Line 1: |
Line 1: |
| + | '''WordPress versions of HTML and LaTeX markup''' |
| + | |
| + | <div class="nonumtoc">__TOC__</div> |
| + | |
| + | ==Tables== |
| + | |
| + | * Examples of LaTeX tabular markup from [http://inquiryintoinquiry.com/tables/ Inquiry Into Inquiry : Tables] |
| + | |
| + | ===Boolean Functions and Propositional Calculus=== |
| + | |
| + | ====Table A1. Propositional Forms on Two Variables==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|*{7}{c|}} |
| + | \multicolumn{7}{c}{Table A1. Propositional Forms on Two Variables} \\ |
| + | \hline |
| + | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)&\(L_5\)&\(L_6\) \\ |
| + | \hline |
| + | &&\(x=\)&1 1 0 0&&& \\ |
| + | &&\(y=\)&1 0 1 0&&& \\ |
| + | \hline |
| + | \(f_{0}\)& |
| + | \(f_{0000}\)&& |
| + | 0 0 0 0& |
| + | \((~)\)& |
| + | false& |
| + | \(0\) |
| + | \\ |
| + | \(f_{1}\)& |
| + | \(f_{0001}\)&& |
| + | 0 0 0 1& |
| + | \((x)(y)\)& |
| + | neither \(x\) nor \(y\)& |
| + | \(\lnot x \land \lnot y\) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \(f_{0010}\)&& |
| + | 0 0 1 0& |
| + | \((x)~y~\)& |
| + | \(y\) without \(x\)& |
| + | \(\lnot x \land y\) |
| + | \\ |
| + | \(f_{3}\)& |
| + | \(f_{0011}\)&& |
| + | 0 0 1 1& |
| + | \((x)\)& |
| + | not \(x\)& |
| + | \(\lnot x\) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(f_{0100}\)&& |
| + | 0 1 0 0& |
| + | \(~x~(y)\)& |
| + | \(x\) without \(y\)& |
| + | \(x \land \lnot y\) |
| + | \\ |
| + | \(f_{5}\)& |
| + | \(f_{0101}\)&& |
| + | 0 1 0 1& |
| + | \((y)\)& |
| + | not \(y\)& |
| + | \(\lnot y\) |
| + | \\ |
| + | \(f_{6}\)& |
| + | \(f_{0110}\)&& |
| + | 0 1 1 0& |
| + | \((x,~y)\)& |
| + | \(x\) not equal to \(y\)& |
| + | \(x \ne y\) |
| + | \\ |
| + | \(f_{7}\)& |
| + | \(f_{0111}\)&& |
| + | 0 1 1 1& |
| + | \((x~~y)\)& |
| + | not both \(x\) and \(y\)& |
| + | \(\lnot x \lor \lnot y\) |
| + | \\ |
| + | \hline |
| + | \(f_{8}\)& |
| + | \(f_{1000}\)&& |
| + | 1 0 0 0& |
| + | \(~x~~y~\)& |
| + | \(x\) and \(y\)& |
| + | \(x \land y\) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(f_{1001}\)&& |
| + | 1 0 0 1& |
| + | \(((x,~y))\)& |
| + | \(x\) equal to \(y\)& |
| + | \(x = y\) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \(f_{1010}\)&& |
| + | 1 0 1 0& |
| + | \(y\)& |
| + | \(y\)& |
| + | \(y\) |
| + | \\ |
| + | \(f_{11}\)& |
| + | \(f_{1011}\)&& |
| + | 1 0 1 1& |
| + | \((~x~(y))\)& |
| + | not \(x\) without \(y\)& |
| + | \(x \Rightarrow y\) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \(f_{1100}\)&& |
| + | 1 1 0 0& |
| + | \(x\)& |
| + | \(x\)& |
| + | \(x\) |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(f_{1101}\)&& |
| + | 1 1 0 1& |
| + | \(((x)~y~)\)& |
| + | not \(y\) without \(x\)& |
| + | \(x \Leftarrow y\) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(f_{1110}\)&& |
| + | 1 1 1 0& |
| + | \(((x)(y))\)& |
| + | \(x\) or \(y\)& |
| + | \(x \lor y\) |
| + | \\ |
| + | \(f_{15}\)& |
| + | \(f_{1111}\)&& |
| + | 1 1 1 1& |
| + | \(((~))\)& |
| + | true& |
| + | \(1\) |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ====Table A2. Propositional Forms on Two Variables==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|*{7}{c|}} |
| + | \multicolumn{7}{c}{Table A2. Propositional Forms on Two Variables} \\ |
| + | \hline |
| + | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)&\(L_5\)&\(L_6\) \\ |
| + | \hline |
| + | &&\(x =\)&1 1 0 0&&& \\ |
| + | &&\(y =\)&1 0 1 0&&& \\ |
| + | \hline |
| + | \(f_{0}\)& |
| + | \(f_{0000}\)&& |
| + | 0 0 0 0& |
| + | \((~)\)& |
| + | false& |
| + | \(0\) |
| + | \\ |
| + | \hline |
| + | \(f_{1}\)& |
| + | \(f_{0001}\)&& |
| + | 0 0 0 1& |
| + | \((x)(y)\)& |
| + | neither \(x\) nor \(y\)& |
| + | \(\lnot x \land \lnot y\) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \(f_{0010}\)&& |
| + | 0 0 1 0& |
| + | \((x)~y~\)& |
| + | \(y\) without \(x\)& |
| + | \(\lnot x \land y\) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(f_{0100}\)&& |
| + | 0 1 0 0& |
| + | \(~x~(y)\)& |
| + | \(x\) without \(y\)& |
| + | \(x \land \lnot y\) |
| + | \\ |
| + | \(f_{8}\)& |
| + | \(f_{1000}\)&& |
| + | 1 0 0 0& |
| + | \(~x~~y~\)& |
| + | \(x\) and \(y\)& |
| + | \(x \land y\) |
| + | \\ |
| + | \hline |
| + | \(f_{3}\)& |
| + | \(f_{0011}\)&& |
| + | 0 0 1 1& |
| + | \((x)\)& |
| + | not \(x\)& |
| + | \(\lnot x\) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \(f_{1100}\)&& |
| + | 1 1 0 0& |
| + | \(x\)& |
| + | \(x\)& |
| + | \(x\) |
| + | \\ |
| + | \hline |
| + | \(f_{6}\)& |
| + | \(f_{0110}\)&& |
| + | 0 1 1 0& |
| + | \((x,~y)\)& |
| + | \(x\) not equal to \(y\)& |
| + | \(x \ne y\) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(f_{1001}\)&& |
| + | 1 0 0 1& |
| + | \(((x,~y))\)& |
| + | \(x\) equal to \(y\)& |
| + | \(x = y\) |
| + | \\ |
| + | \hline |
| + | \(f_{5}\)& |
| + | \(f_{0101}\)&& |
| + | 0 1 0 1& |
| + | \((y)\)& |
| + | not \(y\)& |
| + | \(\lnot y\) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \(f_{1010}\)&& |
| + | 1 0 1 0& |
| + | \(y\)& |
| + | \(y\)& |
| + | \(y\) |
| + | \\ |
| + | \hline |
| + | \(f_{7}\)& |
| + | \(f_{0111}\)&& |
| + | 0 1 1 1& |
| + | \((~x~~y~)\)& |
| + | not both \(x\) and \(y\)& |
| + | \(\lnot x \lor \lnot y\) |
| + | \\ |
| + | \(f_{11}\)& |
| + | \(f_{1011}\)&& |
| + | 1 0 1 1& |
| + | \((~x~(y))\)& |
| + | not \(x\) without \(y\)& |
| + | \(x \Rightarrow y\) |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(f_{1101}\)&& |
| + | 1 1 0 1& |
| + | \(((x)~y~)\)& |
| + | not \(y\) without \(x\)& |
| + | \(x \Leftarrow y\) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(f_{1110}\)&& |
| + | 1 1 1 0& |
| + | \(((x)(y))\)& |
| + | \(x\) or \(y\)& |
| + | \(x \lor y\) |
| + | \\ |
| + | \hline |
| + | \(f_{15}\)& |
| + | \(f_{1111}\)&& |
| + | 1 1 1 1& |
| + | \(((~))\)& |
| + | true& |
| + | \(1\) |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ====Table A3. Ef Expanded Over Differential Features {dx, dy}==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|c|c||c|c|c|c|} |
| + | \multicolumn{6}{c}{Table A3. \(\mathrm{E}f\) Expanded Over Differential Features \(\{\mathrm{d}x, \mathrm{d}y\}\)} \\ |
| + | \hline |
| + | & |
| + | \(~~~~~~~~ f ~~~~~~~~\)& |
| + | \(~~~~\mathrm{T}_{11}f~~~~\)& |
| + | \(~~~~\mathrm{T}_{10}f~~~~\)& |
| + | \(~~~~\mathrm{T}_{01}f~~~~\)& |
| + | \(~~~~\mathrm{T}_{00}f~~~~\) |
| + | \\ |
| + | && |
| + | \(\mathrm{E}f|_{~\mathrm{d}x ~\mathrm{d}y~}~\)& |
| + | \(\mathrm{E}f|_{~\mathrm{d}x~(\mathrm{d}y)}~\)& |
| + | \(\mathrm{E}f|_{(\mathrm{d}x)~\mathrm{d}y~}~\)& |
| + | \(\mathrm{E}f|_{(\mathrm{d}x)(\mathrm{d}y)}~\) |
| + | \\ |
| + | \hline\hline |
| + | \(f_{0}\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \hline |
| + | \(f_{1}\)& |
| + | \((x)(y)\)& |
| + | \(~x~~y~\)& |
| + | \(~x~(y)\)& |
| + | \((x)~y~\)& |
| + | \((x)(y)\) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \((x)~y~\)& |
| + | \(~x~(y)\)& |
| + | \(~x~~y~\)& |
| + | \((x)(y)\)& |
| + | \((x)~y~\) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(~x~(y)\)& |
| + | \((x)~y~\)& |
| + | \((x)(y)\)& |
| + | \(~x~~y~\)& |
| + | \(~x~(y)\) |
| + | \\ |
| + | \(f_{8}\)& |
| + | \(~x~~y~\)& |
| + | \((x)(y)\)& |
| + | \((x)~y~\)& |
| + | \(~x~(y)\)& |
| + | \(~x~~y~\) |
| + | \\ |
| + | \hline |
| + | \(f_{3}\)& |
| + | \((x)\)& |
| + | \( x \)& |
| + | \( x \)& |
| + | \((x)\)& |
| + | \((x)\) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \( x \)& |
| + | \((x)\)& |
| + | \((x)\)& |
| + | \( x \)& |
| + | \( x \) |
| + | \\ |
| + | \hline |
| + | \(f_{6}\)& |
| + | \( (x,y) \)& |
| + | \( (x,y) \)& |
| + | \(((x,y))\)& |
| + | \(((x,y))\)& |
| + | \( (x,y) \) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(((x,y))\)& |
| + | \(((x,y))\)& |
| + | \( (x,y) \)& |
| + | \( (x,y) \)& |
| + | \(((x,y))\) |
| + | \\ |
| + | \hline |
| + | \(f_{5}\)& |
| + | \((y)\)& |
| + | \( y \)& |
| + | \((y)\)& |
| + | \( y \)& |
| + | \((y)\) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \( y \)& |
| + | \((y)\)& |
| + | \( y \)& |
| + | \((y)\)& |
| + | \( y \) |
| + | \\ |
| + | \hline |
| + | \(f_{7}\)& |
| + | \((~x~~y~)\)& |
| + | \(((x)(y))\)& |
| + | \(((x)~y~)\)& |
| + | \((~x~(y))\)& |
| + | \((~x~~y~)\) |
| + | \\ |
| + | \(f_{11}\)& |
| + | \((~x~(y))\)& |
| + | \(((x)~y~)\)& |
| + | \(((x)(y))\)& |
| + | \((~x~~y~)\)& |
| + | \((~x~(y))\) |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(((x)~y~)\)& |
| + | \((~x~(y))\)& |
| + | \((~x~~y~)\)& |
| + | \(((x)(y))\)& |
| + | \(((x)~y~)\) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(((x)(y))\)& |
| + | \((~x~~y~)\)& |
| + | \((~x~(y))\)& |
| + | \(((x)~y~)\)& |
| + | \(((x)(y))\) |
| + | \\ |
| + | \hline |
| + | \(f_{15}\)& |
| + | \(1\)& |
| + | \(1\)& |
| + | \(1\)& |
| + | \(1\)& |
| + | \(1\) |
| + | \\ |
| + | \hline\hline |
| + | \multicolumn{2}{|c||}{Fixed Point Total}& |
| + | 4& |
| + | 4& |
| + | 4& |
| + | 16 |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ====Table A4. Df Expanded Over Differential Features {dx, dy}==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|c|c||c|c|c|c|} |
| + | \multicolumn{6}{c}{Table A4. \(\mathrm{D}f\) Expanded Over Differential Features \(\{\mathrm{d}x, \mathrm{d}y\}\)} \\ |
| + | \hline |
| + | & |
| + | \(~~~~~~~~ f ~~~~~~~~\)& |
| + | \(\mathrm{D}f|_{~\mathrm{d}x\;\mathrm{d}y~}~\)& |
| + | \(\mathrm{D}f|_{~\mathrm{d}x~(\mathrm{d}y)}~\)& |
| + | \(\mathrm{D}f|_{(\mathrm{d}x)~\mathrm{d}y~}~\)& |
| + | \(\mathrm{D}f|_{(\mathrm{d}x)(\mathrm{d}y)}~\) |
| + | \\ |
| + | \hline\hline |
| + | \( f_{0} \)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \( f_{1} \)& |
| + | \( (x)(y) \)& |
| + | \( ((x,y)) \)& |
| + | \( (y) \)& |
| + | \( (x) \)& |
| + | \( 0 \) |
| + | \\ |
| + | \( f_{2} \)& |
| + | \( (x)~y~ \)& |
| + | \( (x,y) \)& |
| + | \( y \)& |
| + | \( (x) \)& |
| + | \( 0 \) |
| + | \\ |
| + | \( f_{4} \)& |
| + | \( ~x~(y) \)& |
| + | \( (x,y) \)& |
| + | \( (y) \)& |
| + | \( x \)& |
| + | \( 0 \) |
| + | \\ |
| + | \( f_{8} \)& |
| + | \( ~x~~y~ \)& |
| + | \( ((x,y)) \)& |
| + | \( y \)& |
| + | \( x \)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \( f_{3} \)& |
| + | \( (x) \)& |
| + | \( 1 \)& |
| + | \( 1 \)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \( f_{12} \)& |
| + | \( x \)& |
| + | \( 1 \)& |
| + | \( 1 \)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \( f_{6} \)& |
| + | \( (x,y) \)& |
| + | \( 0 \)& |
| + | \( 1 \)& |
| + | \( 1 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \( f_{9} \)& |
| + | \( ((x,y)) \)& |
| + | \( 0 \)& |
| + | \( 1 \)& |
| + | \( 1 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \( f_{5} \)& |
| + | \( (y) \)& |
| + | \( 1 \)& |
| + | \( 0 \)& |
| + | \( 1 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \( f_{10} \)& |
| + | \( y \)& |
| + | \( 1 \)& |
| + | \( 0 \)& |
| + | \( 1 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \( f_{7} \)& |
| + | \( (~x~~y~) \)& |
| + | \( ((x,y)) \)& |
| + | \( y \)& |
| + | \( x \)& |
| + | \( 0 \) |
| + | \\ |
| + | \( f_{11}\) & |
| + | \( (~x~(y)) \)& |
| + | \( (x,y) \)& |
| + | \( (y) \)& |
| + | \( x \)& |
| + | \( 0 \) |
| + | \\ |
| + | \( f_{13}\) & |
| + | \( ((x)~y~) \)& |
| + | \( (x,y) \)& |
| + | \( y \)& |
| + | \( (x) \)& |
| + | \( 0 \) |
| + | \\ |
| + | \( f_{14} \)& |
| + | \( ((x)(y)) \)& |
| + | \( ((x,y)) \)& |
| + | \( (y) \)& |
| + | \( (x) \)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \(f_{15}\)& |
| + | \( 1 \)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ====Table A5. Ef Expanded Over Ordinary Features {x, y}==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|c|c||c|c|c|c|} |
| + | \multicolumn{6}{c}{Table A5. \(\mathrm{E}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\ |
| + | \hline |
| + | & |
| + | \(~~~~~~~~ f ~~~~~~~~\)& |
| + | \(~~\mathrm{E}f|_{ x\;y }~~~\)& |
| + | \(~~\mathrm{E}f|_{ x~(y)}\,~~\)& |
| + | \(~~\mathrm{E}f|_{(x)~y }\,~~\)& |
| + | \(~~\mathrm{E}f|_{(x)(y)}\;~\) |
| + | \\ |
| + | \hline\hline |
| + | \(f_{0}\)& |
| + | 0& |
| + | 0& |
| + | 0& |
| + | 0& |
| + | 0 |
| + | \\ |
| + | \hline |
| + | \(f_{1}\)& |
| + | \((x)(y)\)& |
| + | ~d\(x\)~~d\(y~\)& |
| + | ~d\(x\)~(d\(y\))& |
| + | (d\(x\))~d\(y~\)& |
| + | (d\(x\))(d\(y\)) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \((x)~y~\)& |
| + | ~d\(x\)~(d\(y\))& |
| + | ~d\(x\)~~d\(y~\)& |
| + | (d\(x\))(d\(y\))& |
| + | (d\(x\))~d\(y~\) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(~x~(y)\)& |
| + | (d\(x\))~d\(y~\)& |
| + | (d\(x\))(d\(y\))& |
| + | ~d\(x\)~~d\(y~\)& |
| + | ~d\(x\)~(d\(y\)) |
| + | \\ |
| + | \(f_{8}\)& |
| + | \(~x~~y~\)& |
| + | (d\(x\))(d\(y\))& |
| + | (d\(x\))~d\(y~\)& |
| + | ~d\(x\)~(d\(y\))& |
| + | ~d\(x\)~~d\(y~\) |
| + | \\ |
| + | \hline |
| + | \(f_{3}\)& |
| + | \((x)\)& |
| + | d\(x\) & |
| + | d\(x\) & |
| + | (d\(x\))& |
| + | (d\(x\)) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \( x \)& |
| + | (d\(x\))& |
| + | (d\(x\))& |
| + | d\(x\) & |
| + | d\(x\) |
| + | \\ |
| + | \hline |
| + | \(f_{6}\)& |
| + | \( (x,y) \)& |
| + | (d\(x\), d\(y\)) & |
| + | ((d\(x\), d\(y\)))& |
| + | ((d\(x\), d\(y\)))& |
| + | (d\(x\), d\(y\)) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(((x,y))\)& |
| + | ((d\(x\), d\(y\)))& |
| + | (d\(x\), d\(y\)) & |
| + | (d\(x\), d\(y\)) & |
| + | ((d\(x\), d\(y\))) |
| + | \\ |
| + | \hline |
| + | \(f_{5}\)& |
| + | \((y)\)& |
| + | d\(y\) & |
| + | (d\(y\))& |
| + | d\(y\) & |
| + | (d\(y\)) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \( y \)& |
| + | (d\(y\))& |
| + | d\(y\) & |
| + | (d\(y\))& |
| + | d\(y\) |
| + | \\ |
| + | \hline |
| + | \(f_{7}\)& |
| + | \((~x~~y~)\)& |
| + | ((d\(x\))(d\(y\)))& |
| + | ((d\(x\))~d\(y\)~)& |
| + | (~d\(x\)~(d\(y\)))& |
| + | (~d\(x\)~~d\(y\)~) |
| + | \\ |
| + | \(f_{11}\)& |
| + | \((~x~(y))\)& |
| + | ((d\(x\))~d\(y\)~)& |
| + | ((d\(x\))(d\(y\)))& |
| + | (~d\(x\)~~d\(y\)~)& |
| + | (~d\(x\)~(d\(y\))) |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(((x)~y~)\)& |
| + | (~d\(x\)~(d\(y\)))& |
| + | (~d\(x\)~~d\(y\)~)& |
| + | ((d\(x\))(d\(y\)))& |
| + | ((d\(x\))~d\(y\)~) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(((x)(y))\)& |
| + | (~d\(x\)~~d\(y\)~)& |
| + | (~d\(x\)~(d\(y\)))& |
| + | ((d\(x\))~d\(y\)~)& |
| + | ((d\(x\))(d\(y\))) |
| + | \\ |
| + | \hline |
| + | \(f_{15}\)& |
| + | 1& |
| + | 1& |
| + | 1& |
| + | 1& |
| + | 1 |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ====Table A6. Df Expanded Over Ordinary Features {x, y}==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|c|c||c|c|c|c|} |
| + | \multicolumn{6}{c}{Table A6. \(\mathrm{D}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\ |
| + | \hline |
| + | & |
| + | \(~~~~~~~~ f ~~~~~~~~\)& |
| + | \(~~\mathrm{D}f|_{ x\;y }~~~\)& |
| + | \(~~\mathrm{D}f|_{ x~(y)}\,~~\)& |
| + | \(~~\mathrm{D}f|_{(x)~y }\,~~\)& |
| + | \(~~\mathrm{D}f|_{(x)(y)}\,~\) |
| + | \\ |
| + | \hline\hline |
| + | \(f_{0}\)& |
| + | 0& |
| + | 0& |
| + | 0& |
| + | 0& |
| + | 0 |
| + | \\ |
| + | \hline |
| + | \(f_{1}\)& |
| + | \((x)(y)\)& |
| + | ~~d\(x\)~~d\(y~~\)& |
| + | \;d\(x\)~(d\(y\))~& |
| + | ~(d\(x\))~d\(y~~\)& |
| + | ((d\(x\))(d\(y\))) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \((x)~y~\)& |
| + | \;d\(x\)~(d\(y\))~& |
| + | ~~d\(x\)~~d\(y~~\)& |
| + | ((d\(x\))(d\(y\)))& |
| + | ~(d\(x\))~d\(y~~\) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(~x~(y)\)& |
| + | ~(d\(x\))~d\(y~~\)& |
| + | ((d\(x\))(d\(y\)))& |
| + | ~~d\(x\)~~d\(y~~\)& |
| + | ~~d\(x\)~(d\(y\))~ |
| + | \\ |
| + | \(f_{8}\)& |
| + | \(~x~~y~\)& |
| + | ((d\(x\))(d\(y\)))& |
| + | ~(d\(x\))~d\(y~~\)& |
| + | \;d\(x\)~(d\(y\))~& |
| + | ~~d\(x\)~~d\(y~~\) |
| + | \\ |
| + | \hline |
| + | \(f_{3}\)& |
| + | \((x)\)& |
| + | d\(x\)& |
| + | d\(x\)& |
| + | d\(x\)& |
| + | d\(x\) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \( x \)& |
| + | d\(x\)& |
| + | d\(x\)& |
| + | d\(x\)& |
| + | d\(x\) |
| + | \\ |
| + | \hline |
| + | \(f_{6}\)& |
| + | \( (x,y) \)& |
| + | (d\(x\), d\(y\))& |
| + | (d\(x\), d\(y\))& |
| + | (d\(x\), d\(y\))& |
| + | (d\(x\), d\(y\)) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(((x,y))\)& |
| + | (d\(x\), d\(y\))& |
| + | (d\(x\), d\(y\))& |
| + | (d\(x\), d\(y\))& |
| + | (d\(x\), d\(y\)) |
| + | \\ |
| + | \hline |
| + | \(f_{5}\)& |
| + | \((y)\)& |
| + | d\(y\)& |
| + | d\(y\)& |
| + | d\(y\)& |
| + | d\(y\) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \( y \)& |
| + | d\(y\)& |
| + | d\(y\)& |
| + | d\(y\)& |
| + | d\(y\) |
| + | \\ |
| + | \hline |
| + | \(f_{7}\)& |
| + | \((~x~~y~)\)& |
| + | ((d\(x\))(d\(y\)))& |
| + | ~(d\(x\))~d\(y~~\)& |
| + | \;d\(x\)~(d\(y\))~& |
| + | ~~d\(x\)~~d\(y~~\) |
| + | \\ |
| + | \(f_{11}\)& |
| + | \((~x~(y))\)& |
| + | ~(d\(x\))~d\(y~~\)& |
| + | ((d\(x\))(d\(y\)))& |
| + | ~~d\(x\)~~d\(y~~\)& |
| + | ~~d\(x\)~(d\(y\))~ |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(((x)~y~)\)& |
| + | \;d\(x\)~(d\(y\))~& |
| + | ~~d\(x\)~~d\(y~~\)& |
| + | ((d\(x\))(d\(y\)))& |
| + | ~(d\(x\))~d\(y~~\) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(((x)(y))\)& |
| + | ~~d\(x\)~~d\(y~~\)& |
| + | \;d\(x\)~(d\(y\))~& |
| + | ~(d\(x\))~d\(y~~\)& |
| + | ((d\(x\))(d\(y\))) |
| + | \\ |
| + | \hline |
| + | \(f_{15}\)& |
| + | 1& |
| + | 0& |
| + | 0& |
| + | 0& |
| + | 0 |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ===Fourier Transforms of Boolean Functions=== |
| + | |
| + | Re: [http://rjlipton.wordpress.com/2013/05/21/twin-primes-are-useful/ Another Problem] |
| + | |
| + | <blockquote> |
| + | <p>The problem is concretely about Boolean functions <math>f\!</math> of <math>k\!</math> variables, and seems not to involve prime numbers at all. For any subset <math>S\!</math> of the coordinates, the corresponding Fourier coefficient is given by:</p> |
| + | |
| + | <p align="center"><math>\hat{f}(S) = \frac{1}{2^k} \sum_{x \in \mathbb{Z}_2^k} f(x)\chi_S(x)\!</math></p> |
| + | |
| + | <p>where <math>\chi_S(x)\!</math> is <math>-1\!</math> if <math>\textstyle \sum_{i \in S} x_i\!</math> is odd, and <math>+1\!</math> otherwise.</p> |
| + | </blockquote> |
| + | |
| + | <math>k = 1\!</math> |
| + | |
| + | … |
| + | |
| + | <math>k = 2\!</math> |
| + | |
| + | For ease of reading formulas, let <math>x = (x_1, x_2) = (u, v).\!</math> |
| + | |
| + | ====Table 2.1. Values of χ<sub>S</sub>(x)==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|c||*{4}{c}|} |
| + | \multicolumn{5}{c}{Table 2.1. Values of \( \boldsymbol{\chi}_\mathcal{S}(x) \) for \( f : \mathbb{B}^2 \to \mathbb{B} \)} \\[4pt] |
| + | \hline |
| + | \( \mathcal{S} \backslash (u, v) \) & |
| + | \( (1, 1) \) & |
| + | \( (1, 0) \) & |
| + | \( (0, 1) \) & |
| + | \( (0, 0) \) |
| + | \\ |
| + | \hline\hline |
| + | \( \varnothing \) & \( +1 \) & \( +1 \) & \( +1 \) & \( +1 \) \\ |
| + | \( \{ u \} \) & \( -1 \) & \( -1 \) & \( +1 \) & \( +1 \) \\ |
| + | \( \{ v \} \) & \( -1 \) & \( +1 \) & \( -1 \) & \( +1 \) \\ |
| + | \( \{ u, v \} \) & \( +1 \) & \( -1 \) & \( -1 \) & \( +1 \) \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ====Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|*{5}{c|}*{4}{r|}} |
| + | \multicolumn{9}{c}{Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] |
| + | \hline |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& |
| + | \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \hline |
| + | && \(u =\)& 1 1 0 0&&&&& \\ |
| + | && \(v =\)& 1 0 1 0&&&&& \\ |
| + | \hline |
| + | \(f_{0}\)& |
| + | \(f_{0000}\)&& |
| + | 0 0 0 0& |
| + | \((~)\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \(f_{1}\)& |
| + | \(f_{0001}\)&& |
| + | 0 0 0 1& |
| + | \((u)(v)\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \(f_{0010}\)&& |
| + | 0 0 1 0& |
| + | \((u)~v~\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{3}\)& |
| + | \(f_{0011}\)&& |
| + | 0 0 1 1& |
| + | \((u)\)& |
| + | \(1/2\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(f_{0100}\)&& |
| + | 0 1 0 0& |
| + | \(~u~(v)\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{5}\)& |
| + | \(f_{0101}\)&& |
| + | 0 1 0 1& |
| + | \((v)\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \(1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{6}\)& |
| + | \(f_{0110}\)&& |
| + | 0 1 1 0& |
| + | \((u,~v)\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(-1/2\) |
| + | \\ |
| + | \(f_{7}\)& |
| + | \(f_{0111}\)&& |
| + | 0 1 1 1& |
| + | \((u~~v)\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \hline |
| + | \(f_{8}\)& |
| + | \(f_{1000}\)&& |
| + | 1 0 0 0& |
| + | \(~u~~v~\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(f_{1001}\)&& |
| + | 1 0 0 1& |
| + | \(((u,~v))\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(1/2\) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \(f_{1010}\)&& |
| + | 1 0 1 0& |
| + | \(v\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \(-1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{11}\)& |
| + | \(f_{1011}\)&& |
| + | 1 0 1 1& |
| + | \((~u~(v))\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \(f_{1100}\)&& |
| + | 1 1 0 0& |
| + | \(u\)& |
| + | \( 1/2\)& |
| + | \(-1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(f_{1101}\)&& |
| + | 1 1 0 1& |
| + | \(((u)~v~)\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(f_{1110}\)&& |
| + | 1 1 1 0& |
| + | \(((u)(v))\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{15}\)& |
| + | \(f_{1111}\)&& |
| + | 1 1 1 1& |
| + | \(((~))\)& |
| + | \(1\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| + | ====Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables==== |
| + | |
| + | <pre> |
| + | $latex |
| + | \begin{tabular}{|*{5}{c|}*{4}{r|}} |
| + | \multicolumn{9}{c}{Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] |
| + | \hline |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& |
| + | \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \hline |
| + | && \(u =\)& 1 1 0 0&&&&& \\ |
| + | && \(v =\)& 1 0 1 0&&&&& \\ |
| + | \hline |
| + | \(f_{0}\)& |
| + | \(f_{0000}\)&& |
| + | 0 0 0 0& |
| + | \((~)\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \hline |
| + | \(f_{1}\)& |
| + | \(f_{0001}\)&& |
| + | 0 0 0 1& |
| + | \((u)(v)\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \(f_{0010}\)&& |
| + | 0 0 1 0& |
| + | \((u)~v~\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(f_{0100}\)&& |
| + | 0 1 0 0& |
| + | \(~u~(v)\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{8}\)& |
| + | \(f_{1000}\)&& |
| + | 1 0 0 0& |
| + | \(~u~~v~\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \hline |
| + | \(f_{3}\)& |
| + | \(f_{0011}\)&& |
| + | 0 0 1 1& |
| + | \((u)\)& |
| + | \(1/2\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \(f_{1100}\)&& |
| + | 1 1 0 0& |
| + | \(u\)& |
| + | \( 1/2\)& |
| + | \(-1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \(f_{6}\)& |
| + | \(f_{0110}\)&& |
| + | 0 1 1 0& |
| + | \((u,~v)\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(-1/2\) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(f_{1001}\)&& |
| + | 1 0 0 1& |
| + | \(((u,~v))\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(1/2\) |
| + | \\ |
| + | \hline |
| + | \(f_{5}\)& |
| + | \(f_{0101}\)&& |
| + | 0 1 0 1& |
| + | \((v)\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \(1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \(f_{1010}\)&& |
| + | 1 0 1 0& |
| + | \(v\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \(-1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \hline |
| + | \(f_{7}\)& |
| + | \(f_{0111}\)&& |
| + | 0 1 1 1& |
| + | \((u~~v)\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \hline |
| + | \(f_{11}\)& |
| + | \(f_{1011}\)&& |
| + | 1 0 1 1& |
| + | \((~u~(v))\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(f_{1101}\)&& |
| + | 1 1 0 1& |
| + | \(((u)~v~)\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(f_{1110}\)&& |
| + | 1 1 1 0& |
| + | \(((u)(v))\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \hline |
| + | \(f_{15}\)& |
| + | \(f_{1111}\)&& |
| + | 1 1 1 1& |
| + | \(((~))\)& |
| + | \(1\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </pre> |
| + | |
| ==Work 2== | | ==Work 2== |
| + | |
| + | * Examples of HTML and LaTeX markup from [http://inquiryintoinquiry.com/work/work-2/ Inquiry Into Inquiry : Work 2] |
| + | |
| + | ===Array Test=== |
| | | |
| <pre> | | <pre> |
− | <h3>Array Test</h3>
| |
− |
| |
| $latex | | $latex |
| |x| = \left\{ | | |x| = \left\{ |
Line 13: |
Line 1,234: |
| \right. | | \right. |
| &fg=000000$ | | &fg=000000$ |
| + | </pre> |
| | | |
| + | <pre> |
| $latex | | $latex |
| |x| = \left\{ | | |x| = \left\{ |
Line 23: |
Line 1,246: |
| \right. | | \right. |
| &fg=000000$ | | &fg=000000$ |
| + | </pre> |
| | | |
| + | <pre> |
| $latex | | $latex |
| \begin{array}{*{9}{l}} | | \begin{array}{*{9}{l}} |
Line 32: |
Line 1,257: |
| Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing | | Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing |
| \end{array}&fg=000000$ | | \end{array}&fg=000000$ |
| + | </pre> |
| | | |
− | <h3>Matrix Test</h3>
| + | ===Matrix Test=== |
| | | |
| + | <pre> |
| $latex | | $latex |
| \begin{matrix} | | \begin{matrix} |
Line 43: |
Line 1,270: |
| Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing | | Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing |
| \end{matrix}&fg=000000$ | | \end{matrix}&fg=000000$ |
| + | </pre> |
| | | |
− | <h3>Tabular Test 1</h3>
| + | ===Tabular Test 1=== |
| | | |
| + | <pre> |
| $latex | | $latex |
| \begin{tabular}{lll} | | \begin{tabular}{lll} |
Line 58: |
Line 1,287: |
| Rome & Italy & 1908 | | Rome & Italy & 1908 |
| \end{tabular}&fg=000000$ | | \end{tabular}&fg=000000$ |
| + | </pre> |
| | | |
− | <h3>Tabular Test 2</h3>
| + | ===Tabular Test 2=== |
| | | |
| + | <pre> |
| $latex | | $latex |
| \begin{tabular}{|r|r|} | | \begin{tabular}{|r|r|} |
Line 78: |
Line 1,309: |
| \hline | | \hline |
| \end{tabular}&fg=000000$ | | \end{tabular}&fg=000000$ |
| + | </pre> |
| | | |
− | <h3>Tabular Test 3</h3>
| + | ===Tabular Test 3=== |
| | | |
| + | <pre> |
| $latex | | $latex |
| \begin{tabular}{|c|c|*{16}{c}|} | | \begin{tabular}{|c|c|*{16}{c}|} |
Line 101: |
Line 1,334: |
| \hline | | \hline |
| \end{tabular}&fg=000000$ | | \end{tabular}&fg=000000$ |
| + | </pre> |
| | | |
− | <h3>Tabular Test 4</h3>
| + | ===Tabular Test 4=== |
| | | |
| + | <pre> |
| $latex | | $latex |
| \begin{tabular}{|*{7}{c|}} | | \begin{tabular}{|*{7}{c|}} |
Line 233: |
Line 1,468: |
| \hline | | \hline |
| \end{tabular}&fg=000000$ | | \end{tabular}&fg=000000$ |
| + | </pre> |
| | | |
− | <h3>Table Test 1</h3>
| + | ===Table Test 1=== |
| | | |
| + | <pre> |
| <table border="0" style="border-width:0;width:100%;"> | | <table border="0" style="border-width:0;width:100%;"> |
| | | |
Line 248: |
Line 1,485: |
| | | |
| </table> | | </table> |
| + | </pre> |
| | | |
− | Lately I've begun to see that these ancient riddles of change, coming to know, and communication all spring from a common root.
| + | ===Table Test 2=== |
− | | |
− | <h3>Table Test 2</h3>
| |
| | | |
| + | <pre> |
| <table align="left" border="0" style="border-width:0;"> | | <table align="left" border="0" style="border-width:0;"> |
| | | |
Line 270: |
Line 1,507: |
| | | |
| </table> | | </table> |
| + | </pre> |
| | | |
− | <h3>Table Test 3</h3>
| + | ===Table Test 3=== |
| | | |
| + | <pre> |
| <table align="center" border="0"> | | <table align="center" border="0"> |
| | | |
Line 293: |
Line 1,532: |
| | | |
| </table> | | </table> |
| + | </pre> |
| | | |
− | <h3>Table Test 4</h3>
| + | ===Table Test 4=== |
| | | |
| + | <pre> |
| <table align="center" border="0" style="border-width:0;text-align:center;"> | | <table align="center" border="0" style="border-width:0;text-align:center;"> |
| | | |
Line 315: |
Line 1,556: |
| | | |
| </table> | | </table> |
| + | </pre> |
| | | |
− | <h3>Table Test 5</h3>
| + | ===Table Test 5=== |
| | | |
| + | <pre> |
| <table align="center" border="0" style="text-align:center;"> | | <table align="center" border="0" style="text-align:center;"> |
| | | |
Line 337: |
Line 1,580: |
| | | |
| </table> | | </table> |
| + | </pre> |
| | | |
− | <h3>Table Test 6</h3>
| + | ===Table Test 6=== |
| | | |
| + | <pre> |
| <table align="center" border="0" style="text-align:center;"> | | <table align="center" border="0" style="text-align:center;"> |
| | | |