4pt] |
| + | \operatorname{d}_{\text{m}} * \operatorname{d}_{\text{n}} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 71.2} ~~ \text{Cosets of} ~ G_\text{m} ~ \text{in} ~ G\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="25%" | <math>\text{Group Coset}\!</math> |
| + | | width="25%" | <math>\text{Logical Coset}\!</math> |
| + | | width="25%" | <math>\text{Logical Element}\!</math> |
| + | | width="25%" | <math>\text{Group Element}\!</math> |
| + | |- |
| + | | <math>G_\text{m}\!</math> |
| + | | <math>(\operatorname{d}\text{m})\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}\text{m})(\operatorname{d}\text{n}) |
| + | \\[4pt] |
| + | (\operatorname{d}\text{m})~\operatorname{d}\text{n}~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 1 |
| + | \\[4pt] |
| + | \operatorname{d}_\text{n} |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>G_\text{m} * \operatorname{d}_\text{m}\!</math> |
| + | | <math>\operatorname{d}\text{m}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\operatorname{d}\text{m}~(\operatorname{d}\text{n}) |
| + | \\[4pt] |
| + | ~\operatorname{d}\text{m}~~\operatorname{d}\text{n}~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}_\text{m} |
| + | \\[4pt] |
| + | \operatorname{d}_\text{n} * \operatorname{d}_\text{m} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table 71.3} ~~ \text{Cosets of} ~ G_\text{n} ~ \text{in} ~ G\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="25%" | <math>\text{Group Coset}\!</math> |
| + | | width="25%" | <math>\text{Logical Coset}\!</math> |
| + | | width="25%" | <math>\text{Logical Element}\!</math> |
| + | | width="25%" | <math>\text{Group Element}\!</math> |
| + | |- |
| + | | <math>G_\text{n}\!</math> |
| + | | <math>(\operatorname{d}\text{n})\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}\text{m})(\operatorname{d}\text{n}) |
| + | \\[4pt] |
| + | ~\operatorname{d}\text{m}~(\operatorname{d}\text{n}) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 1 |
| + | \\[4pt] |
| + | \operatorname{d}_\text{m} |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>G_\text{n} * \operatorname{d}_\text{n}\!</math> |
| + | | <math>\operatorname{d}\text{n}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}\text{m})~\operatorname{d}\text{n}~ |
| + | \\[4pt] |
| + | ~\operatorname{d}\text{m}~~\operatorname{d}\text{n}~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}_\text{n} |
| + | \\[4pt] |
| + | \operatorname{d}_\text{m} * \operatorname{d}_\text{n} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 72.1} ~~ \text{Sign Relation of Interpreter A}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 72.2} ~~ \text{Dyadic Projection} ~ L(\text{A})_{OS}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="50%" | <math>\text{Object}\!</math> |
| + | | width="50%" | <math>\text{Sign}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 72.3} ~~ \text{Dyadic Projection} ~ L(\text{A})_{OI}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="50%" | <math>\text{Object}\!</math> |
| + | | width="50%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 72.4} ~~ \text{Dyadic Projection} ~ L(\text{A})_{SI}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="50%" | <math>\text{Sign}\!</math> |
| + | | width="50%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 73.1} ~~ \text{Sign Relation of Interpreter B}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 73.2} ~~ \text{Dyadic Projection} ~ L(\text{B})_{OS}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="50%" | <math>\text{Object}\!</math> |
| + | | width="50%" | <math>\text{Sign}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 73.3} ~~ \text{Dyadic Projection} ~ L(\text{B})_{OI}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="50%" | <math>\text{Object}\!</math> |
| + | | width="50%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 73.4} ~~ \text{Dyadic Projection} ~ L(\text{B})_{SI}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="50%" | <math>\text{Sign}\!</math> |
| + | | width="50%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" |
| + | |+ style="height:30px" | <math>\text{Table 74.1} ~~ \text{Relation} ~ L_0 =\{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 0 \}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>x\!</math> |
| + | | width="33%" | <math>y\!</math> |
| + | | width="33%" | <math>z\!</math> |
| + | |- |
| + | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}0\\1\\1\\0\end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 74.2} ~~ \text{Dyadic Projection} ~ (L_0)_{12}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>x\!</math> |
| + | | width="33%" | <math>y\!</math> |
| + | |- |
| + | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 74.3} ~~ \text{Dyadic Projection} ~ (L_0)_{13}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>x\!</math> |
| + | | width="33%" | <math>z\!</math> |
| + | |- |
| + | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}0\\1\\1\\0\end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 74.4} ~~ \text{Dyadic Projection} ~ (L_0)_{23}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>y\!</math> |
| + | | width="33%" | <math>z\!</math> |
| + | |- |
| + | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}0\\1\\1\\0\end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" |
| + | |+ style="height:30px" | <math>\text{Table 75.1} ~~ \text{Relation} ~ L_1 =\{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 1 \}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>x\!</math> |
| + | | width="33%" | <math>y\!</math> |
| + | | width="33%" | <math>z\!</math> |
| + | |- |
| + | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}1\\0\\0\\1\end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 75.2} ~~ \text{Dyadic Projection} ~ (L_1)_{12}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>x\!</math> |
| + | | width="33%" | <math>y\!</math> |
| + | |- |
| + | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 75.3} ~~ \text{Dyadic Projection} ~ (L_1)_{13}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>x\!</math> |
| + | | width="33%" | <math>z\!</math> |
| + | |- |
| + | | valign="bottom" | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}1\\0\\0\\1\end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:50%" |
| + | |+ style="height:30px" | <math>\text{Table 75.4} ~~ \text{Dyadic Projection} ~ (L_1)_{23}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>y\!</math> |
| + | | width="33%" | <math>z\!</math> |
| + | |- |
| + | | valign="bottom" | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | | valign="bottom" | <math>\begin{matrix}1\\0\\0\\1\end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 76.} ~~ \text{Attributed Sign Relation for Interpreters A and B}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} |
| + | \\ |
| + | {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 77.} ~~ \text{Augmented Sign Relation for Interpreters A and B}\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} | | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} |
− | \\ | + | \end{matrix}</math> |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | |- |
− | \\ | + | | valign="bottom" | |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}
| + | <math>\begin{matrix} |
− | \\
| + | \text{B} |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | \\ |
− | \end{matrix}</math> | + | \text{B} |
− | | valign="bottom" |
| + | \\ |
− | <math>\begin{matrix}
| + | \text{B} |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | \\ |
− | \\ | + | \text{B} |
− | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | \end{matrix}</math> |
− | \\ | + | | valign="bottom" | |
− | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} | + | <math>\begin{matrix} |
− | \\ | + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} |
− | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} | + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} |
| + | \\ |
| + | {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 80.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{A})\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 81.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{B})\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle} |
| + | \\ |
| + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 82.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{A} | E_1)\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 83.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{B} | E_1)\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 84.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{A} | E_2)\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table 85.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{B} | E_2)\!</math> |
| + | |- style="height:40px; background:#f0f0ff" |
| + | | width="33%" | <math>\text{Object}\!</math> |
| + | | width="33%" | <math>\text{Sign}\!</math> |
| + | | width="33%" | <math>\text{Interpretant}\!</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | |- |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | {}^{\langle} \text{A} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{B} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{i} {}^{\rangle} |
| + | \\ |
| + | {}^{\langle} \text{u} {}^{\rangle} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{A} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \text{A} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{B} |
| + | \\ |
| + | \text{A} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 7,814: |
Line 9,497: |
| | | |
| ==Current Work== | | ==Current Work== |
− |
| |
− | <br>
| |
− |
| |
− | <pre>
| |
− | Table 78. Sign Process of Interpreter A
| |
− | Object Sign Interpretant
| |
− | A "A" "A"
| |
− | A "A" "i"
| |
− | A "i" "A"
| |
− | A "i" "i"
| |
− | A "B" "A"
| |
− | A "B" "i"
| |
− | A "u" "A"
| |
− | A "u" "i"
| |
− | B "A" "B"
| |
− | B "A" "u"
| |
− | B "i" "B"
| |
− | B "i" "u"
| |
− | B "B" "B"
| |
− | B "B" "u"
| |
− | B "u" "B"
| |
− | B "u" "u"
| |
− | </pre>
| |
− |
| |
− | <br>
| |
− |
| |
− | <pre>
| |
− | Table 79. Sign Process of Interpreter B
| |
− | Object Sign Interpretant
| |
− | A "A" "A"
| |
− | A "A" "u"
| |
− | A "u" "A"
| |
− | A "u" "u"
| |
− | A "B" "A"
| |
− | A "B" "u"
| |
− | A "i" "A"
| |
− | A "i" "u"
| |
− | B "A" "B"
| |
− | B "A" "i"
| |
− | B "u" "B"
| |
− | B "u" "i"
| |
− | B "B" "B"
| |
− | B "B" "i"
| |
− | B "i" "B"
| |
− | B "i" "i"
| |
− | </pre>
| |
− |
| |
− | <br>
| |
− |
| |
− | <pre>
| |
− | Table 80. Reflective Extension Ref1(A)
| |
− | Object Sign Interpretant
| |
− | A <A> <A>
| |
− | A <A> <i>
| |
− | A <i> <A>
| |
− | A <i> <i>
| |
− | B <B> <B>
| |
− | B <B> <u>
| |
− | B <u> <B>
| |
− | B <u> <u>
| |
− | <A> <<A>> <<A>>
| |
− | <B> <<B>> <<B>>
| |
− | <i> <<i>> <<i>>
| |
− | <u> <<u>> <<u>>
| |
− | </pre>
| |
− |
| |
− | <br>
| |
− |
| |
− | <pre>
| |
− | Table 81. Reflective Extension Ref1(B)
| |
− | Object Sign Interpretant
| |
− | A <A> <A>
| |
− | A <A> <u>
| |
− | A <u> <A>
| |
− | A <u> <u>
| |
− | B <B> <B>
| |
− | B <B> <i>
| |
− | B <i> <B>
| |
− | B <i> <i>
| |
− | <A> <<A>> <<A>>
| |
− | <B> <<B>> <<B>>
| |
− | <i> <<i>> <<i>>
| |
− | <u> <<u>> <<u>>
| |
− | </pre>
| |
− |
| |
− | <br>
| |
− |
| |
− | <pre>
| |
− | Table 82. Reflective Extension Ref1(A|E1)
| |
− | Object Sign Interpretant
| |
− | A <A> <A>
| |
− | A <A> <i>
| |
− | A <i> <A>
| |
− | A <i> <i>
| |
− | B <B> <B>
| |
− | B <B> <u>
| |
− | B <u> <B>
| |
− | B <u> <u>
| |
− | <A> <A> <A>
| |
− | <B> <B> <B>
| |
− | <i> <i> <i>
| |
− | <u> <u> <u>
| |
− | </pre>
| |
− |
| |
− | <br>
| |
− |
| |
− | <pre>
| |
− | Table 83. Reflective Extension Ref1(B|E1)
| |
− | Object Sign Interpretant
| |
− | A <A> <A>
| |
− | A <A> <u>
| |
− | A <u> <A>
| |
− | A <u> <u>
| |
− | B <B> <B>
| |
− | B <B> <i>
| |
− | B <i> <B>
| |
− | B <i> <i>
| |
− | <A> <A> <A>
| |
− | <B> <B> <B>
| |
− | <i> <i> <i>
| |
− | <u> <u> <u>
| |
− | </pre>
| |
− |
| |
− | <br>
| |
− |
| |
− | <pre>
| |
− | Table 84. Reflective Extension Ref1(A|E2)
| |
− | Object Sign Interpretant
| |
− | A <A> <A>
| |
− | A <A> <i>
| |
− | A <i> <A>
| |
− | A <i> <i>
| |
− | B <B> <B>
| |
− | B <B> <u>
| |
− | B <u> <B>
| |
− | B <u> <u>
| |
− | <A> A A
| |
− | <B> B B
| |
− | <i> A A
| |
− | <u> B B
| |
− | </pre>
| |
− |
| |
− | <br>
| |
− |
| |
− | <pre>
| |
− | Table 85. Reflective Extension Ref1(B|E2)
| |
− | Object Sign Interpretant
| |
− | A <A> <A>
| |
− | A <A> <u>
| |
− | A <u> <A>
| |
− | A <u> <u>
| |
− | B <B> <B>
| |
− | B <B> <i>
| |
− | B <i> <B>
| |
− | B <i> <i>
| |
− | <A> A A
| |
− | <B> B B
| |
− | <i> B B
| |
− | <u> A A
| |
− | </pre>
| |
| | | |
| <br> | | <br> |