Changes

Line 53: Line 53:     
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:60%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:60%"
|+ '''Conditional Operation : B × B → B'''
+
|+ <math>\text{Conditional Operation} : \mathbb{B} \times \mathbb{B} \to \mathbb{B}\!</math>
 
|- style="background:#e6e6ff"
 
|- style="background:#e6e6ff"
! style="width:15%" | p
+
! style="width:15%" | <math>p\!</math>
! style="width:15%" | q
+
! style="width:15%" | <math>q\!</math>
! style="width:15%" | Cond (p, q)
+
! style="width:15%" | <math>\operatorname{Cond} (p, q)</math>
 
|-
 
|-
| F || F || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| F || T || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || F || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || T || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|}
 
|}
   Line 85: Line 85:  
|}
 
|}
   −
Let <math>\mathbb{B} = \{\mathbf{F},\ \mathbf{T}\}\!</math> be the ''[[boolean domain]]'' of two logical values.   The truth table shows the ordered triples of a [[triadic relation]] <math>L \subseteq \mathbb{B} \times \mathbb{B} \times \mathbb{B}\!</math> that is defined as follows:
+
Let <math>\mathbb{B} = \{ \operatorname{F}, \operatorname{T} \}</math> be the ''[[boolean domain]]'' of two logical values. The truth table shows the ordered triples of a [[triadic relation]] <math>L \subseteq \mathbb{B} \times \mathbb{B} \times \mathbb{B}\!</math> that is defined as follows:
    
: <math>L = \{(p,\ q,\ r) \in \mathbb{B} \times \mathbb{B} \times \mathbb{B}\ :\ Cond (p,\ q)\ = r \}\,.\!</math>
 
: <math>L = \{(p,\ q,\ r) \in \mathbb{B} \times \mathbb{B} \times \mathbb{B}\ :\ Cond (p,\ q)\ = r \}\,.\!</math>
12,080

edits