Line 53: |
Line 53: |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:60%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:60%" |
− | |+ '''Conditional Operation : B × B → B''' | + | |+ <math>\text{Conditional Operation} : \mathbb{B} \times \mathbb{B} \to \mathbb{B}\!</math> |
| |- style="background:#e6e6ff" | | |- style="background:#e6e6ff" |
− | ! style="width:15%" | p | + | ! style="width:15%" | <math>p\!</math> |
− | ! style="width:15%" | q | + | ! style="width:15%" | <math>q\!</math> |
− | ! style="width:15%" | Cond (p, q) | + | ! style="width:15%" | <math>\operatorname{Cond} (p, q)</math> |
| |- | | |- |
− | | F || F || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | F || T || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |- | | |- |
− | | T || F || F | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
| |- | | |- |
− | | T || T || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| |} | | |} |
| | | |
Line 85: |
Line 85: |
| |} | | |} |
| | | |
− | Let <math>\mathbb{B} = \{\mathbf{F},\ \mathbf{T}\}\!</math> be the ''[[boolean domain]]'' of two logical values. The truth table shows the ordered triples of a [[triadic relation]] <math>L \subseteq \mathbb{B} \times \mathbb{B} \times \mathbb{B}\!</math> that is defined as follows: | + | Let <math>\mathbb{B} = \{ \operatorname{F}, \operatorname{T} \}</math> be the ''[[boolean domain]]'' of two logical values. The truth table shows the ordered triples of a [[triadic relation]] <math>L \subseteq \mathbb{B} \times \mathbb{B} \times \mathbb{B}\!</math> that is defined as follows: |
| | | |
| : <math>L = \{(p,\ q,\ r) \in \mathbb{B} \times \mathbb{B} \times \mathbb{B}\ :\ Cond (p,\ q)\ = r \}\,.\!</math> | | : <math>L = \{(p,\ q,\ r) \in \mathbb{B} \times \mathbb{B} \times \mathbb{B}\ :\ Cond (p,\ q)\ = r \}\,.\!</math> |