Difference between revisions of "User:Jon Awbrey/SEQUENCES"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) (Undo revision 107256 by Jon Awbrey (Talk)) |
||
(21 intermediate revisions by the same user not shown) | |||
Line 8: | Line 8: | ||
{| align="center" border="1" cellpadding="12" cellspacing="1" style="text-align:center; width:96%" | {| align="center" border="1" cellpadding="12" cellspacing="1" style="text-align:center; width:96%" | ||
− | |+ style="height:24px" | <math> | + | |+ style="height:24px" | <math>\text{Prime Factorizations, Riffs, Rotes, and Traversals}\!</math> |
|- style="height:48px; background:#f0f0ff" | |- style="height:48px; background:#f0f0ff" | ||
| <math>\text{Integer}\!</math> | | <math>\text{Integer}\!</math> | ||
Line 129: | Line 129: | ||
{| align="center" border="1" cellpadding="12" cellspacing="1" style="text-align:center; width:96%" | {| align="center" border="1" cellpadding="12" cellspacing="1" style="text-align:center; width:96%" | ||
− | |+ style="height:24px" | <math> | + | |+ style="height:24px" | <math>\text{Prime Factorizations, Riffs, Rotes, and Traversals}\!</math> |
|- style="height:48px; background:#f0f0ff" | |- style="height:48px; background:#f0f0ff" | ||
| <math>\text{Integer}\!</math> | | <math>\text{Integer}\!</math> | ||
Line 252: | Line 252: | ||
{| align="center" border="1" width="96%" | {| align="center" border="1" width="96%" | ||
− | |+ style="height: | + | |+ style="height:24px" | <math>\text{Prime Factorizations, Riffs, Rotes, and Traversals}\!</math> |
|- style="height:50px; background:#f0f0ff" | |- style="height:50px; background:#f0f0ff" | ||
| | | | ||
Line 388: | Line 388: | ||
{| align="center" border="1" width="96%" | {| align="center" border="1" width="96%" | ||
− | |+ style="height: | + | |+ style="height:24px" | <math>\text{Prime Factorizations, Riffs, Rotes, and Traversals}\!</math> |
|- style="height:50px; background:#f0f0ff" | |- style="height:50px; background:#f0f0ff" | ||
| | | | ||
Line 1,392: | Line 1,392: | ||
| <math>\text{p}^{\text{p}^{\text{p}_{\text{p}}}}\!</math> | | <math>\text{p}^{\text{p}^{\text{p}_{\text{p}}}}\!</math> | ||
| [[Image:Riff 256 Big.jpg|90px]] | | [[Image:Riff 256 Big.jpg|90px]] | ||
− | | [[Image:Rote 256 Big.jpg| | + | | [[Image:Rote 256 Big.jpg|90px]] |
|- | |- | ||
| <math>512\!</math> | | <math>512\!</math> | ||
Line 1,404: | Line 1,404: | ||
| <math>\text{p}^{\text{p}_{\text{p}}^{\text{p}}}\!</math> | | <math>\text{p}^{\text{p}_{\text{p}}^{\text{p}}}\!</math> | ||
| [[Image:Riff 512 Big.jpg|65px]] | | [[Image:Riff 512 Big.jpg|65px]] | ||
− | | [[Image:Rote 512 Big.jpg| | + | | [[Image:Rote 512 Big.jpg|105px]] |
|- | |- | ||
| <math>65536\!</math> | | <math>65536\!</math> | ||
Line 1,418: | Line 1,418: | ||
| <math>\text{p}^{\text{p}^{\text{p}^{\text{p}}}}\!</math> | | <math>\text{p}^{\text{p}^{\text{p}^{\text{p}}}}\!</math> | ||
| [[Image:Riff 65536 Big.jpg|90px]] | | [[Image:Riff 65536 Big.jpg|90px]] | ||
− | | [[Image:Rote 65536 Big.jpg| | + | | [[Image:Rote 65536 Big.jpg|115px]] |
|} | |} | ||
|} | |} | ||
Line 1,454: | Line 1,454: | ||
| valign="bottom" | | | valign="bottom" | | ||
<p> </p><br> | <p> </p><br> | ||
− | <p> | + | <p><math>1\!</math></p><br> |
<p><math>a(1) ~=~ 0</math></p> | <p><math>a(1) ~=~ 0</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
Line 1,733: | Line 1,733: | ||
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br> | <p><math>\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br> | ||
<p><math>a(4) ~=~ 10</math></p> | <p><math>a(4) ~=~ 10</math></p> | ||
+ | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Riff 15 Big.jpg|90px]]</p><br> | <p>[[Image:Riff 15 Big.jpg|90px]]</p><br> | ||
Line 1,741: | Line 1,742: | ||
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> | <p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> | ||
<p><math>a(6) ~=~ 30</math></p> | <p><math>a(6) ~=~ 30</math></p> | ||
+ | | valign="bottom" | | ||
+ | <p>[[Image:Riff 55 Big.jpg|115px]]</p><br> | ||
+ | <p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br> | ||
+ | <p><math>a(7) ~=~ 55</math></p> | ||
+ | | valign="bottom" | | ||
+ | <p>[[Image:Riff 105 Big.jpg|115px]]</p><br> | ||
+ | <p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br> | ||
+ | <p><math>a(8) ~=~ 105</math></p> | ||
+ | | valign="bottom" | | ||
+ | <p>[[Image:Riff 165 Big.jpg|135px]]</p><br> | ||
+ | <p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br> | ||
+ | <p><math>a(9) ~=~ 165</math></p> | ||
|} | |} | ||
Line 2,491: | Line 2,504: | ||
* [http://oeis.org/wiki/A109301 A109301] | * [http://oeis.org/wiki/A109301 A109301] | ||
+ | |||
+ | ===Example=== | ||
+ | |||
+ | : <math>802701 = 9 \cdot 89189 = \text{p}_2^2 \text{p}_{8638}^1</math> | ||
+ | |||
+ | : <math>\text{Writing}~ (\operatorname{prime}(i))^j ~\text{as}~ i\!:\!j, ~\text{we have:}</math> | ||
+ | |||
+ | : <math>\begin{array}{lllll} | ||
+ | 802701 | ||
+ | & = & 9 \cdot 89189 | ||
+ | & = & 2\!:\!2 ~~ 8638\!:\!1 | ||
+ | \\ | ||
+ | 8638 | ||
+ | & = & 2 \cdot 7 \cdot 617 | ||
+ | & = & 1\!:\!1 ~~ 4\!:\!1 ~~ 113\!:\!1 | ||
+ | \\ | ||
+ | 113 | ||
+ | & & | ||
+ | & = & 30\!:\!1 | ||
+ | \\ | ||
+ | 30 | ||
+ | & = & 2 \cdot 3 \cdot 5 | ||
+ | & = & 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 | ||
+ | \\ | ||
+ | 4 | ||
+ | & & | ||
+ | & = & 1\!:\!2 | ||
+ | \\ | ||
+ | 3 | ||
+ | & & | ||
+ | & = & 2\!:\!1 | ||
+ | \\ | ||
+ | 2 | ||
+ | & & | ||
+ | & = & 1\!:\!1 | ||
+ | \end{array}</math> | ||
+ | |||
+ | : <math>\text{So the rote of 802701 is the following graph:}\!</math> | ||
+ | |||
+ | :{| border="1" cellpadding="20" | ||
+ | | [[Image:Rote 802701 Big.jpg|330px]] | ||
+ | |} | ||
+ | |||
+ | : <math>\text{By inspection, the rote height of 802701 is 6.}\!</math> | ||
===JPEG=== | ===JPEG=== | ||
Line 2,496: | Line 2,553: | ||
{| align="center" border="1" cellpadding="6" | {| align="center" border="1" cellpadding="6" | ||
| valign="bottom" | | | valign="bottom" | | ||
− | <p>[[Image: | + | <p>[[Image:Rote 1 Big.jpg|20px]]</p><br> |
− | <p><math>\ | + | <p><math>1\!</math></p><br> |
+ | <p><math>a(1) ~=~ 0</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 2 Big.jpg|40px]]</p><br> | <p>[[Image:Rote 2 Big.jpg|40px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}\!</math></p><br> |
+ | <p><math>a(2) ~=~ 1</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 3 Big.jpg|40px]]</p><br> | <p>[[Image:Rote 3 Big.jpg|40px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p}\!</math></p><br> |
+ | <p><math>a(3) ~=~ 2</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 4 Big.jpg|65px]]</p><br> | <p>[[Image:Rote 4 Big.jpg|65px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^\text{p}\!</math></p><br> |
+ | <p><math>a(4) ~=~ 2</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 5 Big.jpg|40px]]</p><br> | <p>[[Image:Rote 5 Big.jpg|40px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(5) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 6 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 6 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_\text{p}\!</math></p><br> |
+ | <p><math>a(6) ~=~ 2</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 7 Big.jpg|65px]]</p><br> | <p>[[Image:Rote 7 Big.jpg|65px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(7) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 8 Big.jpg|65px]]</p><br> | <p>[[Image:Rote 8 Big.jpg|65px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(8) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 9 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 9 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p}^\text{p}\!</math></p><br> |
+ | <p><math>a(9) ~=~ 2</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 10 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 10 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(10) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 11 Big.jpg|40px]]</p><br> | <p>[[Image:Rote 11 Big.jpg|40px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(11) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 12 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 12 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^\text{p} \text{p}_\text{p}\!</math></p><br> |
+ | <p><math>a(12) ~=~ 2</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 13 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 13 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(13) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 14 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 14 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(14) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 15 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 15 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(15) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 16 Big.jpg|90px]]</p><br> | <p>[[Image:Rote 16 Big.jpg|90px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^{\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(16) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 17 Big.jpg|65px]]</p><br> | <p>[[Image:Rote 17 Big.jpg|65px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br> |
+ | <p><math>a(17) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 18 Big.jpg|120px]]</p><br> | <p>[[Image:Rote 18 Big.jpg|120px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br> |
+ | <p><math>a(18) ~=~ 2</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 19 Big.jpg|65px]]</p><br> | <p>[[Image:Rote 19 Big.jpg|65px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(19) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 20 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 20 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(20) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 21 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 21 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(21) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 22 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 22 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(22) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 23 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 23 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(23) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 24 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 24 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!</math></p><br> |
+ | <p><math>a(24) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 25 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 25 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br> |
+ | <p><math>a(25) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 26 Big.jpg|120px]]</p><br> | <p>[[Image:Rote 26 Big.jpg|120px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(26) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 27 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 27 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(27) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 28 Big.jpg|130px]]</p><br> | <p>[[Image:Rote 28 Big.jpg|130px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(28) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 29 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 29 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(29) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 30 Big.jpg|120px]]</p><br> | <p>[[Image:Rote 30 Big.jpg|120px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(30) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 31 Big.jpg|40px]]</p><br> | <p>[[Image:Rote 31 Big.jpg|40px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!</math></p><br> |
+ | <p><math>a(31) ~=~ 5</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 32 Big.jpg|65px]]</p><br> | <p>[[Image:Rote 32 Big.jpg|65px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^{\text{p}_{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(32) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 33 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 33 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(33) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 34 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 34 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br> |
+ | <p><math>a(34) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 35 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 35 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(35) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 36 Big.jpg|145px]]</p><br> | <p>[[Image:Rote 36 Big.jpg|145px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br> |
+ | <p><math>a(36) ~=~ 2</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 37 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 37 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(37) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 38 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 38 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(38) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 39 Big.jpg|120px]]</p><br> | <p>[[Image:Rote 39 Big.jpg|120px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(39) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 40 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 40 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(40) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 41 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 41 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(41) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 42 Big.jpg|145px]]</p><br> | <p>[[Image:Rote 42 Big.jpg|145px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(42) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 43 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 43 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!</math></p><br> |
+ | <p><math>a(43) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 44 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 44 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(44) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 45 Big.jpg|120px]]</p><br> | <p>[[Image:Rote 45 Big.jpg|120px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(45) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 46 Big.jpg|120px]]</p><br> | <p>[[Image:Rote 46 Big.jpg|120px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(46) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 47 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 47 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(47) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 48 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 48 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!</math></p><br> |
+ | <p><math>a(48) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 49 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 49 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}^\text{p}}^\text{p}\!</math></p><br> |
+ | <p><math>a(49) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 50 Big.jpg|120px]]</p><br> | <p>[[Image:Rote 50 Big.jpg|120px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br> |
+ | <p><math>a(50) ~=~ 3</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 51 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 51 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br> |
+ | <p><math>a(51) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 52 Big.jpg|145px]]</p><br> | <p>[[Image:Rote 52 Big.jpg|145px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(52) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 53 Big.jpg|90px]]</p><br> | <p>[[Image:Rote 53 Big.jpg|90px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}^{\text{p}^\text{p}}}\!</math></p><br> |
+ | <p><math>a(53) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 54 Big.jpg|120px]]</p><br> | <p>[[Image:Rote 54 Big.jpg|120px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(54) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 55 Big.jpg|80px]]</p><br> | <p>[[Image:Rote 55 Big.jpg|80px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(55) ~=~ 4</math></p> | ||
|- | |- | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 56 Big.jpg|130px]]</p><br> | <p>[[Image:Rote 56 Big.jpg|130px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br> |
+ | <p><math>a(56) ~=~ 3</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 57 Big.jpg|105px]]</p><br> | <p>[[Image:Rote 57 Big.jpg|105px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(57) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 58 Big.jpg|120px]]</p><br> | <p>[[Image:Rote 58 Big.jpg|120px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br> |
+ | <p><math>a(58) ~=~ 4</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 59 Big.jpg|65px]]</p><br> | <p>[[Image:Rote 59 Big.jpg|65px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!</math></p><br> |
+ | <p><math>a(59) ~=~ 5</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 60 Big.jpg|155px]]</p><br> | <p>[[Image:Rote 60 Big.jpg|155px]]</p><br> | ||
− | <p><math>\ | + | <p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> |
+ | <p><math>a(60) ~=~ 3</math></p> | ||
|} | |} | ||
Line 2,834: | Line 2,951: | ||
* while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 = | * while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 = | ||
* (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly | * (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly | ||
− | * 7.840858554516122655953405327738 x 10^371. | + | * 7.840858554516122655953405327738 x 10^371. |
+ | |||
+ | Example | ||
+ | |||
+ | * Writing (prime(i))^j as i:j, we have: | ||
+ | * 802701 = 2:2 8638:1 | ||
+ | * 8638 = 1:1 4:1 113:1 | ||
+ | * 113 = 30:1 | ||
+ | * 30 = 1:1 2:1 3:1 | ||
+ | * 4 = 1:2 | ||
+ | * 3 = 2:1 | ||
+ | * 2 = 1:1 | ||
+ | * 1 = { } | ||
+ | * So rote(802701) is the graph: | ||
+ | * | ||
+ | * o-o | ||
+ | * | | ||
+ | * o-o o-o | ||
+ | * | | | ||
+ | * o-o o-o o-o o-o | ||
+ | * | | | | | ||
+ | * o-o o===o===o-o | ||
+ | * | | | ||
+ | * o-o o-o o-o o-o o---------o | ||
+ | * | | | | | | ||
+ | * o---o o===o=====o---------o | ||
+ | * | | | ||
+ | * O=======O | ||
+ | * | ||
+ | * Therefore rhig(802701) = 6. | ||
</pre> | </pre> | ||
Latest revision as of 18:48, 31 January 2010
A061396
Plain Wiki Table
Large Scale
ASCII
Comment * Table of Rotes and Primal Functions for Positive Integers from 1 to 40 * * o-o * | * o-o o-o o-o * | | | * o-o o-o o-o o-o * | | | | * O O O O O * * { } 1:1 2:1 1:2 3:1 * * 1 2 3 4 5 * * * o-o o-o o-o * | | | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o---o o-o o-o * | | | | | | | * O===O O O O O===O * * 1:1 2:1 4:1 1:3 2:2 1:1 3:1 * * 6 7 8 9 10 * * * o-o * | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * o-o o-o o-o o===o-o o-o o-o o-o o-o * | | | | | | | | * O O=====O O O===O O===O * * 5:1 1:2 2:1 6:1 1:1 4:1 2:1 3:1 * * 11 12 13 14 15 * * * o-o o-o * | | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o---o o-o o-o o-o * | | | | | | | * O O O===O O O=====O * * 1:4 7:1 1:1 2:2 8:1 1:2 3:1 * * 16 17 18 19 20 * * * o-o * | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o---o o-o o-o o-o o-o * | | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o---o * | | | | | | | | * O===O O===O O O=====O O * * 2:1 4:1 1:1 5:1 9:1 1:3 2:1 3:2 * * 21 22 23 24 25 * * * o-o * | * o-o o-o o-o o-o o-o * | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | * o-o o===o-o o---o o-o o-o o===o-o o-o o-o o-o * | | | | | | | | | * O===O O O=====O O O===O===O * * 1:1 6:1 2:3 1:2 4:1 10:1 1:1 2:1 3:1 * * 26 27 28 29 30 * * * o-o * | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * O O O===O O===O O===O * * 11:1 1:5 2:1 5:1 1:1 7:1 3:1 4:1 * * 31 32 33 34 35 * * * o-o * | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | | * o-o o---o o=====o-o o-o o-o o-o o===o-o o-o o-o * | | | | | | | | | * O=====O O O===O O===O O=====O * * 1:2 2:2 12:1 1:1 8:1 2:1 6:1 1:3 3:1 * * 36 37 38 39 40 * * In these Figures, "extended lines of identity" like o===o * indicate identified nodes and capital O is the root node. * The rote height in gammas is found by finding the number * of graphs of the following shape between the root and one * of the highest nodes of the tree: * o--o * | * o * A sequence like this, that can be regarded as a nonnegative integer * measure on positive integers, may have as many as 3 other sequences * associated with it. Given that the fiber of a function f at n is all * the domain elements that map to n, we always have the fiber minimum * or minimum inverse function and may also have the fiber cardinality * and the fiber maximum or maximum inverse function. For A109301, the * minimum inverse is A007097(n) = min {k : A109301(k) = n}, giving the * first positive integer whose rote height is n, the fiber cardinality * is A109300, giving the number of positive integers of rote height n, * while the maximum inverse, g(n) = max {k : A109301(k) = n}, giving * the last positive integer whose rote height is n, has the following * initial terms: g(0) = { } = 1, g(1) = 1:1 = 2, g(2) = 1:2 2:2 = 36, * while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 = * (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly * 7.840858554516122655953405327738 x 10^371. Example * Writing (prime(i))^j as i:j, we have: * 802701 = 2:2 8638:1 * 8638 = 1:1 4:1 113:1 * 113 = 30:1 * 30 = 1:1 2:1 3:1 * 4 = 1:2 * 3 = 2:1 * 2 = 1:1 * 1 = { } * So rote(802701) is the graph: * * o-o * | * o-o o-o * | | * o-o o-o o-o o-o * | | | | * o-o o===o===o-o * | | * o-o o-o o-o o-o o---------o * | | | | | * o---o o===o=====o---------o * | | * O=======O * * Therefore rhig(802701) = 6.
A111795
JPEG
\(\begin{array}{l} \varnothing \\ 1 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\) |
\(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\) |
\(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\) |
\(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\) |
\(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\) |
\(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\) |
\(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\) |
\(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\) |
\(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\) |
\(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\) |
ASCII
Example * Tables of Rotes and Primal Codes for a(1) to a(9) * * o-o * | * o-o o-o o-o o-o o-o * | | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * O O O O O O O O O * * { } 1:1 2:1 1:2 3:1 4:1 1:3 5:1 1:4 * * 1 2 3 4 5 7 8 11 16 *
A111800
TeX + JPEG
\(\text{Writing}~ \operatorname{prime}(i)^j ~\text{as}~ i\!:\!j, 2500 = 4 \cdot 625 = 2^2 5^4 = 1\!:\!2 ~~ 3\!:\!4 ~\text{has the following rote:}\)
\(\text{So}~ a(2500) = a(1\!:\!2 ~~ 3\!:\!4) = a(1) + a(2) + a(3) + a(4) + 1 = 1 + 3 + 5 + 5 + 1 = 15.\)
ASCII
Example * Writing prime(i)^j as i:j and using equal signs between identified nodes: * 2500 = 4 * 625 = 2^2 5^4 = 1:2 3:4 has the following rote: * * o-o o-o * | | * o-o o-o o-o * | | | * o-o o---o * | | * O=====O * * So a(2500) = a(1:2 3:4) = a(1)+a(2)+a(3)+a(4)+1 = 1+3+5+5+1 = 15.