Changes

MyWikiBiz, Author Your Legacy — Wednesday September 10, 2025
Jump to navigationJump to search
Line 135: Line 135:  
\\
 
\\
 
\hline
 
\hline
\end{tabular}&fg=000000$
+
\end{tabular}
 +
&fg=000000$
 
</pre>
 
</pre>
   Line 269: Line 270:  
\\
 
\\
 
\hline
 
\hline
\end{tabular}&amp;fg=000000$
+
\end{tabular}
 +
&amp;fg=000000$
 
</pre>
 
</pre>
   Line 419: Line 421:  
\\
 
\\
 
\hline
 
\hline
\end{tabular}&amp;fg=000000$
+
\end{tabular}
 +
&amp;fg=000000$
 
</pre>
 
</pre>
   Line 556: Line 559:  
\\
 
\\
 
\hline
 
\hline
\end{tabular}&amp;fg=000000$
+
\end{tabular}
 +
&amp;fg=000000$
 
</pre>
 
</pre>
   Line 693: Line 697:  
\\
 
\\
 
\hline
 
\hline
\end{tabular}&amp;fg=000000$
+
\end{tabular}
 +
&amp;fg=000000$
 
</pre>
 
</pre>
   Line 830: Line 835:  
\\
 
\\
 
\hline
 
\hline
\end{tabular}&amp;fg=000000$
+
\end{tabular}
 +
&amp;fg=000000$
 
</pre>
 
</pre>
   Line 838: Line 844:     
<blockquote>
 
<blockquote>
<p>The problem is concretely about Boolean functions $latex {f}$ of $latex {k}$ variables, and seems not to involve prime numbers at all.  For any subset $latex {S}$ of the coordinates, the corresponding Fourier coefficient is given by:</p>
+
<p>The problem is concretely about Boolean functions <math>f\!</math> of <math>k\!</math> variables, and seems not to involve prime numbers at all.  For any subset <math>S\!</math> of the coordinates, the corresponding Fourier coefficient is given by:</p>
   −
<p align="center">
+
<p align="center"><math>\hat{f}(S) = \frac{1}{2^k} \sum_{x \in \mathbb{Z}_2^k} f(x)\chi_S(x)\!</math></p>
<math>\displaystyle \hat{f}(S) = \frac{1}{2^k} \sum_{x \in \mathbb{Z}_2^k} f(x)\chi_S(x)\!</math>
  −
</p>
     −
<p>where <math>\chi_S(x)\!</math> is <math>-1\!</math> if <math>\sum_{i \in S} x_i\!</math> is odd, and <math>+1\!</math> otherwise.</p>
+
<p>where <math>\chi_S(x)\!</math> is <math>-1\!</math> if <math>\textstyle \sum_{i \in S} x_i\!</math> is odd, and <math>+1\!</math> otherwise.</p>
 
</blockquote>
 
</blockquote>
   Line 854: Line 858:     
For ease of reading formulas, let <math>x = (x_1, x_2) = (u, v).\!</math>
 
For ease of reading formulas, let <math>x = (x_1, x_2) = (u, v).\!</math>
 +
 +
====Table 2.1. Values of &chi;<sub>S</sub>(x)====
    
<pre>
 
<pre>
<p align="center">
   
$latex
 
$latex
 
\begin{tabular}{|c||*{4}{c}|}
 
\begin{tabular}{|c||*{4}{c}|}
\multicolumn{5}{c}{Table 2.1. Values of \( \chi_S(x) \) for \( f : \mathbb{B}^2 \to \mathbb{B} \)} \\[4pt]
+
\multicolumn{5}{c}{Table 2.1. Values of \( \boldsymbol{\chi}_\mathcal{S}(x) \) for \( f : \mathbb{B}^2 \to \mathbb{B} \)} \\[4pt]
 
\hline
 
\hline
\( S \backslash (u, v) \) &amp;
+
\( \mathcal{S} \backslash (u, v) \) &amp;
 
\( (1, 1) \) &amp;
 
\( (1, 1) \) &amp;
 
\( (1, 0) \) &amp;
 
\( (1, 0) \) &amp;
Line 875: Line 880:  
\end{tabular}
 
\end{tabular}
 
&amp;fg=000000$
 
&amp;fg=000000$
</p>
   
</pre>
 
</pre>
 +
 +
====Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables====
    
<pre>
 
<pre>
<p align="center">
   
$latex
 
$latex
 
\begin{tabular}{|*{5}{c|}*{4}{r|}}
 
\begin{tabular}{|*{5}{c|}*{4}{r|}}
Line 885: Line 890:  
\hline
 
\hline
 
~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~\\
 
~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~\\
\( L_1 \)&amp;
+
\(L_1\)&amp;\(L_2\)&amp;&amp;\(L_3\)&amp;\(L_4\)&amp;
\( L_2 \)&amp;&amp;
+
\(\hat{f}(\varnothing)\)&amp;\(\hat{f}(\{u\})\)&amp;\(\hat{f}(\{v\})\)&amp;\(\hat{f}(\{u,v\})\) \\
\( L_3 \)&amp;
  −
\( L_4 \)&amp;
  −
\( \hat{f}(\varnothing) \)&amp;
  −
\( \hat{f}(\{u\})     \)&amp;
  −
\( \hat{f}(\{v\})     \)&amp;
  −
\( \hat{f}(\{u,v\}) \)
  −
\\
   
~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~\\
 
~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~\\
 
\hline
 
\hline
Line 1,045: Line 1,043:  
\\
 
\\
 
\hline
 
\hline
\end{tabular}&amp;fg=000000$
+
\end{tabular}
</p>
+
&amp;fg=000000$
 +
</pre>
 +
 
 +
====Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables====
 +
 
 +
<pre>
 +
$latex
 +
\begin{tabular}{|*{5}{c|}*{4}{r|}}
 +
\multicolumn{9}{c}{Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt]
 +
\hline
 +
~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~\\
 +
\(L_1\)&amp;\(L_2\)&amp;&amp;\(L_3\)&amp;\(L_4\)&amp;
 +
\(\hat{f}(\varnothing)\)&amp;\(\hat{f}(\{u\})\)&amp;\(\hat{f}(\{v\})\)&amp;\(\hat{f}(\{u,v\})\) \\
 +
~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~&amp;~\\
 +
\hline
 +
&amp;&amp; \(u =\)&amp; 1 1 0 0&amp;&amp;&amp;&amp;&amp; \\
 +
&amp;&amp; \(v =\)&amp; 1 0 1 0&amp;&amp;&amp;&amp;&amp; \\
 +
\hline
 +
\(f_{0}\)&amp;
 +
\(f_{0000}\)&amp;&amp;
 +
0 0 0 0&amp;
 +
\((~)\)&amp;
 +
\(0\)&amp;
 +
\(0\)&amp;
 +
\(0\)&amp;
 +
\(0\)
 +
\\
 +
\hline
 +
\(f_{1}\)&amp;
 +
\(f_{0001}\)&amp;&amp;
 +
0 0 0 1&amp;
 +
\((u)(v)\)&amp;
 +
\(1/4\)&amp;
 +
\(1/4\)&amp;
 +
\(1/4\)&amp;
 +
\(1/4\)
 +
\\
 +
\(f_{2}\)&amp;
 +
\(f_{0010}\)&amp;&amp;
 +
0 0 1 0&amp;
 +
\((u)~v~\)&amp;
 +
\( 1/4\)&amp;
 +
\( 1/4\)&amp;
 +
\(-1/4\)&amp;
 +
\(-1/4\)
 +
\\
 +
\(f_{4}\)&amp;
 +
\(f_{0100}\)&amp;&amp;
 +
0 1 0 0&amp;
 +
\(~u~(v)\)&amp;
 +
\( 1/4\)&amp;
 +
\(-1/4\)&amp;
 +
\( 1/4\)&amp;
 +
\(-1/4\)
 +
\\
 +
\(f_{8}\)&amp;
 +
\(f_{1000}\)&amp;&amp;
 +
1 0 0 0&amp;
 +
\(~u~~v~\)&amp;
 +
\( 1/4\)&amp;
 +
\(-1/4\)&amp;
 +
\(-1/4\)&amp;
 +
\( 1/4\)
 +
\\
 +
\hline
 +
\(f_{3}\)&amp;
 +
\(f_{0011}\)&amp;&amp;
 +
0 0 1 1&amp;
 +
\((u)\)&amp;
 +
\(1/2\)&amp;
 +
\(1/2\)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)
 +
\\
 +
\(f_{12}\)&amp;
 +
\(f_{1100}\)&amp;&amp;
 +
1 1 0 0&amp;
 +
\(u\)&amp;
 +
\( 1/2\)&amp;
 +
\(-1/2\)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)
 +
\\
 +
\hline
 +
\(f_{6}\)&amp;
 +
\(f_{0110}\)&amp;&amp;
 +
0 1 1 0&amp;
 +
\((u,~v)\)&amp;
 +
\( 1/2\)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)&amp;
 +
\(-1/2\)
 +
\\
 +
\(f_{9}\)&amp;
 +
\(f_{1001}\)&amp;&amp;
 +
1 0 0 1&amp;
 +
\(((u,~v))\)&amp;
 +
\(1/2\)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)&amp;
 +
\(1/2\)
 +
\\
 +
\hline
 +
\(f_{5}\)&amp;
 +
\(f_{0101}\)&amp;&amp;
 +
0 1 0 1&amp;
 +
\((v)\)&amp;
 +
\(1/2\)&amp;
 +
\( 0 \)&amp;
 +
\(1/2\)&amp;
 +
\( 0 \)
 +
\\
 +
\(f_{10}\)&amp;
 +
\(f_{1010}\)&amp;&amp;
 +
1 0 1 0&amp;
 +
\(v\)&amp;
 +
\( 1/2\)&amp;
 +
\( 0 \)&amp;
 +
\(-1/2\)&amp;
 +
\( 0 \)
 +
\\
 +
\hline
 +
\(f_{7}\)&amp;
 +
\(f_{0111}\)&amp;&amp;
 +
0 1 1 1&amp;
 +
\((u~~v)\)&amp;
 +
\( 3/4\)&amp;
 +
\( 1/4\)&amp;
 +
\( 1/4\)&amp;
 +
\(-1/4\)
 +
\\
 +
\hline
 +
\(f_{11}\)&amp;
 +
\(f_{1011}\)&amp;&amp;
 +
1 0 1 1&amp;
 +
\((~u~(v))\)&amp;
 +
\( 3/4\)&amp;
 +
\( 1/4\)&amp;
 +
\(-1/4\)&amp;
 +
\( 1/4\)
 +
\\
 +
\(f_{13}\)&amp;
 +
\(f_{1101}\)&amp;&amp;
 +
1 1 0 1&amp;
 +
\(((u)~v~)\)&amp;
 +
\( 3/4\)&amp;
 +
\(-1/4\)&amp;
 +
\( 1/4\)&amp;
 +
\( 1/4\)
 +
\\
 +
\(f_{14}\)&amp;
 +
\(f_{1110}\)&amp;&amp;
 +
1 1 1 0&amp;
 +
\(((u)(v))\)&amp;
 +
\( 3/4\)&amp;
 +
\(-1/4\)&amp;
 +
\(-1/4\)&amp;
 +
\(-1/4\)
 +
\\
 +
\hline
 +
\(f_{15}\)&amp;
 +
\(f_{1111}\)&amp;&amp;
 +
1 1 1 1&amp;
 +
\(((~))\)&amp;
 +
\(1\)&amp;
 +
\(0\)&amp;
 +
\(0\)&amp;
 +
\(0\)
 +
\\
 +
\hline
 +
\end{tabular}
 +
&amp;fg=000000$
 
</pre>
 
</pre>
  
12,089

edits

Navigation menu