Line 3,185: |
Line 3,185: |
| </pre> | | </pre> |
| | | |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| + | <br><font face="courier new"> |
− | |+ Table 27. Thematization of Bivariate Propositions
| |
− | |- style="background:paleturquoise"
| |
− | |
| |
− | {| align="right" style="background:paleturquoise; text-align:right"
| |
− | | u :
| |
− | |-
| |
− | | v :
| |
− | |}
| |
− | |
| |
− | {| style="background:paleturquoise"
| |
− | | 1 1 0 0
| |
− | |-
| |
− | | 1 0 1 0
| |
− | |}
| |
− | |
| |
− | {| style="background:paleturquoise"
| |
− | | f
| |
− | |-
| |
− | |
| |
− | |}
| |
− | |
| |
− | {| style="background:paleturquoise"
| |
− | | θf
| |
− | |-
| |
− | |
| |
− | |}
| |
− | |
| |
− | {| style="background:paleturquoise"
| |
− | | θf
| |
− | |-
| |
− | |
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>0</sub>
| |
− | |-
| |
− | | f<sub>1</sub>
| |
− | |-
| |
− | | f<sub>2</sub>
| |
− | |-
| |
− | | f<sub>3</sub>
| |
− | |-
| |
− | | f<sub>4</sub>
| |
− | |-
| |
− | | f<sub>5</sub>
| |
− | |-
| |
− | | f<sub>6</sub>
| |
− | |-
| |
− | | f<sub>7</sub>
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>0</sub>
| |
− | |-
| |
− | | f<sub>1</sub>
| |
− | |-
| |
− | | f<sub>2</sub>
| |
− | |-
| |
− | | f<sub>3</sub>
| |
− | |-
| |
− | | f<sub>4</sub>
| |
− | |-
| |
− | | f<sub>5</sub>
| |
− | |-
| |
− | | f<sub>6</sub>
| |
− | |-
| |
− | | f<sub>7</sub>
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>0</sub>
| |
− | |-
| |
− | | f<sub>1</sub>
| |
− | |-
| |
− | | f<sub>2</sub>
| |
− | |-
| |
− | | f<sub>3</sub>
| |
− | |-
| |
− | | f<sub>4</sub>
| |
− | |-
| |
− | | f<sub>5</sub>
| |
− | |-
| |
− | | f<sub>6</sub>
| |
− | |-
| |
− | | f<sub>7</sub>
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>0</sub>
| |
− | |-
| |
− | | f<sub>1</sub>
| |
− | |-
| |
− | | f<sub>2</sub>
| |
− | |-
| |
− | | f<sub>3</sub>
| |
− | |-
| |
− | | f<sub>4</sub>
| |
− | |-
| |
− | | f<sub>5</sub>
| |
− | |-
| |
− | | f<sub>6</sub>
| |
− | |-
| |
− | | f<sub>7</sub>
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>0</sub>
| |
− | |-
| |
− | | f<sub>1</sub>
| |
− | |-
| |
− | | f<sub>2</sub>
| |
− | |-
| |
− | | f<sub>3</sub>
| |
− | |-
| |
− | | f<sub>4</sub>
| |
− | |-
| |
− | | f<sub>5</sub>
| |
− | |-
| |
− | | f<sub>6</sub>
| |
− | |-
| |
− | | f<sub>7</sub>
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>8</sub>
| |
− | |-
| |
− | | f<sub>9</sub>
| |
− | |-
| |
− | | f<sub>10</sub>
| |
− | |-
| |
− | | f<sub>11</sub>
| |
− | |-
| |
− | | f<sub>12</sub>
| |
− | |-
| |
− | | f<sub>13</sub>
| |
− | |-
| |
− | | f<sub>14</sub>
| |
− | |-
| |
− | | f<sub>15</sub>
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>8</sub>
| |
− | |-
| |
− | | f<sub>9</sub>
| |
− | |-
| |
− | | f<sub>10</sub>
| |
− | |-
| |
− | | f<sub>11</sub>
| |
− | |-
| |
− | | f<sub>12</sub>
| |
− | |-
| |
− | | f<sub>13</sub>
| |
− | |-
| |
− | | f<sub>14</sub>
| |
− | |-
| |
− | | f<sub>15</sub>
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>8</sub>
| |
− | |-
| |
− | | f<sub>9</sub>
| |
− | |-
| |
− | | f<sub>10</sub>
| |
− | |-
| |
− | | f<sub>11</sub>
| |
− | |-
| |
− | | f<sub>12</sub>
| |
− | |-
| |
− | | f<sub>13</sub>
| |
− | |-
| |
− | | f<sub>14</sub>
| |
− | |-
| |
− | | f<sub>15</sub>
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>8</sub>
| |
− | |-
| |
− | | f<sub>9</sub>
| |
− | |-
| |
− | | f<sub>10</sub>
| |
− | |-
| |
− | | f<sub>11</sub>
| |
− | |-
| |
− | | f<sub>12</sub>
| |
− | |-
| |
− | | f<sub>13</sub>
| |
− | |-
| |
− | | f<sub>14</sub>
| |
− | |-
| |
− | | f<sub>15</sub>
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" style="background:lightcyan"
| |
− | | f<sub>8</sub>
| |
− | |-
| |
− | | f<sub>9</sub>
| |
− | |-
| |
− | | f<sub>10</sub>
| |
− | |-
| |
− | | f<sub>11</sub>
| |
− | |-
| |
− | | f<sub>12</sub>
| |
− | |-
| |
− | | f<sub>13</sub>
| |
− | |-
| |
− | | f<sub>14</sub>
| |
− | |-
| |
− | | f<sub>15</sub>
| |
− | |}
| |
− | |}
| |
− | <br> | |
− | | |
− | <font face="courier new"> | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| |+ Table 27. Thematization of Bivariate Propositions | | |+ Table 27. Thematization of Bivariate Propositions |