Line 4: |
Line 4: |
| | | |
| ==Tables== | | ==Tables== |
| + | |
| + | * Examples of LaTeX tabular markup from [http://inquiryintoinquiry.com/tables/ Inquiry Into Inquiry : Tables] |
| | | |
| ===Boolean Functions and Propositional Calculus=== | | ===Boolean Functions and Propositional Calculus=== |
− |
| |
− | * Examples of LaTeX tabular markup at [http://inquiryintoinquiry.com/tables/ Inquiry Into Inquiry : Tables]
| |
| | | |
| ====Table A1. Propositional Forms on Two Variables==== | | ====Table A1. Propositional Forms on Two Variables==== |
Line 135: |
Line 135: |
| \\ | | \\ |
| \hline | | \hline |
− | \end{tabular}&fg=000000$ | + | \end{tabular} |
| + | &fg=000000$ |
| </pre> | | </pre> |
| | | |
Line 269: |
Line 270: |
| \\ | | \\ |
| \hline | | \hline |
− | \end{tabular}&fg=000000$ | + | \end{tabular} |
| + | &fg=000000$ |
| </pre> | | </pre> |
| | | |
Line 419: |
Line 421: |
| \\ | | \\ |
| \hline | | \hline |
− | \end{tabular}&fg=000000$ | + | \end{tabular} |
| + | &fg=000000$ |
| </pre> | | </pre> |
| | | |
Line 556: |
Line 559: |
| \\ | | \\ |
| \hline | | \hline |
− | \end{tabular}&fg=000000$ | + | \end{tabular} |
| + | &fg=000000$ |
| </pre> | | </pre> |
| | | |
Line 693: |
Line 697: |
| \\ | | \\ |
| \hline | | \hline |
− | \end{tabular}&fg=000000$ | + | \end{tabular} |
| + | &fg=000000$ |
| </pre> | | </pre> |
| | | |
Line 830: |
Line 835: |
| \\ | | \\ |
| \hline | | \hline |
− | \end{tabular}&fg=000000$ | + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ===Fourier Transforms of Boolean Functions=== |
| + | |
| + | Re: [http://rjlipton.wordpress.com/2013/05/21/twin-primes-are-useful/ Another Problem] |
| + | |
| + | <blockquote> |
| + | <p>The problem is concretely about Boolean functions <math>f\!</math> of <math>k\!</math> variables, and seems not to involve prime numbers at all. For any subset <math>S\!</math> of the coordinates, the corresponding Fourier coefficient is given by:</p> |
| + | |
| + | <p align="center"><math>\hat{f}(S) = \frac{1}{2^k} \sum_{x \in \mathbb{Z}_2^k} f(x)\chi_S(x)\!</math></p> |
| + | |
| + | <p>where <math>\chi_S(x)\!</math> is <math>-1\!</math> if <math>\textstyle \sum_{i \in S} x_i\!</math> is odd, and <math>+1\!</math> otherwise.</p> |
| + | </blockquote> |
| + | |
| + | <math>k = 1\!</math> |
| + | |
| + | … |
| + | |
| + | <math>k = 2\!</math> |
| + | |
| + | For ease of reading formulas, let <math>x = (x_1, x_2) = (u, v).\!</math> |
| + | |
| + | ====Table 2.1. Values of χ<sub>S</sub>(x)==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|c||*{4}{c}|} |
| + | \multicolumn{5}{c}{Table 2.1. Values of \( \boldsymbol{\chi}_\mathcal{S}(x) \) for \( f : \mathbb{B}^2 \to \mathbb{B} \)} \\[4pt] |
| + | \hline |
| + | \( \mathcal{S} \backslash (u, v) \) & |
| + | \( (1, 1) \) & |
| + | \( (1, 0) \) & |
| + | \( (0, 1) \) & |
| + | \( (0, 0) \) |
| + | \\ |
| + | \hline\hline |
| + | \( \varnothing \) & \( +1 \) & \( +1 \) & \( +1 \) & \( +1 \) \\ |
| + | \( \{ u \} \) & \( -1 \) & \( -1 \) & \( +1 \) & \( +1 \) \\ |
| + | \( \{ v \} \) & \( -1 \) & \( +1 \) & \( -1 \) & \( +1 \) \\ |
| + | \( \{ u, v \} \) & \( +1 \) & \( -1 \) & \( -1 \) & \( +1 \) \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ====Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|*{5}{c|}*{4}{r|}} |
| + | \multicolumn{9}{c}{Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] |
| + | \hline |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& |
| + | \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \hline |
| + | && \(u =\)& 1 1 0 0&&&&& \\ |
| + | && \(v =\)& 1 0 1 0&&&&& \\ |
| + | \hline |
| + | \(f_{0}\)& |
| + | \(f_{0000}\)&& |
| + | 0 0 0 0& |
| + | \((~)\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \(f_{1}\)& |
| + | \(f_{0001}\)&& |
| + | 0 0 0 1& |
| + | \((u)(v)\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \(f_{0010}\)&& |
| + | 0 0 1 0& |
| + | \((u)~v~\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{3}\)& |
| + | \(f_{0011}\)&& |
| + | 0 0 1 1& |
| + | \((u)\)& |
| + | \(1/2\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(f_{0100}\)&& |
| + | 0 1 0 0& |
| + | \(~u~(v)\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{5}\)& |
| + | \(f_{0101}\)&& |
| + | 0 1 0 1& |
| + | \((v)\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \(1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{6}\)& |
| + | \(f_{0110}\)&& |
| + | 0 1 1 0& |
| + | \((u,~v)\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(-1/2\) |
| + | \\ |
| + | \(f_{7}\)& |
| + | \(f_{0111}\)&& |
| + | 0 1 1 1& |
| + | \((u~~v)\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \hline |
| + | \(f_{8}\)& |
| + | \(f_{1000}\)&& |
| + | 1 0 0 0& |
| + | \(~u~~v~\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(f_{1001}\)&& |
| + | 1 0 0 1& |
| + | \(((u,~v))\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(1/2\) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \(f_{1010}\)&& |
| + | 1 0 1 0& |
| + | \(v\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \(-1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{11}\)& |
| + | \(f_{1011}\)&& |
| + | 1 0 1 1& |
| + | \((~u~(v))\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \(f_{1100}\)&& |
| + | 1 1 0 0& |
| + | \(u\)& |
| + | \( 1/2\)& |
| + | \(-1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(f_{1101}\)&& |
| + | 1 1 0 1& |
| + | \(((u)~v~)\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(f_{1110}\)&& |
| + | 1 1 1 0& |
| + | \(((u)(v))\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{15}\)& |
| + | \(f_{1111}\)&& |
| + | 1 1 1 1& |
| + | \(((~))\)& |
| + | \(1\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ====Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|*{5}{c|}*{4}{r|}} |
| + | \multicolumn{9}{c}{Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] |
| + | \hline |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& |
| + | \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \hline |
| + | && \(u =\)& 1 1 0 0&&&&& \\ |
| + | && \(v =\)& 1 0 1 0&&&&& \\ |
| + | \hline |
| + | \(f_{0}\)& |
| + | \(f_{0000}\)&& |
| + | 0 0 0 0& |
| + | \((~)\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \hline |
| + | \(f_{1}\)& |
| + | \(f_{0001}\)&& |
| + | 0 0 0 1& |
| + | \((u)(v)\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \(f_{0010}\)&& |
| + | 0 0 1 0& |
| + | \((u)~v~\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(f_{0100}\)&& |
| + | 0 1 0 0& |
| + | \(~u~(v)\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{8}\)& |
| + | \(f_{1000}\)&& |
| + | 1 0 0 0& |
| + | \(~u~~v~\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \hline |
| + | \(f_{3}\)& |
| + | \(f_{0011}\)&& |
| + | 0 0 1 1& |
| + | \((u)\)& |
| + | \(1/2\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \(f_{1100}\)&& |
| + | 1 1 0 0& |
| + | \(u\)& |
| + | \( 1/2\)& |
| + | \(-1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \(f_{6}\)& |
| + | \(f_{0110}\)&& |
| + | 0 1 1 0& |
| + | \((u,~v)\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(-1/2\) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(f_{1001}\)&& |
| + | 1 0 0 1& |
| + | \(((u,~v))\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(1/2\) |
| + | \\ |
| + | \hline |
| + | \(f_{5}\)& |
| + | \(f_{0101}\)&& |
| + | 0 1 0 1& |
| + | \((v)\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \(1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \(f_{1010}\)&& |
| + | 1 0 1 0& |
| + | \(v\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \(-1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \(f_{7}\)& |
| + | \(f_{0111}\)&& |
| + | 0 1 1 1& |
| + | \((u~~v)\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \hline |
| + | \(f_{11}\)& |
| + | \(f_{1011}\)&& |
| + | 1 0 1 1& |
| + | \((~u~(v))\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(f_{1101}\)&& |
| + | 1 1 0 1& |
| + | \(((u)~v~)\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(f_{1110}\)&& |
| + | 1 1 1 0& |
| + | \(((u)(v))\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \hline |
| + | \(f_{15}\)& |
| + | \(f_{1111}\)&& |
| + | 1 1 1 1& |
| + | \(((~))\)& |
| + | \(1\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| </pre> | | </pre> |
| | | |